Pasteurian Contributions to the Study of Bordetella pertussis Toxins
Abstract
:1. Introduction
2. From the Identification of the Whooping Cough Agent to the Concept of Bordetella Toxins
3. Lipo-Oligosaccharide
4. Adenylyl Cyclase/Haemolysin Toxin
4.1. Biogenesis
4.2. Calmodulin Binding and Catalysis
4.3. Haemolytic and Receptor-Binding Domain
4.4. Biological Activities of ACT
4.5. Applications
5. Pertussis Toxin
5.1. Structure–Function Relationship of PTX
5.2. Mechanism of PTX S1 Subunit Enzyme Activity
5.3. Applications: Development of a Live Attenuated Pertussis Vaccine
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weigand, M.R.; Peng, Y.; Batra, D.; Burroughs, M.; Davis, J.K.; Knipe, K.; Loparev, V.N.; Johnson, T.; Juieng, P.; Rowe, L.A.; et al. Conserved patterns of symmetric inversion in the genome evolution of Bordetella respiratory pathogens. mSystems 2019, 4, e00702-19. [Google Scholar] [CrossRef] [Green Version]
- Bordet, J.; Gengou, O. Le microbe de la coqueluche. Ann. Inst. Pasteur Paris 1906, 20, 731–741. [Google Scholar]
- Bordet, J.; Gengou, O. Le microbe de la coqueluche. Ann. Inst. Pasteur Paris 1907, 21, 727–732. [Google Scholar]
- Bordet, J.; Gengou, O. L’endotoxine coquelucheuse. Ann. Inst. Pasteur Paris 1909, 23, 415–419. [Google Scholar]
- Fukui, A.; Horiguchi, Y. Bordetella dermonecrotic toxin exerting toxicity through activation of small GTPase Rho. J. Biochem. 2004, 136, 415–419. [Google Scholar] [CrossRef]
- Caroff, M. Structural variability and originality of the Bordetella endotoxins. J. Endotoxin Res. 2001, 7, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Haeffner-Cavaillon, N.; Chaby, R.; Cavaillon, J.M.; Szabo, L. Lipopolysaccharide receptor on rabbit peritoneal macrophages. I. Binding characteristics. J. Immunol. 1982, 128, 1950–1955. [Google Scholar] [CrossRef]
- Haeffner-Cavaillon, N.; Cavaillon, J.M.; Moreau, M.; Szabo, L. Interleukin 1 secretion by human monocytes stimulated by the isolated polysaccharide region of the Bordetella pertussis endotoxin. Mol. Immunol. 1984, 21, 389–395. [Google Scholar] [CrossRef]
- Lebbar, S.; Cavaillon, J.M.; Caroff, M.; Ledur, A.; Brade, H.; Sarfati, R.; Haeffner-Cavaillon, N. Molecular requirement for interleukin 1 induction by lipopolysaccharide-stimulated human monocytes: Involvement of the heptosyl-2-keto-3-deoxyoctulosonate region. Eur. J. Immunol. 1986, 16, 87–91. [Google Scholar] [CrossRef]
- Cavaillon, J.M.; Fitting, C.; Caroff, M.; Haeffner-Cavaillon, N. Dissociation of cell-associated interleukin-1 (IL-1) and IL-1 release induced by lipopolysaccharide and lipid A. Infect. Immun. 1989, 57, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.; Cerny, O.; Osickova, A.; Linhartova, I.; Masin, J.; Bumba, L.; Sebo, P.; Osicka, R. Structure-function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins 2017, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Hewlett, E.L.; Urban, M.A.; Manclark, C.R.; Wolff, J. Extracytoplasmic adenylate cyclase of Bordetella pertussis. Proc. Natl. Acad. Sci. USA 1976, 73, 1926–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, P.; Ladant, D.; Sezer, O.; Pichot, F.; Ullmann, A.; Danchin, A. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: Cloning and expression in Escherichia coli. Mol. Microbiol. 1988, 2, 19–30. [Google Scholar] [CrossRef]
- Glaser, P.; Sakamoto, H.; Bellalou, J.; Ullmann, A.; Danchin, A. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 1988, 7, 3997–4004. [Google Scholar] [CrossRef] [PubMed]
- Bellalou, J.; Ladant, D.; Sakamoto, H. Synthesis and secretion of Bordetella pertussis adenylate cyclase as a 200-kilodalton protein. Infect. Immun. 1990, 58, 1195–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Stibitz, S. The BvgASR virulence regulon of Bordetella pertussis. Curr. Opin. Microbiol. 2019, 47, 74–81. [Google Scholar] [CrossRef]
- Laoide, B.M.; Ullmann, A. Virulence dependent and independent regulation of the Bordetella pertussis cya operon. EMBO J. 1990, 9, 999–1005. [Google Scholar] [CrossRef]
- Steffen, P.; Goyard, S.; Ullmann, A. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-related genes in Bordetella pertussis. EMBO J. 1996, 15, 102–109. [Google Scholar] [CrossRef]
- Ladant, C. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J. Biol. Chem. 1988, 263, 2612–2618. [Google Scholar] [CrossRef] [PubMed]
- Ladant, D.; Michelson, S.; Sarfati, R.; Gilles, A.M.; Predeleanu, R.; Barzu, O. Characterization of the calmodulin-binding and of the catalytic domains of Bordetella pertussis adenylate cyclase. J. Biol. Chem. 1989, 264, 4015–4020. [Google Scholar] [CrossRef]
- Sarfati, R.S.; Kansal, V.K.; Munier, H.; Glaser, P.; Gilles, A.M.; Labruyère, E.; Mock, M.; Danchin, A.; Barzu, O. Binding of 3′-anthraniloyl-2′-deoxy-ATP to calmodulin-activated adenylate cyclase from Bordetella pertussis and Bacillus anthracis. J. Biol. Chem. 1990, 265, 18902–18906. [Google Scholar] [CrossRef]
- Bouhss, A.; Krin, E.; Munier, H.; Gilles, A.M.; Danchin, A.; Glaser, P.; Barzu, O. Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin. J. Biol. Chem. 1993, 268, 1690–1694. [Google Scholar] [CrossRef]
- Ladant, D.; Glaser, P.; Ullmann, A. Insertional mutagenesis of Bordetella pertussis adenylate cyclase. J. Biol. Chem. 1992, 267, 2244–2250. [Google Scholar] [CrossRef]
- Selwa, E.; Davi, M.; Chenal, A.; Sotomayor-Pérez, A.C.; Ladant, D.; Malliavin, T.E. Allosteric activation of Bordetella pertussis adenylate cyclase by calmodulin. Molecular dynamics and mutagenesis studies. J. Biol. Chem. 2014, 289, 21131–21141. [Google Scholar] [CrossRef] [Green Version]
- O’Brian, D.P.; Durand, D.; Voegele, A.; Hourdel, V.; Davi, M.; Chamot-Rooke, J.; Vachette, P.; Brier, S.; Ladant, D.; Chenal, A. Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis. PLoS Biol. 2017, 15, e2004486. [Google Scholar] [CrossRef] [Green Version]
- Glaser, P.; Elmaoglou-Lazaridou, A.; Krin, E.; Ladant, D.; Barzu, O.; Danchin, A. Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis. EMBO J. 1989, 8, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Glaser, P.; Munier, H.; Gilles, A.M.; Krin, E.; Porumb, T.; Barzu, O.; Sarfati, R.; Pellecuer, C.; Danchin, A. Functional consequences of single amino acid substitutions in calmodulin-sensitive adenylate cyclase of Bordetella pertussis. EMBO J. 1991, 10, 1683–1688. [Google Scholar] [CrossRef]
- Munier, H.; Bouhss, A.; Krin, E.; Danchin, A.; Gilles, A.M.; Glaser, P.; Barzu, O. The role of histidine 63 in the catalytic mechanism of Bordetella pertussis adenylate cyclase. J. Biol. Chem. 1992, 267, 9816–9820. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Bellalou, J.; Sebo, P.; Ladant, D. Bordetella pertussis adenylate cyclase toxin. Structural and functional indepencence of the catalytic and hemolytic activities. J. Biol. Chem. 1992, 267, 13598–13602. [Google Scholar] [CrossRef] [PubMed]
- Benz, R.; Maier, E.; Ladant, D.; Ullmann, A.; Sebo, P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 1994, 269, 27231–27239. [Google Scholar] [CrossRef]
- Barry, E.M.; Weiss, A.A.; Ehrmann, I.E.; Gray, M.C.; Hewlett, E.L.; Goodwin, M.S. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J. Bacteriol. 1991, 173, 170–736. [Google Scholar] [CrossRef] [Green Version]
- Sebo, P.; Glaser, P.; Sakamoto, H.; Ullmann, A. High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene 1991, 104, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Heveker, N.; Bonnaffé, D.; Ullmann, A. Chemical fatty acylation confers hemolytic and toxic activities to adenylate cyclase protoxin of Bordetella pertussis. J. Biol. Chem. 1994, 269, 32844–32847. [Google Scholar] [CrossRef]
- Hackett, M.; Guo, L.; Shabanowitz, J.; Hunt, D.F.; Hewlett, E.L. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 1994, 266, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Hackett, M.; Walker, C.B.; Guo, L.; Gray, M.C.; Van Cuyk, S.; Ullmann, A.; Shabanowitz, J.; Hunt, D.F.; Hewlett, E.L.; Sebo, P. Hemolytic, but not cell-invasive activity, of adenylate cyclase toxin is selectively affected by differential fatty-acylation in Escherichia coli. J. Biol. Chem. 1995, 270, 20250–20253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karst, J.C.; Barker, R.; Devi, U.; Swann, M.J.; Davi, M.; Roser, S.J.; Ladant, D.; Chenal, A. Identification of a region that assists membrane insertion and translocation of the catalytic domain of Bordetella pertussis CyaA toxin. J. Biol. Chem. 2012, 287, 9200–9212. [Google Scholar] [CrossRef] [Green Version]
- Subrini, O.; Sotomayor-Pérez, A.C.; Hessel, A.; Spiaczka-Karst, J.; Selwa, E.; Sapay, N.; Veneziano, R.; Pansieri, J.; Chopineau, J.; Ladant, A.; et al. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J. Biol. Chem. 2013, 288, 32585–32598. [Google Scholar] [CrossRef] [Green Version]
- Voegele, A.; Sadi, M.; O’Brian, D.P.; Gehan, P.; Raoux-Barbot, D.; Davi, M.; Hoos, S.; Brûlé, S.; Raynal, B.; Weber, P.; et al. A high-affinity calmodulin-binding site in the CyaA toxin translocation domain is essential for invasion of eukaryotic cells. Adv. Sci. 2021, 8, 2003630. [Google Scholar] [CrossRef]
- Bellalou, J.; Sakamoto, H.; Ladant, D.; Geoffroy, C.; Ullmann, A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect. Immun. 1990, 58, 3242–3247. [Google Scholar] [CrossRef] [Green Version]
- Rose, T.; Sebo, P.; Bellalou, J.; Ladant, D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J. Biol. Chem. 1995, 270, 26370–26376. [Google Scholar] [CrossRef] [Green Version]
- Bauche, C.; Chenal, A.; Knapp, O.; Bodenreider, C.; Benz, R.; Chaffotte, A.; Ladant, D. Structural and functional characterization of an essential RTX subdomain of Bordetella pertussis adenylate cyclase toxin. J. Biol. Chem. 2006, 281, 16914–16926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chenal, A.; Guijarro, J.I.; Raynal, B.; Delepierre, M.; Ladant, D. RTX calcium binding motifs are intrinsically disordered in the absence of calcium. Implication for protein secretion. J. Biol. Chem. 2009, 284, 1781–1789. [Google Scholar] [CrossRef] [Green Version]
- Sotomayor-Pérez, A.C.; Ladant, D.; Chenal, A. Calcium-induced folding of intrinsically disordered repeat-in-toxin (RTX) motifs via changes of protein charges and oligomerization states. J. Biol. Chem. 2011, 286, 16997–17004. [Google Scholar] [CrossRef] [Green Version]
- Karst, J.C.; Ntsogo Enguéné, V.Y.; Cannella, S.E.; Subrini, O.; Hessel, A.; Debard, S.; Ladant, D.; Chenal, A. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 2014, 289, 30702–30716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guermonprez, P.; Khelef, N.; Blouin, E.; Rieu, P.; Ricciardi-Castagnoli, P.; Guiso, N.; Ladant, D.; Leclerc, C. The adenylate cycloase toxin of Bordetella pertussis binds to target cells via the αMß2 integrin (CD11b/CD18). J. Exp. Med. 2001, 193, 1035–1044. [Google Scholar] [CrossRef]
- Khelef, N.; Zychlinsky, A.; Guiso, N. Bordetella pertussis induces apoptosis in macrophages: Role of adenyate cyclase-hemolysin. Infect. Immun. 1993, 61, 4064–4071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gueirard, P.; Druilhe, A.; Pretolani, M.; Guiso, N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect. Immun. 1998, 66, 1718–1725. [Google Scholar] [CrossRef] [Green Version]
- Khelef, N.; Sakamoto, H.; Guiso, N. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Micob. Pathog. 1992, 12, 227–235. [Google Scholar] [CrossRef]
- Khelef, N.; Bachelet, C.M.; Vargaftig, B.B.; Guiso, N. Characterization of murine lung inflammation after infection with parental Bordetella pertussis and mutants deficient in adhesins and toxins. Infect. Immun. 1994, 62, 2893–2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njamkepo, E.; Pinot, F.; François, D.; Guiso, N.; Polla, B.S.; Bachelet, M. Adaptive responses of human monocytes infected with Bordetella pertussis: The role of adenylate cyclase hemolysin. J. Cell. Physiol. 2000, 183, 91–99. [Google Scholar] [CrossRef]
- Bassinet, L.; Gueirard, P.; Maitre, B.; Housset, B.; Gounon, P.; Guiso, N. Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect. Immun. 2000, 68, 1934–1941. [Google Scholar] [CrossRef] [Green Version]
- Bassinet, L.; Fitting, C.; Housset, B.; Cavaillon, J.M.; Guiso, N. Bordetella pertussis adenylate cyclase-hemolysin induces interleukin-6 secretion by human tracheal epithelial cells. Infect. Immun. 2004, 72, 5530–5533. [Google Scholar] [CrossRef] [Green Version]
- Guiso, N.; Rocancourt, M.; Szatanik, M.; Alonso, J.M. Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Microb. Pathog. 1989, 7, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Guiso, N.; Szatanik, M.; Rocancourt, M. Protective activity of Bordetella adenylate cyclase-hemolysin against bacterial colonization. Microb. Pathog. 1991, 11, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Betsou, F.; Seblo, P.; Guiso, N. The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-hemolysin. Infect. Immun. 1995, 63, 3309–3315. [Google Scholar] [CrossRef] [Green Version]
- Betsou, F.; Sebo, P.; Guiso, N. CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase-hemolysin. Infect. Immun. 1993, 61, 3583–3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebo, P.; Fayolle, C.; d’Andria, O.; Ladant, D.; Leclerc, C.; Ullmann, A. Cell-invasive activity of epitope-tagged adenylate cyclase of Bordetella pertussis allows in vitro presentation of a foreign epitope to CD8+ cytotoxic T cells. Infect. Immun. 1995, 63, 3851–3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayolle, C.; Sebo, P.; Ladant, C.; Ullmann, A.; Leclerc, C. In vivo induction of CTL responses by recombinant adenylate cyclase of Bordetella pertussis carrying viral CD8+ epitopes. J. Immunol. 1996, 156, 4697–4706. [Google Scholar] [CrossRef]
- Saron, M.F.; Fayolle, C.; Sebo, P.; Ladant, D.; Ullmann, A.; Leclerc, C. Anti-viral protection conferred by recombinant adenylate cyclase toxins from Bordetella pertussis carrying a CD8+ T cell epitope from lymphocytic choriomeningitis virus. Proc. Natl. Acad. Sci. USA 1997, 94, 3314–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimova, G.; Fayolle, C.; Gmira, S.; Ullmann, A.; Leclerc, C.; Ladant, D. Charge-dependent translocation of Bordetella pertussis adenylate cyclase toxin into eukaryotic cells: Implication for the in vivo delivery of CD8+ T cell epitopes into antigen-presenting cells. Proc. Natl. Acad. Sci. USA 1998, 95, 12532–12537. [Google Scholar] [CrossRef] [Green Version]
- Fayolle, C.; Ladant, D.; Karimova, G.; Ullmann, A.; Leclerc, C. Therapy of murine tumors with recombinant Bordetella pertussis adenylate cyclase toxins carrying a cytotoxic T cell epitope. J. Immunol. 1999, 162, 4157–4162. [Google Scholar] [CrossRef]
- Dadaglio, G.; Moukrim, Z.; Lo-Man, R.; Sheshko, V.; Sebo, P.; Leclerc, C. Induction of a polarized Th1 response by insertion of multiple copies of a viral T-cell epitope into adenylate cyclase of Bordetella pertussis. Infect. Immun. 2000, 68, 3867–3872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayolle, C.; Osickova, A.; Osicka, R.; Henry, T.; Rojas, M.J.; Saron, M.F.; Sebo, P.; Leclerc, C. Delivery of multiple epitopes by recombinant detoxified adenylate cyclase of Bordetella pertussis induces protective antiviral immunity. J. Virol. 2001, 75, 7330–7338. [Google Scholar] [CrossRef] [Green Version]
- Mascarell, L.; Fayolle, C.; Bauche, C.; Ladant, D.; Leclerc, C. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human deficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J. Virol. 2005, 79, 9872–9884. [Google Scholar] [CrossRef] [Green Version]
- Mascarell, L.; Bauche, C.; Fayolle, C.; Diop, O.M.; Dupuy, M.; Nougarede, N.; Perrault, R.; Ladant, D.; Leclerc, C. Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non human primates. Vaccine 2006, 24, 3490–3499. [Google Scholar] [CrossRef] [PubMed]
- Préville, X.; Ladant, D.; Timmerman, B.; Leclerc, C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16E7 oncoprotein. Cancer Res. 2005, 65, 641–649. [Google Scholar] [CrossRef]
- Van Damme, P.; Bouillette-Marussig, M.; Hens, A.; De Coster, I.; Depuydt, C.; Goubier, A.; Van Tendeloo, V.; Cools, N.; Goossens, H.; Hercend, T.; et al. GTL001, a therapeutic vaccine for women infected with human papillomavirus 16 or 18 and normal cervical cytology: Results of a phase I clinical trial. Clin. Cancer Res. 2016, 22, 3238–3248. [Google Scholar] [CrossRef] [Green Version]
- Karimova, G.; Pidoux, J.; Ullmann, A.; Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad Sci. USA 1998, 95, 5752–5756. [Google Scholar] [CrossRef] [Green Version]
- Machitto, K.S.; Smith, S.G.; Locht, C.; Keith, J.M. Nucleotide sequence homology to pertussis toxin gene in Bordetella bronchiseptica and Bordetella parapertussis. Infect. Immun. 1987, 55, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Locht, C.; Coutte, L.; Mielcarek, N. The ins and outs of pertussis toxin. FEBS J. 2011, 278, 4668–4682. [Google Scholar] [CrossRef] [PubMed]
- Locht, C.; Keith, J.M. Pertussis toxin gene: Nucleotide sequence and genetic organization. Science 1986, 232, 1258–1264. [Google Scholar] [CrossRef] [Green Version]
- Lobet, Y.; Feron, C.; Dequesne, G.; Simoen, E.; Hauser, P.; Locht, C. Site-specific alterations in the B oligomer that affect receptor-binding activities and mitogenicity of pertussis toxin. J. Exp. Med. 1993, 177, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raze, D.; Veithen, A.; Sato, H.; Antoine, R.; Menozzi, F.D.; Locht, C. Genetic exchange of the S2 and S3 subunits in pertussis toxin. Mol. Microbiol. 2006, 60, 1241–1250. [Google Scholar] [CrossRef]
- Antoine, R.; Locht, C. Roles of the disulfide bond and the carboxy-terminal region of the S1 subunit in the assembly and biosynthesis of pertussis toxin. Infect. Immun. 1990, 58, 1518–1526. [Google Scholar] [CrossRef] [Green Version]
- Locht, C.; Lobet, Y.; Feron, C.; Cieplak, W.; Keith, J.M. The role of cysteine 41 in the enzymatic activities of the pertussis toxin S1 subunit as investigated by site-directed mutagenesis. J. Biol. Chem. 1990, 265, 4552–4559. [Google Scholar] [CrossRef] [PubMed]
- Locht, C.; Cieplak, W.; Marchitto, K.S.; Sato, H.; Keith, J.M. Activities of complete and truncated forms of pertussis toxin subunits S1 and S2 synthesized by Escherichia coli. Infect. Immun. 1987, 55, 2146–2553. [Google Scholar] [CrossRef] [Green Version]
- Locht, C.; Capiau, C.; Feron, C. Identification of amino acid residues essential for the enzymatic activities of pertussis toxin. Proc. Natl. Acad. Sci. USA 1989, 86, 3075–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieplak, W.; Locht, C.; Mar, V.L.; Burnette, W.N.; Keith, J.M. Photolabelling of mutant forms of the S1 subunit of pertussis toxin with NAD+. Biochem. J. 1990, 268, 547–551. [Google Scholar] [CrossRef] [Green Version]
- Antoine, R.; Tallett, A.; van Heyningen, S.; Locht, C. Evidence for a catalytic role of glutamine acid 129 in the NAD-glycohydrolase activity of the pertussis toxin S1 subunit. J. Biol. Chem. 1993, 268, 24149–24155. [Google Scholar] [CrossRef] [PubMed]
- Antoine, R.; Locht, C. The NAD-glycohydrolase activity of the pertussis toxin S1 subunit: Involvement of the catalytic His-35 residue. J. Biol. Chem. 1994, 269, 6450–6457. [Google Scholar] [CrossRef]
- Locht, C.; Antoine, R. A proposed mechanism of ADP-ribosylation catalyzed by the pertussis toxin S1 subunit. Biochimie 1995, 77, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Greco, D.; Salmaso, S.; Mastrantonio, P.; Giuliano, M.; Tozzi, A.E.; Anemona, A.; Ciofi Degli Atti, M.L.; Giammanco, A.; Panei, P.; Blackwelder, W.C.; et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. N. Engl. J. Med. 1996, 334, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitisuttithum, P.; Dhitavat, J.; Sirivichayakul, C.; Pitisuthitham, A.; Sabmee, Y.; Chinwangso, P.; Kerdsomboon, C.; Fortuna, L.; Spiegel, J.; Chauhan, M.; et al. Antibody persistence 2 and 3 years after booster vaccination of adolescents with recombinant acellular pertussis monovalent aPgen or combined TdaPgen vaccines. EClin. Med. 2021, 37, 100976. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, N.; Debrie, A.S.; Raze, D.; Bertout, J.; Rouanet, C.; Younes, A.B.; Creusy, C.; Engle, J.; Goldman, W.E.; Locht, C. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog. 2006, 2, e65. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Directly transmitted infections diseases: Control by vaccination. Science 1982, 215, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Solans, L.; Locht, C. The role of mucosal immunity in pertussis. Front. Immunol. 2019, 9, 3068. [Google Scholar] [CrossRef] [Green Version]
- Warfel, J.M.; Zimmerman, L.I.; Merkel, T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl. Acad. Sci. USA 2014, 111, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Solans, L.; Debrie, A.S.; Borkner, L.; Aguilo, N.; Thiriard, A.; Coutte, L.; Uranga, S.; Trottein, F.; Martin, C.; Mills, K.H.G.; et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vac-cine. Mucosal. Immunol. 2018, 11, 1753–1762. [Google Scholar] [CrossRef] [Green Version]
- Feunou, P.F.; Kammoun, H.; Debrie, A.S.; Mielcarek, N.; Locht, C. Long-term immunity against pertussis induced by a single nasal administration of live attenuated B. pertussis BPZE1. Vaccine 2020, 28, 7047–7053. [Google Scholar] [CrossRef]
- Dubois, V.; Chatagnon, J.; Thiriard, A.; Bauderlique-Le Roy, H.; Debrie, A.S.; Coutte, L.; Locht, C. Suppression of mucosal Th17 memory response by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. Npj Vaccines 2021, 6, 6. [Google Scholar] [CrossRef]
- Skerry, C.M.; Cassidy, J.P.; English, K.; Feunou, P.F.; Locht, C.; Mahon, B.P. A live attenuated Bordetella pertussis candi-date vaccine does not cause disseminating infection in gamma interferon receptor knockout mice. Clin. Vaccine Immunol. 2009, 16, 1344–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debrie, A.S.; Mielcarek, N.; Lecher, S.; Roux, X.; Sirard, J.C.; Locht, C. Early Protection against pertussis induced by live attenuated Bordetella pertussis BPZE1 depends on TLR4. J. Immunol. 2019, 203, 3293–3300. [Google Scholar] [CrossRef] [PubMed]
- Locht, C.; Papin, J.F.; Lecher, S.; Debrie, A.S.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N. Live attenuated pertussis vaccine BPZE1 protects baboons against Bordetella pertussis disease and infection. J. Infect. Dis. 2017, 216, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Thorstensson, R.; Trollfors, B.; Al-Tawil, N.; Jahnmatz, M.; Bergström, J.; Ljungman, M.; Törner, A.; Wehlin, L.; van Broekhoven, A.; Bosman, F.; et al. A phase I clinical study of a live attenuated Bordetella pertussis vaccine—BPZE1; A single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers. PLoS ONE 2014, 9, e83449. [Google Scholar] [CrossRef] [PubMed]
- Jahnmatz, M.; Richert, L.; Al-Tawil, N.; Storsaeter, J.; Colin, C.; Bauduin, C.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N.; et al. Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: A phase 1b, double-blind, randomised, placebo-controlled dose-escalation study. Lancet Infect. Dis. 2020, 20, 1290–1301. [Google Scholar] [CrossRef]
- Lin, A.; Apostolovic, D.; Jahnmatz, M.; Liang, F.; Ols, S.; Tecleab, T.; Wu, C.; Van Hage, M.; Solovay, K.; Rubin, K.; et al. Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J. Clin. Investig. 2020, 130, 2332–2346. [Google Scholar] [CrossRef]
- Thalen, M.; Debrie, A.-S.; Coutte, L.; Raze, D.; Solovay, K.; Rubin, K.; Mielcarek, N.; Locht, C. Manufacture of a Stable Lyophilized Formulation of the Live Attenuated Pertussis Vaccine BPZE. Vaccines 2020, 8, 523. [Google Scholar] [CrossRef]
- Creech, C.B.; Jimenez-Truque, N.; Kown, N.; Sokolow, K.; Brady, E.J.; Yoder, S.; Solovay, K.; Rubin, K.; Noviello, S.; Hensel, E.; et al. Safety and immunogenicity of live, attenuated intranasal Bordetella pertussis vaccine (BPZE1) in healthy adults. Vaccine 2022, 40, 6740–6746. [Google Scholar] [CrossRef]
- Keech, C.; Miller, V.E.; Rizzardi, B.; Hoyle, C.; Pryor, M.J.; Ferrand, J.; Solovay, K.; Thalen, M.; Noviello, S.; Goldstein, P.; et al. Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus-diphtheria-acellular-pertussis (Tdap) vaccine: A phase 2b randomized, double-blinded, placebo-controlled trial. Lancet, 2023; in press. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locht, C. Pasteurian Contributions to the Study of Bordetella pertussis Toxins. Toxins 2023, 15, 176. https://doi.org/10.3390/toxins15030176
Locht C. Pasteurian Contributions to the Study of Bordetella pertussis Toxins. Toxins. 2023; 15(3):176. https://doi.org/10.3390/toxins15030176
Chicago/Turabian StyleLocht, Camille. 2023. "Pasteurian Contributions to the Study of Bordetella pertussis Toxins" Toxins 15, no. 3: 176. https://doi.org/10.3390/toxins15030176
APA StyleLocht, C. (2023). Pasteurian Contributions to the Study of Bordetella pertussis Toxins. Toxins, 15(3), 176. https://doi.org/10.3390/toxins15030176