Contamination and Health Risk Assessment of Multiple Mycotoxins in Edible and Medicinal Plants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Method Optimization
2.2. Analytical Method Validation
2.2.1. Matrix Effect and Linearity
2.2.2. Accuracy, Precision, LOD, and LOQ
2.3. Detection of Mycotoxins in the Edible and Medicinal Plants
2.3.1. Occurrence of Mycotoxins in Coix Seed
2.3.2. Occurrence of Mycotoxins in Malt
2.3.3. Occurrence of Mycotoxins in Lotus Seed
2.3.4. Occurrence of Mycotoxins in Lilii Bulbus
2.4. Effects of Processing Treatment on Mycotoxins in the Edible and Medicinal Plants
2.4.1. Comparison between Coix Seed and Roasted Coix Seed
2.4.2. Comparison of Malt, Roasted Malt, and Dark-Roasted Malt
2.5. Estimation of the Mycotoxin Exposure
2.6. Risk Assessment
2.6.1. Risk Characterization Using the MOE Approach
2.6.2. Risk Characterization Using the HI Approach
3. Conclusions
4. Materials and Methods
4.1. Sample Collection
4.2. Chemicals and Reagents
4.3. Sample Preparation
4.4. UHPLC-MS/MS Analysis
4.5. Analytical Method Validation
4.6. Exposure Analysis
4.7. Risk Assessment
4.7.1. Margin of Exposure (MOE) Approach
4.7.2. Hazard Index (HI) Approach
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Lv, G.P.; Chen, Y.W.; Li, S.P. Advanced Development in Analysis of Phytochemicals from Medicine and Food Dual Purposes Plants Used in China. J. Chromatogr. A 2011, 1218, 7453–7475. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Pan, T.; Wang, S.; Li, P.; Men, Y.; Tan, R.; Zhong, Z.; Wang, Y. Immunometabolism Modulation, A New Trick of Edible and Medicinal Plants in Cancer Treatment. Food Chem. 2022, 376, 131860. [Google Scholar] [CrossRef] [PubMed]
- Iannicelli, J.; Guariniello, J.; Pitta Alvarez, S.; Escandon, A. Traditional Uses, Conservation Status and Biotechnological Advances for A Group of Aromatic/Medicinal Native Plants from America. B. Latinoam. Caribe Pl. 2018, 17, 453–491. [Google Scholar]
- Sobolev, V.; Arias, R.; Goodman, K.; Walk, T.; Orner, V.; Faustinelli, P.; Massa, A. Suppression of Aflatoxin Production in Aspergillus Species by Selected Peanut (Arachis hypogaea) Stilbenoids. J. Agric. Food Chem. 2018, 66, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacon, C.W.; Hinton, D.M.; Mitchell, T.R. Is Quorum Signaling by Mycotoxins a New Risk-Mitigating Strategy for Bacterial Biocontrol ofFusarium verticillioidesand Other Endophytic Fungal Species? J. Agric. Food Chem. 2017, 65, 7071–7080. [Google Scholar] [CrossRef]
- Pitt, J.I.; Miller, J.D. A Concise History of Mycotoxin Research. J. Agric. Food Chem. 2017, 65, 7021–7033. [Google Scholar] [CrossRef]
- Pereira, V.; Fernandes, J.; Cunha, S. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Ye, Z.; Cui, P.; Wang, Y.; Yan, H.; Wang, X.; Han, S.; Zhou, Y. Simultaneous Determination of Four Aflatoxins in Dark Tea by Multifunctional Purification Column and Immunoaffinity Column Coupled to Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 11481–11488. [Google Scholar] [CrossRef]
- Sumarah, M.W. The Deoxynivalenol Challenge. J. Agric. Food Chem. 2022, 70, 9619–9624. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Heal. 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Leggieri, M.C.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Kong, W.; Li, Y.; Liu, H.; Liu, Q.; Dou, X.; Ou-Yang, Z.; Yang, M. High-throughput determination of multi-mycotoxins in Chinese yam and related products by ultra fast liquid chromatography coupled with tandem mass spectrometry after one-step extraction. J. Chromatogr. B 2016, 1022, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.; Li, R.; Yang, H.; Qi, P.; Xiao, Y.; Qian, M. Occurrence of patulin in various fruit products and dietary exposure assessment for consumers in China. Food Control 2017, 78, 100–107. [Google Scholar] [CrossRef]
- Ainiza, W.M.W.; Jinap, S.; Sanny, M. Simultaneous determination of aflatoxins and ochratoxin A in single and mixed spices. Food Control 2015, 50, 913–918. [Google Scholar] [CrossRef]
- Han, Z.; Ren, Y.; Zhou, H.; Luan, L.; Cai, Z.; Wu, Y. A rapid method for simultaneous determination of zearalenone, alpha-zearalenol, beta-zearalenol, zearalanone, alpha-zearalanol and beta-zearalanol in traditional Chinese medicines by ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2011, 879, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Alcantara-Duran, J.; Moreno-Gonzalez, D.; Garcia-Reyes, J.F.; Molina-Diaz, A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem. 2019, 279, 144–149. [Google Scholar] [CrossRef]
- Xian, Y.; Dong, H.; Wu, Y.; Guo, X.; Hou, X.; Wang, B. QuEChERS-based purification method coupled to ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to determine six quaternary ammonium compounds (QACs) in dairy products. Food Chem. 2016, 212, 96–103. [Google Scholar] [CrossRef]
- Rausch, A.K.; Brockmeyer, R.; Schwerdtle, T. Development and Validation of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Multi-Method for the Determination of 38 Native and Modified Mycotoxins in Cereals. J. Agric. Food Chem. 2020, 68, 4657–4669. [Google Scholar] [CrossRef] [PubMed]
- Commission, E. Commission Regulation (EC) No 401/2006 Laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, 70, 12–34. [Google Scholar]
- Wu, Y.; Ye, J.; Xuan, Z.; Li, L.; Wang, H.; Wang, S.; Liu, H.; Wang, S. Development and validation of a rapid and efficient method for simultaneous determination of mycotoxins in coix seed using one-step extraction and UHPLC-HRMS. Food Addit. Contam. A 2021, 38, 148–159. [Google Scholar] [CrossRef]
- Kong, W.J.; Li, J.Y.; Qiu, F.; Wei, J.H.; Xiao, X.H.; Zheng, Y.; Yang, M.H. Development of A Sensitive and Reliable High Performance Liquid Chromatography Method with Fluorescence Detection for High-throughput Analysis of Multi-class Mycotoxins in Coix Seed. Anal. Chim. Acta 2013, 799, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Ruan, H.N.; Sun, X.Q.; Luo, J.Y.; Yang, M.H. Contamination Status and Health Risk Assessment of 31 Mycotoxins in Six Edible and Medicinal Plants Using a Novel Green Defatting and Depigmenting Pretreatment Coupled with LC-MS/MS. Lwt-Food Sci. Tech. 2022, 161, 113401. [Google Scholar] [CrossRef]
- Kong, W.; Wei, R.; Logrieco, A.F.; Wei, J.; Wen, J.; Xiao, X.; Yang, M. Occurrence of toxigenic fungi and determination of mycotoxins by HPLC-FLD in functional foods and spices in China markets. Food Chem. 2014, 146, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Barros, G.; Chulze, S.; Ramos, A.J.; Sanchis, V.; Marin, S. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. J. Sci. Food Agric. 2012, 92, 2952–2959. [Google Scholar] [CrossRef]
- Piacentini, K.C.; Rocha, L.O.; Savi, G.D.; Carnielli-Queiroz, L.; Almeida, F.G.; Minella, E.; Correa, B. Occurrence of deoxynivalenol and zearalenone in brewing barley grains from Brazil. Mycotoxin Res. 2018, 34, 173–178. [Google Scholar] [CrossRef]
- Malachova, A.; Cerkal, R.; Ehrenbergerova, J.; Dzuman, Z.; Vaculova, K.; Hajslova, J. Fusarium mycotoxins in various barley cultivars and their transfer into malt. J. Sci. Food Agric. 2010, 90, 2495–2505. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during wheat milling and Chinese steamed bread processing. Food Control 2014, 44, 86–91. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Wang, H.; Li, Q.; Li, Y. Heavy Metal Pollution and Potential Health Risks of Commercially Available Chinese Herbal Medicines. Sci. Total Environ. 2019, 653, 748–757. [Google Scholar] [CrossRef]
- Wang, S.P.; Liu, T.; Xiao, X.; Luo, S.L. Advances in microbial remediation for heavy metal treatment: A mini review. J. Leather Sci. Eng. 2021, 3, 1. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during secondary food processing of maize for human consumption. Compr. Rev. Food Sci. Food Saf. 2021, 20, 91–148. [Google Scholar] [CrossRef]
- Lorenz, N.; Daenicke, S.; Edler, L.; Gottschalk, C.; Lassek, E.; Marko, D.; Rychlik, M.; Mally, A. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res. 2019, 35, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Yazdanpanah, H.; Mohammadi, T.; Abouhossain, G.; Cheraghali, A.M. Effect of roasting on degradation of Aflatoxins in contaminated pistachio nuts. Food Chem. Toxicol. 2005, 43, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pei, F.; Fang, Y.; Li, P.; Zhao, Y.; Shen, F.; Zou, Y.; Hu, Q. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC. Food Chem. 2019, 275, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-C.; Nebbia, C.S.; et al. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Liang, B.; Zhang, Y.; Zhong, X.; Luo, X.; Huang, J.; Wang, Y.; Cheng, W.; Chen, K. Probabilistic risk assessment of dietary exposure to aflatoxin B1 in Guangzhou, China. Sci. Rep. 2020, 10, 7973. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Routledge, M.N.; Rasheed, H.; Ismail, A.; Dong, Y.; Jiang, T.; Gong, Y.Y. Biomonitoring of Aflatoxin B1 and Deoxynivalenol in a Rural Pakistan Population Using Ultra-Sensitive LC-MS/MS Method. Toxins 2020, 12, 591. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Opinion of the Scientific Committee on a request from EFSA related to A Harmonised Approach for Risk Assessment of Substances Which are both Genotoxic and Carcinogenic. ERA J. 2005, 3, 282. [Google Scholar]
Mycotoxin | Coix Seed | Malt | Lotus Seed | Lilii Bulbus | ||||
---|---|---|---|---|---|---|---|---|
Linear Equation | R2 | Linear Equation | R2 | Linear Equation | R2 | Linear Equation | R2 | |
AFB1 | y = 89,008x + 3968.1 | 0.9994 | y = 82,676x − 1422.8 | 0.9999 | y = 90,462x − 11,672 | 0.9991 | y = 74,386x + 2183.0 | 0.9995 |
AFB2 | y = 153,518x − 1061.7 | 0.9987 | y = 138,322x − 5133.0 | 0.9982 | y = 147,594x + 6408.4 | 0.9975 | y = 139,854x − 996.0 | 0.9999 |
AFG1 | y = 38,672x − 1117.6 | 0.9996 | y = 32,578x + 929.45 | 0.9969 | y = 30,059x − 673.87 | 0.9987 | y = 31,205x − 3836.4 | 0.9994 |
AFG2 | y = 71,915x + 199.57 | 0.9998 | y = 61,116x + 4006.0 | 0.9997 | y = 64,511x + 12,303 | 0.9995 | y = 45,148x + 1254.1 | 0.9989 |
DON | y = 1569.6x + 24,926 | 0.9995 | y = 1379.2x + 14,256 | 0.9999 | y = 1174.5x + 4571.9 | 0.9998 | y = 1652.6x + 19,961 | 0.9994 |
FB1 | y = 2231.7x − 923.02 | 0.9994 | y = 2237.4x + 3494.5 | 0.9995 | y = 1901.0x + 2709.0 | 0.9995 | y = 2474.5x + 10,971 | 0.9975 |
FB2 | y = 2347.6x + 549.58 | 0.9941 | y = 2212.7x + 3645.2 | 0.9997 | y = 2020.5x + 733.65 | 0.9996 | y = 2601.8x − 1422.7 | 0.9981 |
T-2 | y = 32,404x + 13,794 | 0.9987 | y = 25,705x − 8107.7 | 0.9974 | y = 34,427x − 6006.7 | 0.9972 | y = 30,629x − 7210.0 | 0.9976 |
HT-2 | y = 6913.6x + 1146.8 | 0.9983 | y = 5962.7x − 6668.1 | 0.9991 | y = 6249.8x + 10,376 | 0.9987 | y = 7455.0x − 4769.7 | 0.9964 |
OTA | y = 43,708x + 1632.1 | 0.9994 | y = 41,607x + 4557.4 | 0.9987 | y = 39,728x − 4309.9 | 0.9984 | y = 41,260x + 5233.1 | 0.9997 |
ZEN | y = 7836.8x + 13,245 | 0.9998 | y = 7414.3x + 14,432 | 0.9994 | y = 6976.7x + 6915.9 | 0.9999 | y = 9206.9x + 10,960 | 0.9982 |
ZAN | y = 12,334x − 9184.7 | 0.9998 | y = 11,747x + 13,984 | 0.9999 | y = 11,012x − 1046.5 | 0.9997 | y = 12,568x − 5312.8 | 0.9999 |
α-ZEL | y = 3017.5x − 273.47 | 0.9989 | y = 2979.4x + 290.48 | 0.9999 | y = 3011.2x − 5560.3 | 0.9996 | y = 2692.9x − 2527.1 | 0.9999 |
β-ZEL | y = 3140.0x − 1017.1 | 0.9976 | y = 3065.4x + 1546.5 | 0.9995 | y = 3064.5x − 5767.7 | 0.9997 | y = 2621.0x − 60.477 | 0.9995 |
β-ZAL | y = 3117.6x + 3628.1 | 0.9996 | y = 3305.9x + 9154.8 | 0.9993 | y = 2825.9x + 4687.3 | 0.9978 | y = 3845.8x − 4362.7 | 0.9994 |
Mycotoxin | Spiked Level (μg/kg) | Coix Seed | Malt | Lotus Seed | Lilii Bulbus | LOD (μg/kg) | LOQ (μg/kg) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Recovery (%) | Precision (%) | Recovery (%) | Precision (%) | Recovery (%) | Precision (%) | Recovery (%) | Precision (%) | ||||
AFB1 | 2 | 99.1 | 19.6 | 68.1 | 6.1 | 81.6 | 4.0 | 66.3 | 8.2 | 0.3 | 1 |
10 | 108.1 | 7.3 | 67.1 | 9.6 | 76.6 | 4.4 | 62.1 | 10.6 | |||
20 | 110.0 | 4.3 | 82.0 | 14.3 | 67.7 | 10.4 | 61.2 | 6.8 | |||
AFB2 | 1 | 94.6 | 15.0 | 88.6 | 9.0 | 66.3 | 1.9 | 61.6 | 13.2 | 0.09 | 0.25 |
5 | 86.4 | 9.6 | 73.1 | 7.9 | 63.6 | 8.7 | 64.9 | 5.7 | |||
10 | 102.7 | 3.1 | 88.1 | 1.1 | 65.0 | 15.8 | 61.0 | 8.2 | |||
AFG1 | 2 | 105.4 | 13.3 | 87.3 | 6.0 | 84.8 | 1.0 | 63.5 | 11.5 | 0.3 | 1 |
10 | 92.5 | 10.8 | 80.9 | 6.7 | 76.5 | 1.9 | 62.7 | 8.9 | |||
20 | 85.2 | 17.5 | 101.7 | 1.9 | 69.5 | 1.3 | 61.6 | 6.5 | |||
AFG2 | 1 | 104.7 | 15.3 | 66.3 | 15.0 | 81.1 | 18.0 | 83.6 | 17.4 | 0.09 | 0.25 |
5 | 113.5 | 7.5 | 74.9 | 12.1 | 85.1 | 10.6 | 89.0 | 0.9 | |||
10 | 108.2 | 6.2 | 74.8 | 15.8 | 116.3 | 18.5 | 65.2 | 5.5 | |||
DON | 150 | 62.4 | 5.6 | 65.5 | 11.7 | 97.0 | 5.3 | 77.4 | 2.8 | 15 | 50 |
750 | 92.6 | 5.0 | 88.0 | 0.8 | 107.9 | 2.2 | 104.6 | 1.8 | |||
1500 | 108.3 | 1.9 | 92.8 | 1.7 | 113.7 | 3.1 | 118.8 | 1.6 | |||
FB1 | 100 | 107.7 | 9.0 | 79.4 | 7.9 | 66.1 | 15.9 | 93.6 | 5.8 | 3 | 10 |
500 | 94.9 | 6.4 | 75.4 | 3.4 | 82.7 | 5.1 | 98.4 | 7.6 | |||
1000 | 90.5 | 4.7 | 85.8 | 2.4 | 68.6 | 3.7 | 108.4 | 0.7 | |||
FB2 | 100 | 70.6 | 5.4 | 86.9 | 3.3 | 92.8 | 16.5 | 65.3 | 5.4 | 1.5 | 5 |
500 | 101.2 | 8.9 | 101.1 | 1.0 | 84.8 | 6.9 | 73.5 | 5.6 | |||
1000 | 85.1 | 7.4 | 111.6 | 9.2 | 92.5 | 1.7 | 80.4 | 3.0 | |||
T-2 | 4 | 85.1 | 4.3 | 118.8 | 2.7 | 95.3 | 7.0 | 101.0 | 6.9 | 0.3 | 1 |
20 | 62.0 | 3.4 | 118.7 | 3.6 | 77.7 | 2.6 | 66.6 | 12.0 | |||
40 | 78.5 | 14.4 | 77.5 | 2.4 | 89.9 | 5.1 | 71.7 | 2.2 | |||
HT-2 | 20 | 89.1 | 5.2 | 104.4 | 5.0 | 73.8 | 7.2 | 82.1 | 9.6 | 5 | 15 |
100 | 84.4 | 6.3 | 99.2 | 12.1 | 80.4 | 1.2 | 84.9 | 18.3 | |||
200 | 75.5 | 4.2 | 83.5 | 11.3 | 83.5 | 5.8 | 93.5 | 8.4 | |||
OTA | 4 | 96.1 | 8.4 | 111.5 | 3.1 | 61.5 | 5.6 | 71.1 | 17.3 | 0.3 | 1 |
20 | 77.6 | 4.5 | 115.8 | 2.9 | 73.8 | 5.0 | 81.9 | 3.0 | |||
40 | 80.9 | 4.3 | 116.5 | 3.3 | 87.4 | 4.4 | 96.6 | 3.9 | |||
ZEN | 40 | 80.9 | 6.2 | 71.8 | 2.7 | 91.8 | 12.5 | 74.3 | 2.3 | 0.5 | 1.5 |
200 | 72.3 | 3.6 | 78.3 | 2.5 | 73.9 | 2.3 | 70.7 | 7.6 | |||
400 | 83.9 | 1.6 | 77.1 | 1.6 | 79.5 | 9.1 | 70.7 | 4.7 | |||
ZAN | 40 | 87.4 | 2.1 | 88.0 | 2.2 | 82.3 | 6.6 | 76.8 | 11.7 | 0.5 | 1.5 |
200 | 92.7 | 6.4 | 96.0 | 1.9 | 82.0 | 3.9 | 76.4 | 3.3 | |||
400 | 72.4 | 3.6 | 85.7 | 1.4 | 79.1 | 8.7 | 71.4 | 4.2 | |||
α-ZEL | 40 | 78.4 | 6.5 | 87.5 | 5.8 | 62.1 | 16.6 | 87.8 | 5.0 | 1 | 3 |
200 | 92.4 | 2.7 | 99.5 | 7.3 | 86.6 | 4.4 | 79.8 | 2.2 | |||
400 | 88.8 | 15.3 | 93.3 | 2.9 | 84.6 | 3.5 | 82.6 | 4.5 | |||
β-ZEL | 40 | 83.3 | 5.8 | 88.7 | 9.7 | 62.3 | 9.8 | 65.0 | 10.2 | 1 | 3 |
200 | 79.5 | 3.9 | 99.0 | 10.7 | 83.8 | 3.0 | 84.7 | 6.9 | |||
400 | 94.1 | 3.6 | 89.6 | 2.0 | 83.6 | 5.0 | 84.4 | 1.3 | |||
β-ZAL | 40 | 66.3 | 5.4 | 85.2 | 7.9 | 65.8 | 3.6 | 63.8 | 6.0 | 1 | 3 |
200 | 110.4 | 3.4 | 100.0 | 9.4 | 62.3 | 10.6 | 99.9 | 4.9 | |||
400 | 93.9 | 5.1 | 87.8 | 2.5 | 110.8 | 1.5 | 87.8 | 1.7 |
Mycotoxins | Coix Seed (n = 50) | Malt (n = 46) | ||||||
---|---|---|---|---|---|---|---|---|
>LOD (%) | >MRL a (%) | Maximum ± SD (μg/kg) | Mean b (μg/kg) | >LOD (%) | >MRL (%) | Maximum ± SD (μg/kg) | Mean (μg/kg) | |
AFB1 | 28 | 6 | 19.54 ± 2.31 | 4.55 | 6.52 | 6.52 | 97.00 ± 2.44 | 36.13 |
AFB2 | 2 | - c | 0.55 ± 0.08 | 0.55 | 2.17 | - | 2.04 ± 0.05 | 2.04 |
AFG1 | ND d | - | ND | ND | ND | - | ND | ND |
AFG2 | ND | - | ND | ND | ND | - | ND | ND |
DON | 18 | 4 | 1570.35 ± 4.85 | 412.36 | 52.2 | 2.17 | 1100.88 ± 11.25 | 94.06 |
FB1 | 60 | - | 1875.77 ± 6.16 | 193.43 | 2.17 | - | 49.65 ± 4.49 | 49.65 |
FB2 | 40 | - | 543.01 ± 5.57 | 100.61 | ND | - | ND | ND |
T-2 | 2 | - | 15.14 ± 1.13 | 15.14 | 6.52 | - | 56.08 ± 2.68 | 21.24 |
HT-2 | 2 | - | 32.76 ± 2.45 | 32.76 | 2.17 | - | 260 ± 5.51 | 260 |
OTA | 12 | 0 | 2.10 ± 0.07 | 1.75 | 15.22 | 0 | 1.88 ± 0.07 | 1.32 |
ZEN | 100 | 28 | 2376.58 ± 9.37 | 131.85 | 8.70 | 4.35 | 92.02 ± 3.83 | 46.64 |
ZAN | 12 | - | 123.17 ± 2.85 | 40.33 | ND | - | ND | ND |
α-ZEL | 6 | - | 13.45 ± 0.93 | 8.56 | ND | - | ND | ND |
β-ZEL | 6 | - | 12.17 ± 0.59 | 7.87 | ND | - | ND | ND |
β-ZAL | ND | - | ND | ND | ND | - | ND | ND |
Mycotoxins | Lotus Seed (n = 15) | Lilii Bulbus (n = 16) | ||||||
>LOD (%) | >MRL (%) | Maximum (μg/kg) | Mean (μg/kg) | >LOD (%) | >MRL (%) | Maximum (μg/kg) | Mean (μg/kg) | |
AFB1 | ND | ND | ND | ND | ND | ND | ND | ND |
AFB2 | ND | - | ND | ND | ND | - | ND | ND |
AFG1 | ND | - | ND | ND | ND | - | ND | ND |
AFG2 | 13.33 | - | 1.45 ± 0.03 | 1.30 | ND | - | ND | ND |
DON | ND | ND | ND | ND | ND | ND | ND | ND |
FB1 | ND | ND | ND | ND | 81.25 | - | 22.06 ± 2.04 | 15.29 |
FB2 | ND | ND | ND | ND | ND | - | ND | ND |
T-2 | ND | ND | ND | ND | ND | - | ND | ND |
HT-2 | ND | ND | ND | ND | 37.50 | - | 267.50 ± 5.81 | 174.21 |
OTA | 13.33 | 0 | 2.03 ± 0.04 | 1.99 | 25 | 6.25 | 19.3 ± 1.22 | 7.11 |
ZEN | ND | - | ND | ND | ND | ND | ND | ND |
ZAN | ND | ND | ND | ND | ND | - | ND | ND |
α-ZEL | ND | ND | ND | ND | ND | - | ND | ND |
β-ZEL | ND | ND | ND | ND | ND | - | ND | ND |
β-ZAL | ND | ND | ND | ND | ND | - | ND | ND |
Mycotoxin | PMTDI a (ng kg−1 b.w. day−1) | Exposure (ng kg−1 b.w. day−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Coix Seed | Malt | Lotus Seed | Lilii Bulbus | ||||||
Male | Female | Male | Female | Male | Female | Male | Female | ||
AFB1 | − b | 2.06 | 2.38 | 8.19 | 9.46 | 0 | 0 | 0 | 0 |
AFB2 | − | 0.25 | 0.29 | 0.46 | 0.53 | 0 | 0 | 0 | 0 |
AFG2 | − | 0 | 0 | 0 | 0 | 0.29 | 0.34 | 0 | 0 |
DON | 1000 | 186.87 | 215.90 | 21.31 | 24.62 | 0 | 0 | 0 | 0 |
FB1 | 2000 | 87.66 | 101.27 | 11.25 | 13.00 | 0 | 0 | 2.77 | 3.20 |
FB2 | 2000 | 45.59 | 52.67 | 0 | 0 | 0 | 0 | 0 | 0 |
T-2 | 60 | 6.86 | 7.93 | 4.81 | 5.56 | 0 | 0 | 0 | 0 |
HT-2 | 60 | 14.85 | 17.15 | 58.91 | 68.06 | 0 | 0 | 31.58 | 36.48 |
OTA | 14 | 0.79 | 0.92 | 0.30 | 0.35 | 0.45 | 0.52 | 1.29 | 1.49 |
ZEN | 500 | 59.75 | 69.03 | 10.57 | 12.21 | 0 | 0 | 0 | 0 |
ZAN | 500 | 18.28 | 21.12 | 0 | 0 | 0 | 0 | 0 | 0 |
α-ZEL | 500 | 3.88 | 4.48 | 0 | 0 | 0 | 0 | 0 | 0 |
β-ZEL | 500 | 3.57 | 4.12 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kuang, F.; Liu, C.; Ma, K.; Liu, T.; Zhao, M.; Lv, G.; Huang, H. Contamination and Health Risk Assessment of Multiple Mycotoxins in Edible and Medicinal Plants. Toxins 2023, 15, 209. https://doi.org/10.3390/toxins15030209
Zhang Y, Kuang F, Liu C, Ma K, Liu T, Zhao M, Lv G, Huang H. Contamination and Health Risk Assessment of Multiple Mycotoxins in Edible and Medicinal Plants. Toxins. 2023; 15(3):209. https://doi.org/10.3390/toxins15030209
Chicago/Turabian StyleZhang, Yingyue, Fengyan Kuang, Chunyao Liu, Kai Ma, Tianyu Liu, Meijuan Zhao, Guangping Lv, and He Huang. 2023. "Contamination and Health Risk Assessment of Multiple Mycotoxins in Edible and Medicinal Plants" Toxins 15, no. 3: 209. https://doi.org/10.3390/toxins15030209
APA StyleZhang, Y., Kuang, F., Liu, C., Ma, K., Liu, T., Zhao, M., Lv, G., & Huang, H. (2023). Contamination and Health Risk Assessment of Multiple Mycotoxins in Edible and Medicinal Plants. Toxins, 15(3), 209. https://doi.org/10.3390/toxins15030209