Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies
Abstract
:1. Introduction
2. Plant Toxic Proteins
2.1. Ribosome İnactivating Proteins
2.2. Lectins
2.3. Plant Protease İnhibitors
2.4. α-Amylase İnhibitors
2.5. Canatoxin-Like Proteins and Ureases
2.6. Arcelin
2.7. Antimicrobial Peptides
2.7.1. Thionins
2.7.2. Cyclotides
2.8. Pore-Forming Toxins
3. Mechanism of Action
4. Possible Uses for Plant Toxic Proteins
5. Removal Strategies of Plant Toxins
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acibuca, V.; Budak, D.B. Dünya’da ve Türkiye’de tıbbi ve aromatik bitkilerin yeri ve önemi. Çukurova Tarım Gıda Bilim. Derg. 2018, 33, 37–44. [Google Scholar]
- Rietjens, I.M.; Martena, M.J.; Boersma, M.G.; Spiegelenberg, W.; Alink, G.M. Molecular mechanisms of toxicity of important food-borne phytotoxins. Mol. Nutr. Food Res. 2005, 49, 131–158. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Nag, M.K.; Daharwal, S.; Singh, M.R.; Singh, D. Plant toxins: An overview. Res. J. Pharmacol. Pharmacodyn. 2013, 5, 283–288. [Google Scholar]
- Maag, D.; Erb, M.; Köllner, T.G.; Gershenzon, J. Defensive weapons and defense signals in plants: Some metabolites serve both roles. BioEssays 2015, 37, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Lannoo, N.; Van Damme, E.J. Lectin domains at the frontiers of plant defense. Front. Plant Sci. 2014, 5, 397. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Sharma, V.; Thakur, A. Phytotoxins—A mini review. J. Pharmacogn. Phytochem. 2018, 7, 2705–2708. [Google Scholar]
- Sekhar, J.; Sandhya, S.; Vinod, K.; Banji, D.; Sudhakar, K.; Chaitanya, R. Plant toxins-useful and harmful effects. Hygeia-J. Drugs Med. 2012, 4, 79–90. [Google Scholar]
- Dang, L.; Van Damme, E.J. Toxic proteins in plants. Phytochemistry 2015, 117, 51–64. [Google Scholar] [CrossRef]
- Bucheli, T.D. Phytotoxins: Environmental micropollutants of concern? Environ. Sci. Technol. 2014, 48, 13027–13033. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, M.; Li, J.; Li, Z.; Tian, X.; Duan, L. Phytotoxin coronatine enhances heat tolerance via maintaining photosynthetic performance in wheat based on Electrophoresis and TOF-MS analysis. Sci. Rep. 2015, 5, 13870. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.T.L.P.; Lopes, J.R.R.; Silva, C.B.d.; Cândido, A.C.S.; Simionatto, E.; Cabral, M.R.P.; Oliveira, R.M.; Facco, J.T.; Cardoso, C.A.L.; Simas, P.H. Phytotoxic and antioxidant activity of seven native fruits of Brazil. Acta Bot. Bras. 2013, 27, 836–846. [Google Scholar] [CrossRef]
- Chen, H.; Singh, H.; Bhardwaj, N.; Bhardwaj, S.K.; Khatri, M.; Kim, K.-H.; Peng, W. An exploration on the toxicity mechanisms of phytotoxins and their potential utilities. Crit. Rev. Environ. Sci. Technol. 2022, 52, 395–435. [Google Scholar] [CrossRef]
- Giansanti, F.; Di Leandro, L.; Koutris, I.; Cialfi, A.; Benedetti, E.; Laurenti, G.; Pitari, G.; Ippoliti, R. Ricin and saporin: Plant enzymes for the research and the clinics. Curr. Chem. Biol. 2010, 4, 99–107. [Google Scholar]
- Endo, Y.; Mitsui, K.; Motizuki, M.; Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 1987, 262, 5908–5912. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhou, Y.-K.; Ji, Z.-L.; Chen, X.-R. The plant ribosome-inactivating proteins play important roles in defense against pathogens and insect pest attacks. Front. Plant Sci. 2018, 9, 146. [Google Scholar] [CrossRef]
- Barbieri, L.; Valbonesi, P.; Bondioli, M.; Alvarez, M.L.; Dal Monte, P.; Landini, M.P.; Stirpe, F. Adenine glycosylase activity in mammalian tissues: An equivalent of ribosome-inactivating proteins. FEBS Lett. 2001, 505, 196–197. [Google Scholar] [CrossRef]
- Kurinov, I.; Rajamohan, F.; Venkatachalam, T.; Uckun, F. X-ray crystallographic analysis of the structural basis for the interaction of pokeweed antiviral protein with guanine residues of ribosomal RNA. Protein Sci. 1999, 8, 2399–2405. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, S.; Sharma, N.R.; Paul, K. Expanding role of ribosome-inactivating proteins: From toxins to therapeutics. IUBMB Life 2022, 75, 82–96. [Google Scholar] [CrossRef]
- Peumans, W.J.; Van Damme, E.J. Evolution of plant ribosome-inactivating proteins. In Toxic Plant Proteins; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–26. [Google Scholar]
- Wang, S.; Zhang, Y.; Liu, H.; He, Y.; Yan, J.; Wu, Z.; Ding, Y. Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia. Appl. Microbiol. Biotechnol. 2012, 96, 939–950. [Google Scholar] [CrossRef]
- Tartarini, A.; Pittaluga, E.; Marcozzi, G.; Testone, G.; Rodrigues-Pousada, R.A.; Giannino, D.; Spanò, L. Differential expression of saporin genes upon wounding, ABA treatment and leaf development. Physiol. Plant. 2010, 140, 141–152. [Google Scholar] [CrossRef]
- Stirpe, F. Ribosome-inactivating proteins. Toxicon 2004, 44, 371–383. [Google Scholar] [CrossRef]
- Shi, W.-W.; Mak, A.N.-S.; Wong, K.-B.; Shaw, P.-C. Structures and ribosomal interaction of ribosome-inactivating proteins. Molecules 2016, 21, 1588. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Battelli, M.G. Ribosome-inactivating proteins: Progress and problems. Cell. Mol. Life Sci. CMLS 2006, 63, 1850–1866. [Google Scholar] [CrossRef]
- Pascal, J.M.; Day, P.J.; Monzingo, A.F.; Ernst, S.R.; Robertus, J.D.; Iglesias, R.; Pérez, Y.; Férreras, J.M.; Citores, L.; Girbés, T. 2.8-Å crystal structure of a nontoxic type-II ribosome-inactivating protein, ebulin l. Proteins Struct. Funct. Bioinform. 2001, 43, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, M.S.; Katayama, M.; Nakase, I.; Vago, R. Plant ribosome-inactivating proteins: Progesses, challenges and biotechnological applications (and a few digressions). Toxins 2017, 9, 314. [Google Scholar] [CrossRef]
- Wong, J.H.; Bao, H.; Ng, T.B.; Chan, H.H.L.; Ng, C.C.W.; Man, G.C.W.; Wang, H.; Guan, S.; Zhao, S.; Fang, E.F. New ribosome-inactivating proteins and other proteins with protein synthesis–inhibiting activities. Appl. Microbiol. Biotechnol. 2020, 104, 4211–4226. [Google Scholar] [CrossRef]
- Przydacz, M.; Jones, R.; Pennington, H.G.; Belmans, G.; Bruderer, M.; Greenhill, R.; Salter, T.; Wellham, P.A.; Cota, E.; Spanu, P.D. Mode of action of the catalytic site in the N-terminal ribosome-inactivating domain of JIP60. Plant Physiol. 2020, 183, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A. Plant and insect viruses in managed and natural environments: Novel and neglected transmission pathways. Adv. Virus Res. 2018, 101, 149–187. [Google Scholar]
- Choi, A.K.; Wong, E.C.; Lee, K.-M.; Wong, K.-B. Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes. Toxins 2015, 7, 638–647. [Google Scholar] [CrossRef]
- Weise, C.; Schrot, A.; Wuerger, L.T.; Adolf, J.; Gilabert-Oriol, R.; Sama, S.; Melzig, M.F.; Weng, A. An unusual type I ribosome-inactivating protein from Agrostemma githago L. Sci. Rep. 2020, 10, 15377. [Google Scholar] [CrossRef]
- Bhaskar, A.; Deb, U.; Kumar, O.; Rao, P.L. Abrin induced oxidative stress mediated DNA damage in human leukemic cells and its reversal by N-acetylcysteine. Toxicol. Vitr. 2008, 22, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Z.; Li, S.; Di, R.; Ho, C.-T.; Yang, G. Ribosome-inactivating proteins (RIPs) and their important health promoting property. RSC Adv. 2016, 6, 46794–46805. [Google Scholar] [CrossRef]
- Schrot, J.; Weng, A.; Melzig, M.F. Ribosome-inactivating and related proteins. Toxins 2015, 7, 1556–1615. [Google Scholar] [CrossRef]
- Lu, J.-Q.; Zhu, Z.-N.; Zheng, Y.-T.; Shaw, P.-C. Engineering of ribosome-inactivating proteins for improving pharmacological properties. Toxins 2020, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Gilabert-Oriol, R. Ribosome-inactivating proteins: An overview. In Plant Toxins; Carlini, C.R., Ligabue-Braun, R., Eds.; Spirnger: Dordrecht, The Netherlands, 2015; pp. 153–182. [Google Scholar]
- Citores, L.; Iglesias, R.; Ferreras, J.M. Antiviral activity of ribosome-inactivating proteins. Toxins 2021, 13, 80. [Google Scholar] [CrossRef]
- Domashevskiy, A.V.; Williams, S.; Kluge, C.; Cheng, S.-Y. Plant Translation Initiation Complex eIF iso 4F Directs Pokeweed Antiviral Protein to Selectively Depurinate Uncapped Tobacco Etch Virus RNA. Biochemistry 2017, 56, 5980–5990. [Google Scholar] [CrossRef]
- Kushwaha, G.S.; Yamini, S.; Kumar, M.; Sinha, M.; Kaur, P.; Sharma, S.; Singh, T.P. First structural evidence of sequestration of mRNA cap structures by type 1 ribosome inactivating protein from Momordica balsamina. Proteins Struct. Funct. Bioinform. 2013, 81, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Law, S.K.-Y.; Wang, R.-R.; Mak, A.N.-S.; Wong, K.-B.; Zheng, Y.-T.; Shaw, P.-C. A switch-on mechanism to activate maize ribosome-inactivating protein for targeting HIV-infected cells. Nucleic Acids Res. 2010, 38, 6803–6812. [Google Scholar] [CrossRef]
- Di, R.; Tumer, N.E. Pokeweed antiviral protein: Its cytotoxicity mechanism and applications in plant disease resistance. Toxins 2015, 7, 755–772. [Google Scholar] [CrossRef]
- He, Y.-W.; Guo, C.-X.; Pan, Y.-F.; Peng, C.; Weng, Z.-H. Inhibition of hepatitis B virus replication by pokeweed antiviral protein in vitro. World J. Gastroenterol. WJG 2008, 14, 1592. [Google Scholar] [CrossRef]
- Zhao, W.; Feng, D.; Sun, S.; Han, T.; Sui, S. The anti-viral protein of trichosanthin penetrates into human immunodeficiency virus type 1. Acta Biochim. Biophys. Sin. 2010, 42, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.M.; Zhang, Q.; Xu, J.; Zhu, S.; Ke, T.; Gao, D.F.; Xu, Y.B. Inhibition on Hepatitis B virus in vitro of recombinant MAP30 from bitter melon. Mol. Biol. Rep. 2009, 36, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Akkouh, O.; Ng, T.B.; Cheung, R.C.F.; Wong, J.H.; Pan, W.; Ng, C.C.W.; Sha, O.; Shaw, P.C.; Chan, W.Y. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Appl. Microbiol. Biotechnol. 2015, 99, 9847–9863. [Google Scholar] [CrossRef]
- Zeng, M.; Zheng, M.; Lu, D.; Wang, J.; Jiang, W.; Sha, O. Anti-tumor activities and apoptotic mechanism of ribosome-inactivating proteins. Chin. J. Cancer 2015, 34, 30. [Google Scholar] [CrossRef]
- Hu, Y.; Yao, J.; Wang, Z.; Liang, H.; Li, C.; Zhou, X.; Yang, F.; Zhang, Y.; Jin, H. Comparative Proteomic Analysis of Drug Trichosanthin Addition to BeWo Cell Line. Molecules 2022, 27, 1603. [Google Scholar] [CrossRef]
- Sharon, N.; Lis, H. The structural basis for carbohydrate recognition by lectins. In The Molecular Immunology of Complex Carbohydrates—2; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–16. [Google Scholar]
- Dedola, S.; Rugen, M.D.; Young, R.J.; Field, R.A. Revisiting the language of glycoscience: Readers, writers and erasers in carbohydrate biochemistry. ChemBioChem 2020, 21, 423–427. [Google Scholar] [CrossRef]
- Ghazarian, H.; Idoni, B.; Oppenheimer, S.B. A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 2011, 113, 236–247. [Google Scholar] [CrossRef]
- Fujimoto, Z.; Tateno, H.; Hirabayashi, J. Lectin structures: Classification based on the 3-D structures. Lectins 2014, 1200, 579–606. [Google Scholar]
- Lam, S.K.; Ng, T.B. Lectins: Production and practical applications. Appl. Microbiol. Biotechnol. 2011, 89, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.F.; Da Silva, M.; Napoleão, T.; Paiva, P.; Correia, M.d.S.; Coelho, L. Lectins: Function, structure, biological properties andpotential applications. Curr. Top. Pept. Protein Res. 2014, 15, 41–62. [Google Scholar]
- Sumner, J.B.; Howell, S.F. Identification of hemagglutinin of jack bean with concanavalin A. J. Bacteriol. 1936, 32, 227–237. [Google Scholar] [CrossRef]
- Sharon, N.; Lis, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology 2004, 14, 53R–62R. [Google Scholar] [CrossRef]
- Goldstein, I.J.; Hayes, C.E. The lectins: Carbohydrate-binding proteins of plants and animals. Adv. Carbohydr. Chem. Biochem. 1978, 35, 127–340. [Google Scholar]
- Jiang, S.-Y.; Ma, Z.; Ramachandran, S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol. Biol. 2010, 10, 79. [Google Scholar] [CrossRef]
- Gautam, A.K.; Sharma, D.; Sharma, J.; Saini, K.C. Legume lectins: Potential use as a diagnostics and therapeutics against the cancer. Int. J. Biol. Macromol. 2020, 142, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Behura, A.; Mawatwal, S.; Kumar, A.; Naik, L.; Mohanty, S.S.; Manna, D.; Dokania, P.; Mishra, A.; Patra, S.K. Structure-function and application of plant lectins in disease biology and immunity. Food Chem. Toxicol. 2019, 134, 110827. [Google Scholar] [CrossRef]
- Muramoto, K. Lectins as bioactive proteins in foods and feeds. Food Sci. Technol. Res. 2017, 23, 487–494. [Google Scholar] [CrossRef]
- Sinha, N.; Panda, P.K.; Naik, P.P.; Das, D.N.; Mukhopadhyay, S.; Maiti, T.K.; Shanmugam, M.K.; Chinnathambi, A.; Zayed, M.; Alharbi, S.A. Abrus agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma. Mol. Carcinog. 2017, 56, 2400–2413. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Meher, B.R.; Naik, P.P.; Panda, P.K.; Mukhapadhyay, S.; Maiti, T.K.; Bhutia, S.K. p73 induction by Abrus agglutinin facilitates Snail ubiquitination to inhibit epithelial to mesenchymal transition in oral cancer. Phytomedicine 2019, 55, 179–190. [Google Scholar] [CrossRef]
- Panda, P.K.; Naik, P.P.; Praharaj, P.P.; Meher, B.R.; Gupta, P.K.; Verma, R.S.; Maiti, T.K.; Shanmugam, M.K.; Chinnathambi, A.; Alharbi, S.A. Abrus agglutinin stimulates BMP-2-dependent differentiation through autophagic degradation of β-catenin in colon cancer stem cells. Mol. Carcinog. 2018, 57, 664–677. [Google Scholar] [CrossRef]
- von Schoen-Angerer, T.; Goyert, A.; Vagedes, J.; Kiene, H.; Merckens, H.; Kienle, G.S. Disappearance of an advanced adenomatous colon polyp after intratumoural injection with Viscum album (European mistletoe) extract: A case report. J. Gastrointestin. Liver Dis. 2014, 23, 449–452. [Google Scholar] [CrossRef]
- Schad, F.; Thronicke, A.; Steele, M.L.; Merkle, A.; Matthes, B.; Grah, C.; Matthes, H. Overall survival of stage IV non-small cell lung cancer patients treated with Viscum album L. in addition to chemotherapy, a real-world observational multicenter analysis. PLoS ONE 2018, 13, e0203058. [Google Scholar] [CrossRef] [PubMed]
- Procópio, T.F.; Moura, M.C.; Albuquerque, L.P.; Gomes, F.S.; Santos, N.D.; Coelho, L.; Pontual, E.V.; Paiva, P.M.; Napoleão, T.H. Antibacterial Lectins: Action Mechanisms, Defensive Roles and Biotechnological Potential. In Antibacterials: Synthesis, Properties and Biological Activities; Nova Sci Pub: New York, NY, USA, 2017; pp. 69–90. [Google Scholar]
- Paiva, P.M.; Gomes, F.; Napoleão, T.; Sá, R.; Correia, M.; Coelho, L. Antimicrobial activity of secondary metabolites and lectins from plants. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 1, 396–406. [Google Scholar]
- Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020, 284, 197989. [Google Scholar] [CrossRef] [PubMed]
- Mazalovska, M.; Kouokam, J.C. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections. BioMed Res. Int. 2018, 2018, 3750646. [Google Scholar] [CrossRef]
- Sawant, S.S.; Randive, V.R.; Kulkarni, S.R. Lectins from seeds of Abrus precatorius: Evaluation of antidiabetic and antihyperlipidemic potential in diabetic rats. Asian J. Pharm. Res. 2017, 7, 71–80. [Google Scholar] [CrossRef]
- de Alencar Alves, M.F.; de Almeida Barreto, F.K.; de Vasconcelos, M.A.; do Nascimento Neto, L.G.; Carneiro, R.F.; da Silva, L.T.; Nagano, C.S.; Sampaio, A.H.; Teixeira, E.H. Antihyperglycemic and antioxidant activities of a lectin from the marine red algae, Bryothamnion seaforthii, in rats with streptozotocin-induced diabetes. Int. J. Biol. Macromol. 2020, 158, 773–780. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Simpson, B.K.; Sun, H.; Ngadi, M.O.; Ma, Y.; Huang, T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit. Rev. Food Sci. Nutr. 2018, 58, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Alatorre-Cruz, J.M.; Pita-López, W.; López-Reyes, R.G.; Ferriz-Martínez, R.A.; Cervantes-Jiménez, R.; Carrillo, M.d.J.G.; Vargas, P.J.A.; López-Herrera, G.; Rodríguez-Méndez, A.J.; Zamora-Arroyo, A. Effects of intragastrically-administered Tepary bean lectins on digestive and immune organs: Preclinical evaluation. Toxicol. Rep. 2018, 5, 56–64. [Google Scholar] [CrossRef]
- Hueda, M.C. Functional Food: Improve Health through Adequate Food; BoD–Books on Demand, InTech: London, UK, 2017. [Google Scholar]
- Mubarak, A. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89, 489–495. [Google Scholar] [CrossRef]
- Lucius, K. Dietary lectins: Gastrointestinal and immune effects. Altern. Complement. Ther. 2020, 26, 168–174. [Google Scholar] [CrossRef]
- Natural Toxins in Food. Available online: https://www.fda.gov/food/chemical-contaminants-pesticides/natural-toxins-food (accessed on 10 May 2023).
- Nciri, N.; Cho, N.; Mhamdi, F.E.; Ismail, H.B.; Mansour, A.B.; Sassi, F.H.; Aissa-Fennira, F.B. Toxicity assessment of common beans (Phaseolus vulgaris L.) widely consumed by Tunisian population. J. Med. Food 2015, 18, 1049–1064. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Arntfield, S.D.; Nickerson, M. Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Res. Int. 2018, 107, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Murdock, L.L.; Shade, R.E. Lectins and protease inhibitors as plant defenses against insects. J. Agric. Food Chem. 2002, 50, 6605–6611. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Zorzi, A.; Deyle, K.; Heinis, C. Cyclic peptide therapeutics: Past, present and future. Curr. Opin. Chem. Biol. 2017, 38, 24–29. [Google Scholar] [CrossRef]
- Kaysser, L. Built to bind: Biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat. Prod. Rep. 2019, 36, 1654–1686. [Google Scholar] [CrossRef] [PubMed]
- Turra, D.; Lorito, M. Potato type I and II proteinase inhibitors: Modulating plant physiology and host resistance. Curr. Protein Pept. Sci. 2011, 12, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Hellinger, R.; Gruber, C.W. Peptide-based protease inhibitors from plants. Drug Discov. Today 2019, 24, 1877–1889. [Google Scholar] [CrossRef]
- S Bateman, K.; NG James, M. Plant protein proteinase inhibitors: Structure and mechanism of inhibition. Curr. Protein Pept. Sci. 2011, 12, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Mylne, J.S.; Chan, L.Y.; Chanson, A.H.; Daly, N.L.; Schaefer, H.; Bailey, T.L.; Nguyencong, P.; Cascales, L.; Craik, D.J. Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase–mediated biosynthesis. Plant Cell 2012, 24, 2765–2778. [Google Scholar] [CrossRef] [PubMed]
- Volpicella, M.; Leoni, C.; Costanza, A.; De Leo, F.; Gallerani, R.; R Ceci, L. Cystatins, serpins and other families of protease inhibitors in plants. Curr. Protein Pept. Sci. 2011, 12, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Mosolov, V.; Valueva, T. Proteinase inhibitors and their function in plants: A review. Appl. Biochem. Microbiol. 2005, 41, 227–246. [Google Scholar] [CrossRef]
- Cotabarren, J.; Lufrano, D.; Parisi, M.G.; Obregón, W.D. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. Plant Sci. 2020, 292, 110398. [Google Scholar] [CrossRef]
- Shamsi, T.N.; Parveen, R.; Fatima, S. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int. J. Biol. Macromol. 2016, 91, 1120–1133. [Google Scholar] [CrossRef]
- Adeyemo, S.; Onilude, A. Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Niger. Food J. 2013, 31, 84–90. [Google Scholar] [CrossRef]
- Niphakis, M.J.; Cravatt, B.F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 2014, 83, 341–377. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; del Refugio Rocha-Pizaña, M.; García-Lara, S.; López-Castillo, L.M.; Serna-Saldívar, S.O. Effect of thermal processing and reducing agents on trypsin inhibitor activity and functional properties of soybean and chickpea protein concentrates. LWT 2018, 98, 629–634. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef]
- Gitlin-Domagalska, A.; Maciejewska, A.; Dębowski, D. Bowman-Birk inhibitors: Insights into family of multifunctional proteins and peptides with potential therapeutical applications. Pharmaceuticals 2020, 13, 421. [Google Scholar] [CrossRef] [PubMed]
- Holdgate, G.A.; Meek, T.D.; Grimley, R.L. Mechanistic enzymology in drug discovery: A fresh perspective. Nat. Rev. Drug Discov. 2018, 17, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Milanés-Guisado, Y.; Gutiérrez-Valencia, A.; Muñoz-Pichardo, J.M.; Rivero, A.; Trujillo-Rodriguez, M.; Ruiz-Mateos, E.; Espinosa, N.; Roca-Oporto, C.; Viciana, P.; López-Cortés, L.F. Is immune recovery different depending on the use of integrase strand transfer inhibitor-, non-nucleoside reverse transcriptase-or boosted protease inhibitor-based regimens in antiretroviral-naive HIV-infected patients? J. Antimicrob. Chemother. 2020, 75, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Laila, U.; Akram, M.; Shariati, M.A.; Hashmi, A.M.; Akhtar, N.; Tahir, I.M.; Ghauri, A.O.; Munir, N.; Riaz, M.; Akhter, N. Role of medicinal plants in HIV/AIDS therapy. Clin. Exp. Pharmacol. Physiol. 2019, 46, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, T.N.; Fatima, S. Protease inhibitors as ad-hoc antibiotics. Open Pharm. Sci. J. 2016, 3, 131–137. [Google Scholar] [CrossRef]
- Gupta, S.; Kanwar, S.S. Plant protease inhibitors and their antiviral activities-Potent therapeutics for SARS CoV-2. J. Med. Discov. 2021, 6, 1–14. [Google Scholar]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Cristina Oliveira de Lima, V.; Piuvezam, G.; Leal Lima Maciel, B.; Heloneida de Araújo Morais, A. Trypsin inhibitors: Promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J. Enzym. Inhib. Med. Chem. 2019, 34, 405–419. [Google Scholar] [CrossRef]
- Chen, Y.; Xi, X.; Ma, C.; Zhou, M.; Chen, X.; Ye, Z.; Ge, L.; Wu, Q.; Chen, T.; Wang, L. Structure–activity relationship and molecular docking of a Kunitz-like trypsin inhibitor, Kunitzin-ah, from the skin secretion of Amolops hainanensis. Pharmaceutics 2021, 13, 966. [Google Scholar] [CrossRef]
- Souza, L.d.C.; Camargo, R.; Demasi, M.; Santana, J.M.; Sá, C.M.d.; de Freitas, S.M. Effects of an anticarcinogenic Bowman-Birk protease inhibitor on purified 20S proteasome and MCF-7 breast cancer cells. PLoS ONE 2014, 9, e86600. [Google Scholar] [CrossRef]
- Cotabarren, J.; Claver, S.; Payrol, J.A.; Garcia-Pardo, J.; Obregón, W.D. Purification and characterization of a novel thermostable papain inhibitor from moringa oleifera with antimicrobial and anticoagulant properties. Pharmaceutics 2021, 13, 512. [Google Scholar] [CrossRef] [PubMed]
- de Siqueira Patriota, L.L.; Ramos, D.d.B.M.; e Silva, M.G.; dos Santos, A.C.L.A.; Silva, Y.A.; de Oliveira Marinho, A.; Coelho, L.C.B.B.; Paiva, P.M.G.; Pontual, E.V.; Mendes, R.L. The trypsin inhibitor from Moringa oleifera flowers (MoFTI) inhibits acute inflammation in mice by reducing cytokine and nitric oxide levels. S. Afr. J. Bot. 2021, 143, 474–481. [Google Scholar] [CrossRef]
- Rahate, K.A.; Madhumita, M.; Prabhakar, P.K. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT 2021, 138, 110796. [Google Scholar] [CrossRef]
- He, H.; Li, X.; Kong, X.; Hua, Y.; Chen, Y. Heat-induced inactivation mechanism of soybean Bowman-Birk inhibitors. Food Chem. 2017, 232, 712–720. [Google Scholar] [CrossRef]
- Prajapati, U.; Ksh, V.; Kumar, M.; Joshi, A. Antinutritional Factors and Their Minimization Strategies in Root and Tuber Crops. In Handbook of Cereals, Pulses, Roots, and Tubers; CRC Press: Boca Raton, FL, USA, 2021; pp. 597–624. [Google Scholar]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Sharma, P.; Joshi, T.; Joshi, T.; Chandra, S.; Tamta, S. Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. J. Biomol. Struct. Dyn. 2021, 39, 6524–6538. [Google Scholar] [CrossRef]
- Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Magalhães, P.O.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef]
- Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci. 2016, 5, 1–8. [Google Scholar]
- Funke, I.; Melzig, M.F. Traditionally used plants in diabetes therapy: Phytotherapeutics as inhibitors of alpha-amylase activity. Rev. Bras. Farmacogn. 2006, 16, 1–5. [Google Scholar] [CrossRef]
- Carlini, C.R.; Guimarães, J.A. Isolation and characterization of a toxic protein from Canavalia ensiformis (jack bean) seeds, distinct from concanavalin A. Toxicon 1981, 19, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Follmer, C.; Barcellos, G.B.; Zingali, R.B.; Machado, O.L.; Alves, E.W.; Barja-Fidalgo, C.; Guimarães, J.A.; Carlini, C.R. Canatoxin, a toxic protein from jack beans (Canavalia ensiformis), is a variant form of urease (EC 3.5. 1.5): Biological effects of urease independent of its ureolytic activity. Biochem. J. 2001, 360, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Carlini, C.; Gomes, C.; Guimarães, J.A.; Markus, R.P.; Sato, H.; Trolin, G. Central nervous effects of the convulsant protein canatoxin. Acta Pharmacol. Toxicol. 1984, 54, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.W.; Ferreira, A.T.D.S.; Ferreira, C.T.D.S.; Carlini, C.R. Effects of canatoxin on the Ca2+-ATPase of sarcoplasmic reticulum membranes. Toxicon 1992, 30, 1411–1418. [Google Scholar] [CrossRef]
- Barja-Fidalgo, C.; Guimarães, J.A.; Carlini, C.R. Lipoxygenase-mediated secretory effect of canatoxin the toxic protein from Canavalia ensiformis seeds. Toxicon 1991, 29, 453–459. [Google Scholar] [CrossRef]
- Carlini, C.R.; Guimarães, J.A. Plant and microbial toxic proteins as hemilectins: Emphasis on canatoxin. Toxicon 1991, 29, 791–806. [Google Scholar] [CrossRef]
- Carlini, C.R.; Ligabue-Braun, R. Ureases as multifunctional toxic proteins: A review. Toxicon 2016, 110, 90–109. [Google Scholar] [CrossRef]
- Barreto, Y.C.; Oliveira, R.S.; Borges, B.T.; Rosa, M.E.; Zanatta, A.P.; de Almeida, C.G.M.; Vinadé, L.; Carlini, C.R.; Dal Belo, C.A. The neurotoxic mechanism of Jack Bean Urease in insects involves the interplay between octopaminergic and dopaminergic pathways. Pestic. Biochem. Physiol. 2023, 189, 105290. [Google Scholar] [CrossRef]
- Kappaun, K.; Piovesan, A.R.; Carlini, C.R.; Ligabue-Braun, R. Ureases: Historical aspects, catalytic, and non-catalytic properties–A review. J. Adv. Res. 2018, 13, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.L.; Kami, J.; Borem, A.; Gepts, P. Sequence analysis of the arcelin-phytohaemagglutinin-α-amylase inhibitor (APA) locus in three phylogenetically arrayed Phaseolus vulgaris clones. Crop Breed. Appl. Biotechnol. 2023, 22, e421122415. [Google Scholar] [CrossRef]
- Peddio, S.; Padiglia, A.; Cannea, F.B.; Crnjar, R.; Zam, W.; Sharifi-Rad, J.; Rescigno, A.; Zucca, P. Common bean (Phaseolus vulgaris L.) α-amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: An update review. Phytother. Res. 2022, 36, 2803–2823. [Google Scholar] [CrossRef]
- Zaugg, I.; Magni, C.; Panzeri, D.; Daminati, M.G.; Bollini, R.; Benrey, B.; Bacher, S.; Sparvoli, F. QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theor. Appl. Genet. 2013, 126, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Cominelli, E.; Sparvoli, F.; Lisciani, S.; Forti, C.; Camilli, E.; Ferrari, M.; Le Donne, C.; Marconi, S.; Juan Vorster, B.; Botha, A.-M.; et al. Antinutritional factors, nutritional improvement, and future food use of common beans: A perspective. Front. Plant Sci. 2022, 13, 992169. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Diana, J. The dual role of antimicrobial peptides in autoimmunity. Front. Immunol. 2020, 11, 2077. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, L.G.; Fariss, R.N.; Stambolian, D.; Abecasis, G.R.; Curcio, C.A.; Swaroop, A. Age-related macular degeneration: Genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 2014, 15, 151–171. [Google Scholar] [CrossRef]
- Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Comput. Pept. 2015, 1268, 43–66. [Google Scholar]
- Baiden, N.; Gandini, C.; Goddard, P.; Sayanova, O. Heterologous expression of antimicrobial peptides S-thanatin and bovine lactoferricin in the marine diatom Phaeodactylum tricornutum enhances native antimicrobial activity against Gram-negative bacteria. Algal Res. 2023, 69, 102927. [Google Scholar] [CrossRef]
- Francis, F.; Chaudhary, N. Antimicrobial peptides: Features and modes of action. In Antimicrobial Peptides; Elsevier: Amsterdam, The Netherlands, 2023; pp. 33–65. [Google Scholar]
- Baindara, P.; Mandal, S.M. Plant-Derived Antimicrobial Peptides: Novel Preservatives for the Food Industry. Foods 2022, 11, 2415. [Google Scholar] [CrossRef]
- Odintsova, T.; Slezina, M.; Istomina, E. Plant thionins: Structure, biological functions and potential use in biotechnology. Vavilovskii Zhurnal Genet. I Sel. 2018, 22, 667–675. [Google Scholar] [CrossRef]
- Stotz, H.; Waller, F.; Wang, K. Innate immunity in plants: The role of antimicrobial peptides. In Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research; Springer: Basel, Switzerland, 2012; pp. 29–51. [Google Scholar] [CrossRef]
- Guzmán-Rodríguez, J.J.; Ochoa-Zarzosa, A.; López-Gómez, R.; López-Meza, J.E. Plant antimicrobial peptides as potential anticancer agents. BioMed Res. Int. 2015, 2015, 735087. [Google Scholar] [CrossRef]
- Gould, A.; Ji, Y.; Aboye, T.L.; Camarero, J.A. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr. Pharm. Des. 2011, 17, 4294–4307. [Google Scholar] [CrossRef]
- Grover, T.; Mishra, R.; Gulati, P.; Mohanty, A. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides 2021, 135, 170430. [Google Scholar] [CrossRef] [PubMed]
- Holaskova, E.; Galuszka, P.; Frebort, I.; Oz, M.T. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol. Adv. 2015, 33, 1005–1023. [Google Scholar] [CrossRef] [PubMed]
- Barry, D.G.; Daly, N.L.; Clark, R.J.; Sando, L.; Craik, D.J. Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity. Biochemistry 2003, 42, 6688–6695. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.E.F.; Chan, L.Y.; Koehbach, J.; Devi, S.; Gründemann, C.; Gruber, C.W.; Gomes, M.; Bolzani, V.S.; Cilli, E.M.; Craik, D.J. Cyclotides from Brazilian Palicourea sessilis and their effects on human lymphocytes. J. Nat. Prod. 2021, 84, 81–90. [Google Scholar] [CrossRef]
- Henriques, S.T.; Huang, Y.-H.; Castanho, M.A.; Bagatolli, L.A.; Sonza, S.; Tachedjian, G.; Daly, N.L.; Craik, D.J. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J. Biol. Chem. 2012, 287, 33629–33643. [Google Scholar] [CrossRef]
- Henriques, S.T.; Huang, Y.-H.; Rosengren, K.J.; Franquelim, H.G.; Carvalho, F.A.; Johnson, A.; Sonza, S.; Tachedjian, G.; Castanho, M.A.; Daly, N.L. Decoding the membrane activity of the cyclotide kalata B1: The importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J. Biol. Chem. 2011, 286, 24231–24241. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Colgrave, M.L.; Daly, N.L.; Keleshian, A.; Martinac, B.; Craik, D.J. The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores. J. Biol. Chem. 2009, 284, 20699–20707. [Google Scholar] [CrossRef]
- Los, F.C.; Randis, T.M.; Aroian, R.V.; Ratner, A.J. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 2013, 77, 173–207. [Google Scholar] [CrossRef]
- Omersa, N.; Podobnik, M.; Anderluh, G. Inhibition of pore-forming proteins. Toxins 2019, 11, 545. [Google Scholar] [CrossRef]
- Peraro, M.D.; Van Der Goot, F.G. Pore-forming toxins: Ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016, 14, 77–92. [Google Scholar] [CrossRef]
- Wolpert, T.J.; Dunkle, L.D.; Ciuffetti, L.M. Host-selective toxins and avirulence determinants: What’s in a name? Annu. Rev. Phytopathol. 2002, 40, 251–285. [Google Scholar] [CrossRef] [PubMed]
- Berestetskiy, A. A review of fungal phytotoxins: From basic studies to practical use. Appl. Biochem. Microbiol. 2008, 44, 453–465. [Google Scholar] [CrossRef]
- Mtewa, A.G.; Egbuna, C.; Ngwira, K.J.; Lampiao, F.; Shah, U.; Mtewa, T.K. Classification of Phytotoxins and their Mechanisms of Action. In Poisonous Plants and Phytochemicals in Drug Discovery; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 19–30. [Google Scholar]
- Citores, L.; Ferreras, J.M. Biological Activities of Ribosome-Inactivating Proteins. Toxins. 2023, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.G.; Ahmadu, T.; Nayaya, A.J.; Dodo, A.M. Plant disease control: Understanding the roles of toxins and phytoalexins in host-pathogen interaction. Pertanika J. Sch. Res. Rev. 2018, 4, 54–66. [Google Scholar]
- Abbas, T.; Nadeem, M.A.; Tanveer, A.; Chauhan, B.S. Can hormesis of plant-released phytotoxins be used to boost and sustain crop production? Crop Prot. 2017, 93, 69–76. [Google Scholar] [CrossRef]
- Chadwick, D.J.; Whelan, J. Secondary Metabolites: Their Function and Evolution; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Belz, R.G.; Cedergreen, N. Parthenin hormesis in plants depends on growth conditions. Environ. Exp. Bot. 2010, 69, 293–301. [Google Scholar] [CrossRef]
- He, M.; He, C.-Q.; Ding, N.-Z. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 2018, 9, 1771. [Google Scholar] [CrossRef]
- Ahmad, P.; Ashraf, M.; Younis, M.; Hu, X.; Kumar, A.; Akram, N.A.; Al-Qurainy, F. Role of transgenic plants in agriculture and biopharming. Biotechnol. Adv. 2012, 30, 524–540. [Google Scholar] [CrossRef]
- Muramoto, N.; Tanaka, T.; Shimamura, T.; Mitsukawa, N.; Hori, E.; Koda, K.; Otani, M.; Hirai, M.; Nakamura, K.; Imaeda, T. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep. 2012, 31, 987–997. [Google Scholar] [CrossRef]
- Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W.; Goździcka-Józefiak, A. Plant antimicrobial peptides. Folia Microbiol. 2014, 59, 181–196. [Google Scholar] [CrossRef]
- Han, B.; Li, J.; Li, Z.; Guo, L.; Wang, S.; Liu, P.; Wu, Y. Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo expansion. PLoS ONE 2013, 8, e81781. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, G.; Jaiswal, S.R.; Singh, J. Effect of α, β momorcharin on viability, caspase activity, cytochrome c release and on cytosolic calcium levels in different cancer cell lines. Mol. Cell. Biochem. 2014, 388, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Grover, J.; Yadav, S. Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol. 2004, 93, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M.; Talpur, R. Optimizing denileukin diftitox (Ontak®) therapy. Future Oncol. 2008, 2008, 457–469. [Google Scholar] [CrossRef]
- Gilabert-Oriol, R.; Weng, A.; von Mallinckrodt, B.; Melzig, M.F.; Fuchs, H.; Thakur, M. Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: A lethal cocktail with tumor specific efficacy. Curr. Pharm. Des. 2014, 20, 6584–6643. [Google Scholar] [CrossRef]
- Jia, S.; Shen, M.; Zhang, F.; Xie, J. Recent advances in Momordica charantia: Functional components and biological activities. Int. J. Mol. Sci. 2017, 18, 2555. [Google Scholar] [CrossRef]
- Puri, M.; Kaur, I.; Perugini, M.A.; Gupta, R.C. Ribosome-inactivating proteins: Current status and biomedical applications. Drug Discov. Today 2012, 17, 774–783. [Google Scholar] [CrossRef]
- Tsaneva, M.; Van Damme, E.J. 130 years of plant lectin research. Glycoconj. J. 2020, 37, 533–551. [Google Scholar] [CrossRef]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef]
- Stirpe, F. Ribosome-inactivating proteins: From toxins to useful proteins. Toxicon 2013, 67, 12–16. [Google Scholar] [CrossRef]
- Dolan, L.C.; Matulka, R.A.; Burdock, G.A. Naturally occurring food toxins. Toxins 2010, 2, 2289–2332. [Google Scholar] [CrossRef] [PubMed]
- Torrents, R.; Domangé, B.; Schmitt, C.; Boulamery, A.; De Haro, L.; Simon, N. Suicide attempt by ingestion of rotenone-containing plant extracts in French polynesia: A Case Report. Wilderness Environ. Med. 2017, 28, 278–279. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.C.; van der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F.J. Which diet has the least environmental impact on our planet? A systematic review of vegan, vegetarian and omnivorous diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
Family | Example | Source Plant | Activity | References | |
---|---|---|---|---|---|
Ribosome inactivating proteins | |||||
Type I | Pokeweed antiviral protein, Trichosanthin, Saporin | Phytolacca americana, Trichosanthes kirilowii, Saponaria officinalis | Pokeweed, soapwort | N-glycosidase activity, RNA hydrolases activity, antibacterial, antiviral, antifungal, and insecticidal characteristics activities | [34,36] |
Type II | Abrin, Ricin | Abrus precatorius, Ricinus communis | Rosary pea, castor bean, castor oil | ||
Type III | b-32, JIP60 | Zea mais, Hordeum vulgare | Maize, barley | ||
Plant protease inhibitors | Serpins, Phytocystatins, Kunitz-type inhibitors, Bowman-Birk inhibitors, α-amylase-trypsin inhibitors, mustard-type inhibitors, potato metallocarboxypeptidase inhibitors | Chickpea, soybean, barley, sweet potato, lentil, black-eyed pea | Inhibition of proteas hydrolyzing activity, antibacterial, anticoagulant, anticancer, and antioxidant activities | [86,91] | |
Lectins | Phytohemagglutinin, Lentil lectin, Concanavalin A, Soybean lectin | Phaseolus vulgaris, Vicia faba, Canavalia ensiformis | Lentil, soybean, red and white kidney beans, jack beans | Carbohydrate-binding activity antimicrobial, antibacterial, antifungal, antiviral, and anticancer activities | [59,60] |
α-amylase inhibitors | Phaseolin | Cereal grains (wheat, maize, rice, barley), legumes (kidney beans, cowpea, adzuki beans) | Inhibition of α-amylase activity, antihyperglycemic activity | [112,113] | |
Canatoxin-like proteins and ureases | Mainly in legumes | Ureolytic and pore-forming activity | [124,125] | ||
Arcelin | Arl- 1, Arl-2, Arl-3, Arl-4 | Seeds of Phaseolus sp. | N/A | [126,128] | |
Pore forming toxins | Enterolobin | Enterolobium contortisiliquum, wheat | Pore-forming, and antimicrobial activities | [147,148] | |
Antimicrobial peptides | |||||
Thionins | α/β-thionins, γ-thionins | A number of monocot and dicot plants | Increase in cell membrane permeability, antibacterial and antifungal activities | [135,138] | |
Cyclotides | Kalata B1 | Widely distributed Rubiaceae plant Oldenlandia affinis | Pore-forming activity antibacterial, antifungal, insecticidal, and anticancer activities | [140,143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocyigit, E.; Kocaadam-Bozkurt, B.; Bozkurt, O.; Ağagündüz, D.; Capasso, R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins 2023, 15, 356. https://doi.org/10.3390/toxins15060356
Kocyigit E, Kocaadam-Bozkurt B, Bozkurt O, Ağagündüz D, Capasso R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins. 2023; 15(6):356. https://doi.org/10.3390/toxins15060356
Chicago/Turabian StyleKocyigit, Emine, Betul Kocaadam-Bozkurt, Osman Bozkurt, Duygu Ağagündüz, and Raffaele Capasso. 2023. "Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies" Toxins 15, no. 6: 356. https://doi.org/10.3390/toxins15060356
APA StyleKocyigit, E., Kocaadam-Bozkurt, B., Bozkurt, O., Ağagündüz, D., & Capasso, R. (2023). Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins, 15(6), 356. https://doi.org/10.3390/toxins15060356