Aflatoxin Contamination, Exposure among Rural Smallholder Farming Tanzanian Mothers and Associations with Growth among Their Children
Abstract
:1. Introduction
2. Results
2.1. Socio Demographic Characteristics
2.2. Aflatoxin Levels
2.3. Aflatoxin Exposure
2.4. Association of Aflatoxin Levels with Growth Markers
3. Discussion
4. Method
4.1. Study Design, Ethical Approvals, and Consent
4.2. Study Sites
4.3. Dietary Assessment
4.4. Household Questionnaire and Anthropometric Measurement
4.5. Sample Collection
4.6. Determination of Aflatoxin Concentrations
4.7. Dietary Exposure
- PDI (ng/kg·bw/day) = maize intake (g/person/day) × levels of aflatoxins in the samples (μg/kg)/bw·(kg);
- APDI (ng/kg·bw/day) = maize intake (g/person/day) × average aflatoxin concentrations in the samples (μg/kg)/bw·(kg). The estimates of the maximum probable daily intake (MPDI) of aflatoxin were calculated using the formula:
- MPDI (ng/kg·bw/day) = (L × D)/bw (kg)where L is the 90th percentile concentration of aflatoxin in the samples, and D the daily consumption of maize-based foods (g/person/day).
4.8. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanzania Food and Nutrition Center (TFNC). Tanzania National Nutrition Survey, 2014; Final Report; The United Republic of Tanzania Ministry of Health and Social Welfare: Dar es Salaam, Tanzania, 2014. [Google Scholar]
- Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Magoha, H.; Kimanya, M.; De Meulenaer, B.; Roberfroid, D.; Lachat, C.; Kolsteren, P. Risk of dietary exposure to aflatoxins and fumonisins in infants less than 6 months of age in Rombo, Northern Tanzania. Matern. Child Nutr. 2016, 12, 516–527. [Google Scholar] [CrossRef]
- Shirima, C.P.; Kimanya, M.E.; Routledge, M.N.; Srey, C.; Kinabo, J.L.; Humpf, H.U.; Wild, C.P.; Tu, Y.K.; Gong, Y.Y. A prospective study of growth and biomarkers of exposure to aflatoxin and fumonisin during early childhood in Tanzania. Environ. Health Perspect. 2015, 123, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Yu, P.; Yang, K.; Cao, D. Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol. Mech. Methods 2022, 32, 395–419. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the evaluation of carcinogenic risks to humans. In Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; International Agency for Research on Cancer: Lyon, France, 2002; Volume 82. [Google Scholar]
- Sherif, S.O.; Salama, E.E.; Abdel-Wahhab, M.A. Mycotoxins and child health: The need for health risk assessment. Int. J. Hyg. Environ. Health 2009, 212, 347–368. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Collinson, A.C.; Cheung, Y.B.; Gong, Y.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Aflatoxin exposure in utero causes growth faltering in Gambian infants. Int. J. Epidemiol. 2007, 36, 1119–1125. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef]
- Githang’a, D.; Anzala, O.; Mutegi, C.; Agweyu, A. The effects of exposures to mycotoxins on immunity in children: A systematic review. Curr. Probl. Pediatr. Adolesc. Health Care 2019, 49, 109–116. [Google Scholar] [CrossRef]
- Gal Winter, L.P. A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance. Eur. J. Soil Sci. 2022, 70, 882–897. [Google Scholar] [CrossRef]
- FAO. Worldwide regulations for mycotoxins in food and feed. In FAO Food and Nutrition Paper 81; FAO: Rome, Italy, 2004; pp. 1–30. [Google Scholar]
- USFDA: US Food and Drug Administration. Guidelines for Aflatoxin Levels; USFDA: Silver Spring, MD, USA, 2015. [Google Scholar]
- EAC: East African Community. East African Standards: Maize Grains—Specification; EAC: Dar es Salaam, Tanzania, 2011. [Google Scholar]
- EU: COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA relevance) (OJ L 364, 20.12.2006, p. 5). 2006. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 21 March 2023).
- Gong, Y.Y.; Watson, S.; Routledge, M.N. Aflatoxin Exposure and Associated Human Health Effects, a Review of Epidemiological Studies. Food Saf. 2016, 4, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Herrman, J.L.; Younes, M. Background to the ADI/TDI/PTWI. Regul. Toxicol. Pharmacol. 1999, 30, S109–S113. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC) [Tanzania Mainland]; Ministry of Health (MoH) [Zanzibar]; National Bureau of Statistics (NBS); Office of the Chief Government Statistician (OCGS) and ICF. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015-16. Dar es Salaam, Tanzania, and Rockville, Maryland, USA: MoHCDGEC, MoH, NBS, OCGS, and ICF. 2016. Available online: https://dhsprogram.com/pubs/pdf/fr321/fr321.pdf (accessed on 21 March 2023).
- Kimanya, M.; De Meulenaer, B.; Tiisekwa, B.; Ndomondo-Sigonda, M.; Kolsteren, P. Human exposure to fumonisins from home grown maize in Tanzania. World Mycotoxin J. 2008, 1, 307–313. [Google Scholar] [CrossRef]
- Mamiro, P.S.; Kolsteren, P.W.; van Camp, J.H.; Roberfroid, D.A.; Tatala, S.; Opsomer, A.S. Processed complementary food does not improve growth or hemoglobin status of rural tanzanian infants from 6-12 months of age in Kilosa district, Tanzania. J. Nutr. 2004, 134, 1084–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Nabwire, W.R.; Ombaka, J.; Dick, C.P.; Strickland, C.; Tang, L.; Xue, K.S.; Wang, J.S. Aflatoxin in household maize for human consumption in Kenya, East Africa. Food Addit. Contam. Part B 2020, 13, 45–51. [Google Scholar] [CrossRef]
- Shephard, G.S. Risk assessment of aflatoxins in food in Africa. Food Addit. Contam. 2008, 25, 1246–1256. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. CANCERMondial Globocan 2002 Database. Available online: http://www-dep.iarc.fr/ (accessed on 10 January 2021).
- Lombard, M.J. Mycotoxin exposure and infant and young child growth in Africa: What do we know? Ann. Nutr. Metab. 2014, 64 (Suppl. S2), 42–52. [Google Scholar] [CrossRef]
- Andrews-Trevino, J.; Webb, P.; Shrestha, R.; Pokharel, A.; Acharya, S.; Chandyo, R.; Davis, D.; Baral, K.; Wang, J.S.; Xue, K.; et al. Exposure to multiple mycotoxins, environmental enteric dysfunction and child growth: Results from the AflaCohort Study in Banke, Nepal. Matern. Child Nutr. 2022, 18, e13315. [Google Scholar] [CrossRef]
- Watson, S.; Chen, G.; Sylla, A.; Routledge, M.N.; Gong, Y.Y. Dietary exposure to aflatoxin and micronutrient status among young children from Guinea. Mol. Nutr. Food Res. 2016, 60, 511–518. [Google Scholar] [CrossRef] [Green Version]
- IARC. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2002. [Google Scholar]
- Ankwasa, E.M.; Francis, I.; Ahmad, T. Update on mycotoxin contamination of maize and peanuts in East African Community Countries. J. Food Sci. Nutr. Ther. 2021, 7, 1–10. [Google Scholar]
- Wu, F. Mycotoxin risk assessment for the purpose of setting international regulatory standards. Environ. Sci. Technol. 2004, 38, 4049–4055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngoma, S.J. The Influence of Awareness, Knowledge and Practices of Communities on Childhood Dietary Exposure to Aflatoxins in Central Regions of Tanzania. Ph.D. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2019. [Google Scholar]
- Magoke, G.; Krockenberger, M.; Bryden, W.; Alders, R.; Mramba, F.; Maulaga, W. Aflatoxin Contamination of Village Grains in Central Tanzania: Dietary and Agricultural Practices in Relation to Contamination and Exposure Risk. Multidiscip. Digit. Publ. Inst. Proc. 2019, 36, 20. [Google Scholar]
- Kimario, M.E.; Moshi, A.P.; Ndossi, H.P.; Kiwango, P.A.; Shirima, G.G.; Kussaga, J.B. Smallholder farmers’ storage practices and awareness on aflatoxin contamination of cereals and oilseeds in Chamwino, Dodoma, Tanzania. J. Cereals Oilseeds 2022, 13, 13–23. [Google Scholar]
- Seetha, A.; Munthali, W.; Msere, H.W.; Swai, E.; Muzanila, Y.; Sichone, E.; Tsusaka, T.W.; Rathore, A.; Okori, P. Occurrence of aflatoxins and its management in diverse cropping systems of central Tanzania. Mycotoxin Res. 2017, 33, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abass, A.B.; Ndunguru, G.; Mamiro, P.; Alenkhe, B.; Mlingi, N.; Bekunda, M. Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. J. Stored Prod. Res. 2014, 57, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Climate Data for Cities Worldwide. Available online: https://en.climate-data.org/ (accessed on 10 January 2021).
- Mshamu, S.; Peerawaranun, P.; Kahabuka, C.; Deen, J.; Tusting, L.; Lindsay, S.W.; Knudsen, J.; Mukaka, M.; von Seidlein, L. Old age is associated with decreased wealth in rural villages in Mtwara, Tanzania: Findings from a cross-sectional survey. Trop Med. Int. Health 2020, 25, 1441–1449. [Google Scholar] [CrossRef]
- USAID. East_African_Trade_Investment_Hub: Regional Profiles of Cashewnut Production and Processing Investment Opportunities—Lindi, Mtwara, Tunduru and Pwani Regions, Tanzania. 2019. Available online: https://agoa.info/images/documents/15598/cashewsprocessingandproduction-investorsregionalprofiles.pdf (accessed on 21 March 2023).
- MoHCDGEC: Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC) [Tanzania Mainland]; Ministry of Health (MoH) [Zanzibar]; National Bureau of Statistics (NBS), Office of the Chief Government Statistician (OCGS), and ICF. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015-16. Dar es Salaam, Tanzania, and Rockville, Maryland, USA: MoHCDGEC, MoH, NBS, OCGS, and ICF. 2016. Available online: https://dhsprogram.com/publications/publication-fr321-dhs-final-reports.cfm (accessed on 21 March 2023).
- MOH: Ministry of Health (MoH) [Tanzania Mainland], Ministry of Health (MoH) [Zanzibar]; National Bureau of Statistics (NBS); Office of the Chief Government Statistician (OCGS), and ICF. 2023 Tanzania Demographic and Health Survey and Malaria Indicator Survey 2022 Key Indicators Report. Dodoma, Tanzania, and Rockville, Maryland, USA: MoH, NBS, OCGS, and ICF. 2022. Available online: https://dhsprogram.com/pubs/pdf/PR144/PPR144.pdf (accessed on 21 March 2023).
- FAO. FHI 360. In Minimum Dietary Diversity for Women: A Guide for Measurement; FAO: Rome, Italy, 2016. [Google Scholar]
- WHO. Indicators for Assessing Infant and Young Child Feeding Practices: Conclusions of a Consensus Meeting Held; World Health Organization: Washington, DC, USA, 2007. [Google Scholar]
- INDDEX Project, Data4Diets: Building Blocks for Diet-Related Food Security Analysis; Tufts University: Boston, MA, USA, 2018; Available online: https://inddex.nutrition.tufts.edu/data4diets (accessed on 21 March 2023).
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- WHO. Anthro for Personal Computers, version 3.2.2. Software for Assessing Growth and Development of the World’s Children. WHO: Geneva, Switzerland, 2011.
- World Food Program, Centers for Disease Control and Prevention. A Manual: Measuring and Interpreting Malnutrition and Mortality; World Food Program: Rome, Italy, 2005. [Google Scholar]
- Reddy, S.V.; Mayi, D.K.; Reddy, M.U.; Thirumala-Devi, K.; Reddy, D.V. Aflatoxins B1 in different grades of chillies (Capsicum annum L.) in India as determined by indirect competitive-ELISA. Food Addit. Contam. 2001, 18, 553–558. [Google Scholar] [CrossRef]
- Park, D.L.; Trucksess, M.W.; Nesheim, S.; Stack, M.; Newell, R.F. Solvent-efficient thin-layer chromatographic method for the determination of aflatoxins B1, B2, G1, and G2 in corn and peanut products: Collaborative study. J. AOAC Int. 1994, 77, 637–646. [Google Scholar] [CrossRef]
- Abbas, H.K.; Shier, W.T.; Horn, B.W.; Weaver, M.A. Cultural Methods for Aflatoxin Detection. J. Toxicol. Toxin Rev. 2004, 23, 295–315. [Google Scholar] [CrossRef]
- Abt Associates. Literature Review to Inform the Aflatoxin Country Assessments: Tanzania and Nigeria; Abt Associates Inc.: Bethesda, MD, USA, 2012. [Google Scholar]
- Tanzania Food and Nutriction Center (TFNC). Matumizi ya kadi ya uhakika wa chakula katika kaya. In Mwongozo kwa Wafanyakazi wa Ugani; TFNC: Dar es Salaam, Tanzania, 1997; 14p. [Google Scholar]
Variable | Values | |
---|---|---|
Household characteristics | ||
Presence of grain store, n/N, % | 98/243 | 40.3 |
Ownership of a radio, n/N, % | 124/243 | 51.0 |
Ownership of a television, n/N, % | 19/243 | 7.8 |
Ownership of phone, n/N, % | 171/243 | 70.4 |
Child characteristics | ||
Age in months, median (range) | 165 | 14.2 (6.0, 23.7) |
Height for age Z-score, n, mean, (range) | 164 | −1.1 (−1.3, −0.9) |
Weight for age Z-score, n, mean, (range) | 164 | −0.2 (−0.4, −0.1) |
Weight for height Z-score, n, mean, (range) | 164 | 0.5 (0.3, 0.6) |
Stunting #, n/N, % | 34/164 | 20.7 |
Wasting ††, n/N, % | 2/164 | 1.2 |
Underweight a, n/N, % | 7/164 | 4.3 |
Caregiver characteristics | ||
Age in years, median, (range) | 241 | 27.7 (15, 45) |
Weight in kg, n, mean (CI) | 239 | 53.5 (52.3, 54.7) |
BMI, in kg/m2, n, geometric mean (CI) | 198 | 24.8 (20.8, 28.8) |
Underweight a, n/N, % | 12/198 | 6.1 |
Normal weight b, n/N, % | 106/198 | 53.5 |
Overweight and obesity c, n/N, % | 80/198 | 40.4 |
Diet | ||
Proportion of children receiving complementary food before 6 months, n/N, % | 8/165 | 5.0 |
Proportion of children receiving maize as part of complementary food, n/N, % | 141/165 | 85.5 |
Proportion of children receiving groundnut as part of complementary food, n/N, % | 13/165 | 7.8 |
Minimum dietary diversity—women, n, mean (CI) | 234 | 3.1 (2.9, 3.2) |
Met MDDW, n/N, % | 75/234 | 32.2 |
Child dietary diversity score, n, mean (CI) | 165 | 2.9 (2.8, 3.1) |
Met minimum child dietary diversity score, n/N, (%) | 8/165 | 4.8 |
Sample | n | Median | p a | Maximum | Samples Exceeding EU Regulatory Limit of 2 μg/kg: n/N (%) | Samples Exceeding EAC Regulatory Limit of 5 μg/kg: n/N (%) |
---|---|---|---|---|---|---|
Groundnut | 87 | 2.8 | - | 1512 | 47/87 (54.0) | 33/87 (37.9) |
Bambara nut | 24 | 1.6 | 0.44 | 148 | 9/24 (37.5) | 7/24 (29.2) |
Cassava | 19 | 1.6 | 0.61 | 201 | 9/19 (47.4) | 3/19 (15.8) |
All maize | 207 | 16.4 | 0.06 | 1507 | 165/217 (76.0) | 140/217 (64.5) |
Maize Cobs | 5 | 4.1 | 0.68 | 32 | 2/5 (40) | 3/5 (60.0) |
Maize Flour | 60 | 5 | 0.44 | 346 | 41/60 (68.3) | 30/60 (50.0) |
Maize Grain | 152 | 11.3 | 0.003 | 2352 | 122/152 (80.3) | 108/152 (71.1) |
Sorghum | 4 | 59.3 | 0.82 | 224 | 4/4 (100.0) | 2/4 (50.0) |
Food Item | Number (n) of Samples | Mean AFB1 (μg/kg) ± Standard Error | 90th Percentile (μg/kg) | Consumption (g food day−1) | PDI Range ng/kg·bw/day d | APDI ng/kg·bw/day e | MPDI ng/kg·bw/day (90th Percentile) f |
---|---|---|---|---|---|---|---|
Maize a | 212 | 17.2 | 391.1 | 429.4 b | 0–14, 571 | 1133 | 3906 |
Maize b | 212 | 17.2 | 391.1 | 771.0 a | 0–26, 162 | 2034 | 7699 |
Groundnut c | 78 | 4.1 | 48.5 | 15.1 | 0–375 | 14 | 18 |
Outcome Measure | Stunting (n = 148) | Stunting (n = 148) | Height for Age Z-Score (n = 148) | Height for Age Z-Score (n = 148) | ||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
Independent Variable | Odds Ratio (Confidence Interval) | p | Odds Ratio (Confidence Interval) | p | Beta (Confidence Interval) | p | Beta (Confidence Interval) | p |
Age | 1.14 (1.05, 1.24) | 0.002 | 1.17 (1.06, 1.29) | 0.001 | −0.10 (−0.15, −0.06) | <0.0001 | −0.12 (−0.16, −0.07) | 0.00 |
Sex | 1.18 (0.55, 2.55) | 0.67 | 1.08 (0.46, 2.58) | 0.85 | −0.31 (−0.76, 0.14) | 0.18 | −0.41 (−0.86, 0.04) | 0.08 |
Child Dietary Diversity | 0.82 (0.53, 1.27) | 0.34 | 0.94 (0.58, 1.52) | 0.81 | 0.15 (−0.10, 0.39) | 0.25 | 0.12 (−0.13, 0.37) | 0.34 |
Wealth score | 1.18 (0.92, 1.51) | 0.62 | 1.19 (0.91, 1.55) | 0.20 | −0.05 (−0.18, 0.08) | 0.43 | −0.04 (−0.17, 0.08) | 0.48 |
AFB1 concentration | 1.00 (0.99, 1.00) | 0.05 | 0.99 (0.99, 1.00) | 0.05 | 0.00 (0.00003, 0.002) | 0.04 | 0.001 (0.0003, 0.002) | 0.04 |
Outcome Measure | Wasting (n = 148) | Wasting (n = 148) | Weight for Height Z-Score (n = 148) | Weight for Height Z-Score (n = 148) | ||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
Independent Variable | Odds Ratio (Confidence Interval) | p | Odds Ratio (Confidence Interval) | p | Beta (Confidence Interval) | p | Beta (Confidence Interval) | p |
Age | 0.48 (0.17, 1.36) | 0.17 | 0.32 (0.05, 1.95) | 0.22 | −0.02 (−0.05, 0.02) | 0.36 | −0.01 (−0.05, 0.02) | 0.47 |
Sex | 1.08 (0.07, 17.5) | 0.96 | 1.10 (0.03, 41.7) | 0.96 | 0.01 (−0.36, 0.38) | 0.96 | 0.01 (−0.38, 0.39) | 0.97 |
Child Dietary Diversity | 0.42 (0.07, 2.66) | 0.36 | 0.22 (0.01, 5.32) | 0.35 | −0.03 (−0.23, 0.18) | 0.79 | −0.04 (−0.25, 0.17) | 0.71 |
Wealth score | 1.18 (0.47, 3.01) | 0.72 | 1.14 (0.28, 4.59) | 0.85 | −0.06 (−0.16, 0.05) | 0.29 | −0.04 (−0.14, 0.07) | 0.47 |
AFB1 concentration | 1.00 (1.00, 1.004) | 0.56 | 1.00 (1.00, 1.01) | 0.27 | −0.001 (−0.001, −0.0001) | 0.02 | 0.001 (−0.001, −0.0001) | 0.02 |
Outcome Measure | Underweight (n = 148) | Underweight (n = 148) | Weight for Age Z-Score (n = 148) | Weight for Age Z-Score (n = 148) | ||||
---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||||
Independent Variable | Odds Ratio (Confidence Interval) | p | Odds Ratio (Confidence Interval) | p | Beta (Confidence Interval) | p | Beta (Confidence Interval) | p |
Age | 1.05 (0.90, 1.22) | 0.56 | 1.05 (0.89, 1.23) | 0.58 | −0.06 (−0.09, −0.03) | 0.001 | −0.06 (−0.10, −0.03) | 0.001 |
Sex | 6.9 (0.81, 58.8) | 0.08 | 8.1 (0.92, 71.4) | 0.06 | −0.16 (−0.50, 0.19) | 0.37 | −0.20 (−0.55, 0.15) | 0.26 |
Child Dietary Diversity | 0.73 (0.30, 1.78) | 0.45 | 0.66 (0.25, 1.77) | 0.41 | 0.06 (−0.13, 0.25) | 0.54 | 0.03 (−0.16, 0.22) | 0.76 |
Wealth score | 1.12 (0.69, 1.82) | 0.63 | 1.18 (0.71, 1.97) | 0.53 | −0.07 (−0.17, 0.02) | 0.15 | −0.05 (−0.15, 0.04) | 0.27 |
AFB1 concentration | 1.00 (0.99, 1.00) | 0.38 | 0.99 (0.98, 1.01) | 0.36 | −0.0001 (−0.001, 0.0005) | 0.69 | −0.0001 (−0.001, 0.0004) | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gichohi-Wainaina, W.N.; Kimanya, M.; Muzanila, Y.C.; Kumwenda, N.C.; Msere, H.; Rashidi, M.; Mponda, O.; Okori, P. Aflatoxin Contamination, Exposure among Rural Smallholder Farming Tanzanian Mothers and Associations with Growth among Their Children. Toxins 2023, 15, 257. https://doi.org/10.3390/toxins15040257
Gichohi-Wainaina WN, Kimanya M, Muzanila YC, Kumwenda NC, Msere H, Rashidi M, Mponda O, Okori P. Aflatoxin Contamination, Exposure among Rural Smallholder Farming Tanzanian Mothers and Associations with Growth among Their Children. Toxins. 2023; 15(4):257. https://doi.org/10.3390/toxins15040257
Chicago/Turabian StyleGichohi-Wainaina, Wanjiku N., Martin Kimanya, Yasinta C. Muzanila, Nelson C. Kumwenda, Harry Msere, Mariam Rashidi, Omari Mponda, and Patrick Okori. 2023. "Aflatoxin Contamination, Exposure among Rural Smallholder Farming Tanzanian Mothers and Associations with Growth among Their Children" Toxins 15, no. 4: 257. https://doi.org/10.3390/toxins15040257
APA StyleGichohi-Wainaina, W. N., Kimanya, M., Muzanila, Y. C., Kumwenda, N. C., Msere, H., Rashidi, M., Mponda, O., & Okori, P. (2023). Aflatoxin Contamination, Exposure among Rural Smallholder Farming Tanzanian Mothers and Associations with Growth among Their Children. Toxins, 15(4), 257. https://doi.org/10.3390/toxins15040257