Dietary Challenges for Parasitoid Wasps (Hymenoptera: Ichneumonoidea); Coping with Toxic Hosts, or Not?
Abstract
:1. Introduction
1.1. Latitudinal Trends
1.1.1. Resource Fragmentation and Predation Hypotheses
1.1.2. Nasty Host Hypothesis (NHH)
1.1.3. The NHH, RFH, and PH Evaluated
1.2. Safe Haven Hypothesis (SHH)
2. The Toxins
2.1. Aristolochic Acids (AAs)
2.2. Cardiac Glycosides (Cardenolides)
2.3. Cyanogenic Glycosides (CGs)
2.4. Fouranocoumarins
2.5. Glucosinolate–Myrosinase System
2.6. Iridoid Glycosides (IGs)
2.7. Pyridine Alkaloids (Nicotine)
2.8. Pyrrolizidine Alkaloids (PAs)
2.9. Tannins
2.10. Tropane Alkaloids
Toxin Group | Named Examples | Plant Group/Families Containing Them | Lepidoptera Groups Feeding on Them | Reference(s) |
---|---|---|---|---|
Aristolochic acid and related compounds | Aristolochiaceae | Papilionidae: Parnassinae and Troidini | [50,56,100] | |
Cardiac glycosides (Cardenolides) | Digitoxin Digoxin Neoconvalloside Ouabain | Apocynaceae Asparagaceae Crassulaceae Moraceae Solanaceae | Erebidae: Arctiinae: Arctiini and Ctenuchini Nymphalidae: Danainae: Danaini | [101,102] |
Cyanogenic glycosides (CNglcs) | Linamarin Lotaustralin Gynocardin | de novo (endogenous) biosynthesis Fabaceae Achariaceae Passifloraceae | Nymphalidae: Acraeinae and Heliconiinae Zygaenidae | [103,104,105] |
Furanocoumarins | Psoralen Bergapten Xanthotoxin Angelicin | Apiaceae Moraceae (Ficus) Rutaceae Also, some widely distributed Fabaceae and Moraceae (latex) | Papilionidae | [66,68,73,106] |
Glucosinolates | Sinigrin | Brassicaceae and other Brassicales, e.g., Capparaceae | Pieridae: Pierinae | [75,107,108,109] |
Grayanoid glycosides | Ericaceae | Geometridae: Ennominae | [110,111] | |
Iridoid glycosides (IGs) | Aucubin Antirrhinoside | Scrophulariaceae (e.g., Maurandya, Rhinanthus, Buddleja) Cornaceae Orobanchaceae (Melampyrum) Rubiaceae | Geometridae (Meris sp.); Erebidae: Lymantriinae (Ivela auripes) | [87] |
Catalpol Catalposide | Bignoniaceae (Tecomeae, e.g., Catalpa) Orobanchaceae | Sphingidae Nymphalidae: Melitaeini | [15,35,112,113] | |
Agnuside | Lamiaceae (Vitex agnus-castus) | [82] | ||
Amarogentin Gentiopicroside | Gentianaceae (Gentiana) | Nymphalidae: Melitaeini | [114] | |
Asperuloside | Daphniphyllaceae (Daphniphyllum) Plantaginaceae Rubiaceae | [48] | ||
Loganin | Loganiaceae (Strychnos nux-vomica and spp.) | Lycaenidae | ||
Macfadienoside | Orobanchaceae (e.g., Castilleja) | Nymphalidae: Melitaeini | [115] | |
Plumeride Plumericin | Apocynaceae (Plumeria, Himantanthus) | Noctuidae (Spodoptera frugiperda) Sphingidae (Pseudosphinx tetrio) | [116] | |
Digitoxin Digoxin | Plantaginaceae (Digitalis) | Nymphalidae: Heliconiinae: Melitaeini | [117,118,119] | |
Phenanthroindolizidine alkaloids | Moraceae (Ficus) | Erebidae: Aganinae | [120] | |
Phenolic compounds | Lichens | Erebidae: Arctiinae: Lithosini | [121] | |
Pyridine alkaloids | Nicotine Nornicotine Lobeline Anabasine | Solanaceae (Nictotiana) Campanulaceae (Lobelia) | Sphingidae (Manduca sexta) | [19,122] |
Pyrrolizidine alkaloids (PAs) | Calotropin | Apocynaceae (especially Asclepiadaceae) | Nymphalidae: Danainae: Danaini | [123] |
Lycopsamine Senecionine | Asteraceae | Nymphalidae: Danainae: Ithomini Erebidae: Arctiinae | [96,124] | |
Boraginaceae | [125] | |||
Fabaceae (Crotalarieae) | Erebidae: Arctiinae | [126] | ||
Orchidaceae | ||||
Solanaceae | [127,128] | |||
Some Convolvulaceae | Nymphalidae: Heliconiinae: Acraeini | [129] | ||
Thesinine | A few Poaceae | [130] | ||
Pseudocyanogens | Cycasin | Cycadaceae | Lycaenidae (Eumaeus) Nymphalidae: Morphinae: Amathusiini: Taenaris | [131] |
Quinolizidine alkaloids | Sparteine Cytisine | Fabaceae (Genista) | Pyralidae (Uresiphita reversalis) | [132] |
Steroidal glycoalkaloids | α-Tomatine | Solanaceae (Solanum) | Noctuidae (Heliothis zea) | [133] |
Tannins | Universal | [97] | ||
Tropane alkaloids | Atropine Hyoscyomine Scopolamine | Solanaceae | Nymphalidae: Danainae: Ithomini Erebidae (Lymantriinae) Sphingidae | [134] |
3. The Host
3.1. Erebidae
3.1.1. Erebidae (Aganainae)
3.1.2. Erebidae (Arctiinae, Including Former Ctenuchidae and Syntomidae)
3.2. Nymphalidae
3.2.1. Nymphalidae (Acraeini)
3.2.2. Nymphalidae (Danaini)
3.2.3. Nymphalidae (Heliconiinae)
3.2.4. Nymphalidae (Danaiinae: ITHOMIINI)
3.2.5. Nymphalidae (Nymphalinae: Melitaeini)
3.3. Papilionidae (Troidini and Parnassinae)
3.4. Pieridae (Pierini)
3.5. Zygaenidae
3.6. Miscellaneous
4. The Parasitoids
4.1. Braconidae
4.1.1. Euphorinae (Meteorini)
4.1.2. The Macrocentroid Complex
Charmontiinae
Homolobinae
Macrocentrinae
Microtypinae
Orgilinae
Xiphozelinae
4.1.3. Microgastroids (Cardiochilinae, Cheloninae, and Microgastrinae)
Microgastrinae
Cardiochilinae
Cheloninae
4.1.4. Rogadinae
4.2. Ichneumonidae
4.2.1. Anomaloninae
4.2.2. Banchinae
4.2.3. Campopleginae
4.2.4. Cremastinae
4.2.5. Ichneumoninae
4.2.6. Metopiinae
4.2.7. Ophioninae
5. Analysis of Taxapad 2016 Ichneumonoidea Host Record Data
5.1. Results from Taxapad 2016 Braconidae Host Records
Subfamily (Total Number of Published Host Records) | Number of Associations with Palatable Host Groups | Number of Associations with Unpalatable Host Groups | Proportion of Associations Involving Unpalatable Hosts |
---|---|---|---|
Agathidinae (658) | 570 | 0 | 0 |
Cardiochilinae (81) | 57 | 0 | 0 |
Charmontinae (90) | 85 | 1 | 0.0012 |
Cheloninae (652) | 556 | 0 | 0 |
Euphorinae (Meteorini) (1247) | 1125 | 7 | 0.006 |
Homolobinae (137) | 123 | 0 | 0 |
Macrocentrinae (696) | 588 | 1 | 0.0017 |
Meteorideinae (13) | 12 | 0 | 0 |
Microgastrinae (6979) | 5823 | 55 | 0.009 |
Microtypinae (20) | 19 | 0 | 0 |
Orgilinae (240) | 210 | 2 | 0.009 |
Rogadinae (768) | 695 | 18 | 0.026 |
Sigalphinae (19) | 18 | 0 | 0 |
5.2. Results from Taxapad 2016 Ichneumonidae Host Records
5.3. Comparison of Braconidae and Ichneumonidae
6. Discussion
7. Conclusions
8. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernays, E.A. Feeding by lepidopteran larvae is dangerous. Ecol. Ent. 1997, 22, 121–123. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Clarke, A.R.; Malcolm, S.B. Ecology and behavior of first instar larval Lepidoptera. Ann. Rev. Ent. 2002, 47, 361–393. [Google Scholar] [CrossRef] [PubMed]
- Massad, T.J.; Fincher, R.M.; Smilanich, A.M.; Dyer, L. A quantitative evaluation of major plant defense hypotheses, nature versus nurture, and chemistry versus ants. Arthropod Plant Interact. 2011, 5, 125–139. [Google Scholar] [CrossRef]
- Bowers, M.D. Aposematic caterpillars: Life-styles of the warningly colored and unpalatable. In Caterpillars: Ecological and Evolutionary Constraints on Foraging; Stamp, N.E., Casey, T.M., Eds.; Chapman & Hall: New York, NY, USA, 1993; pp. 331–371. [Google Scholar]
- Lill, J.T.; Marquis, R.J. Ecosystem engineering by caterpillars increases insect herbivore diversity on white oak. Ecology 2003, 84, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, B.A.; Cornell, H.V.; Hochberg, M.E. Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 1997, 78, 2145–2152. [Google Scholar] [CrossRef]
- Salazar, B.A.; Whitman, D.W. Defensive tactics of caterpillars against predators and parasitoids. In Insect and Plant Defense Dynamics; Ananthakrishnan, T.N., Ed.; New Hampshire Science Publisher: Enfield, NH, USA, 2001; pp. 161–207. [Google Scholar]
- Quicke, D.L.J. Parasitic Wasps; Chapman & Hall: London, UK, 1997; pp. 1–470. [Google Scholar]
- Godfray, H.C.J. Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: Princeton, NJ, USA, 1994; pp. 1–473. [Google Scholar]
- Harvey, J.A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 2005, 117, 1–13. [Google Scholar] [CrossRef]
- Askew, R.R. Parasitic Insects; Heinemann: London, UK, 1971; pp. 1–316. [Google Scholar]
- Yeargan, K.V.; Braman, S.K. Life history of the hyperparasitoid Mesochorus discitergus (Hymenoptera: Ichneumonidae) and tactics used to overcome the defensive behavior of the green clover worm (Lepidoptera: Noctuidae). Ann. Ent. Soc. Am. 1989, 82, 393–398. [Google Scholar] [CrossRef]
- Barbosa, P. Some thoughts on the evolution of host range. Ecology 1988, 69, 912–915. [Google Scholar] [CrossRef]
- Rossini, C.; Hoebeke, E.R.; Iyengar, V.K.; Conner, W.E.; Eisner, M.; Eisner, T. Alkaloid content of parasitoids reared from pupae of an alkaloid sequestering Erebid moth (Utetheisa ornatrix). Ent. News 2000, 111, 287–290. [Google Scholar]
- Bowers, M.D. Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae. J. Chem. Ecol. 2003, 29, 2359–2367. [Google Scholar] [CrossRef]
- Harvey, J.A.; van Nouhuys, S.; Biere, A. Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids. J. Chem. Ecol. 2005, 31, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.A.; Bezemer, T.M.; Gols, R.; Nakamatsu, Y.; Tanaka, T. Comparing the physiological effects and function of larval feeding in closely-related endoparasitoids (Braconidae: Microgastrinae). Physiol. Ent. 2008, 33, 217–225. [Google Scholar] [CrossRef]
- Tanaka, S.; Ohsaki, N. Does manipulation by the parasitoid wasp Cotesia glomerata (L.) cause attachment behavior of host caterpillars on cocoon clusters? Ethology 2009, 115, 781–789. [Google Scholar] [CrossRef]
- Barbosa, P.; Saunders, J.A.; Kemper, J.; Trumbule, R.; Olechno, J.; Martinat, P. Plant allelochemicals and insect parasitoids effects of nicotine on Cotesia congregata (Say) (Hymenoptera: Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera: Ichneumonidae). J. Chem. Ecol. 1986, 12, 1319–1328. [Google Scholar] [CrossRef]
- Quicke, D.L.J. Mimicry, Crypsis, Masquerade and Other Adaptive Resemblances; Wiley: Oxford, UK, 2017; pp. 1–576. [Google Scholar]
- Herms, D.A.; Mattson, W.J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef] [Green Version]
- Gols, R.; Bukovinszky, T.; van Dam, N.M.; Dicke, M.; Bullock, J.M.; Harvey, J.A. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J. Chem. Ecol. 2008, 34, 132–143. [Google Scholar] [CrossRef]
- Kostenko, O.; Mulder, P.P.J.; Bezemer, T.M. Effects of root herbivory on pyrrolizidine alkaloid content and above ground plant-herbivore-parasitoid interactions in Jacobaea vulgaris. J. Chem. Ecol. 2013, 39, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Owen, D.F.; Owen, J. Species diversity in temperate and tropical Ichneumonidae. Nature 1974, 249, 583–584. [Google Scholar] [CrossRef]
- Janzen, D.H. Interactions of seeds and their insect predators/parasitoids in a tropical deciduous forest. In Evolutionary Strategies of Parasitic Insects and Mites; Price, P.W., Ed.; Plenum: New York, NY, USA, 1975; pp. 154–186. [Google Scholar]
- Janzen, D.H.; Pond, C.M. A comparison by sweep sampling of the arthropod fauna of secondary vegetation in Michigan England and Costa Rica. Trans. R. Ent. Soc. Lond. 1975, 127, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Rathcke, B.J.; Price, P.W. Anomalous diversity of tropical ichneumonid parasitoids: A predation hypothesis. Am. Nat. 1976, 110, 889–893. [Google Scholar]
- Quicke, D.L.J. We know too little about parasitoid wasp distributions to draw any conclusions about latitudinal trends in species richness, body size and biology. PLoS ONE 2012, 7, e32101. [Google Scholar] [CrossRef] [PubMed]
- Gauld, I.D.; Gaston, K.J.; Janzen, D.H. Plant allelochemicals, tritrophic interactions and the anomalous diversity of tropical parasitoids: The “nasty” host hypothesis. Oikos 1992, 65, 353–357. [Google Scholar] [CrossRef]
- Gauld, I.D. A survey of the Ophioninae (Hymenoptera: Ichneumonidae) of tropical Mesoamerica with special reference to the fauna of Costa Rica. Bull. Br. Mus. Nat. Hist. Entomol. 1988, 57, 1–309. [Google Scholar]
- Gauld, I.D. The species of the Enicospilus americanus complex (Hymenoptera: Ichneumonidae) in eastern North America. Syst. Entomol. 1988, 13, 31–53. [Google Scholar] [CrossRef]
- Sime, K.R.; Brower, A.V.Z. Explaining the latitudinal gradient anomaly in ichneumonid species-richness: Evidence from butterflies. J. Anim. Ecol. 1998, 67, 387–399. [Google Scholar] [CrossRef]
- Singer, M.S.; Stireman, J.O., III. Does anti-parasitoid defense explain host-plant selection by a polyphagous caterpillar? Oikos 2003, 100, 554–562. [Google Scholar] [CrossRef]
- Singer, M.S.; Carrière, Y.; Theuring, C.; Hartmann, T. Disentangling food quality from resistance against parasitoids: Diet choice by a generalist caterpillar. Am. Nat. 2004, 164, 423–429. [Google Scholar] [CrossRef]
- Lampert, E.C.; Dyer, L.A.; Bowers, M.D. Chemical defense across three trophic levels: Catalpa bignonioides, the caterpillar Ceratomia catalpae, and its endoparasitoid Cotesia congregata. J. Chem. Ecol. 2011, 37, 1063–1070. [Google Scholar] [CrossRef]
- Reudler, J.H.; Biere, A.; Harvey, J.A.; van Nouhuys, S. Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. J. Chem. Ecol. 2011, 37, 765–778. [Google Scholar] [CrossRef] [Green Version]
- Lampert, E.C.; Dyer, L.A.; Bowers, M.D. Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia Catalpae. J. Chem. Ecol. 2010, 36, 992–998. [Google Scholar] [CrossRef]
- Gentry, G.L.; Dyer, L.A. On the conditional, nature of neotropical caterpillar defenses against their natural enemies. Ecology 2002, 83, 3108–3119. [Google Scholar] [CrossRef]
- Smilanich, A.M.; Dyer, L.A.; Gentry, G.L. The insect immune response and other putative defenses as effective predictors of parasitism. Ecology 2009, 90, 1434–1440. [Google Scholar] [CrossRef] [Green Version]
- Zvereva, E.L.; Rank, N.E. Host plant effects on parasitoid attack on the leaf beetle Chrysomela lapponica. Oecologia 2003, 135, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Mallampalli, N.; Barbosa, P.; Weinges, K. Effects of condensed tannins and catalpol on growth and development of Compsilura concinnata (Diptera: Tachinidae) reared in gypsy moth (Lepidoptera: Lymantriidae). J. Ent. Sci. 1996, 31, 289–300. [Google Scholar] [CrossRef]
- Adamczyk, B.; Simon, J.; Kitunen, V.; Adamczyk, S.; Smolander, A. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: Old paradigms versus recent Advances. ChemistryOpen 2017, 16, 610–614. [Google Scholar] [CrossRef]
- Fiedler, K.; Krug, E.; Proksch, P. Complete elimination of quinolizidine alkaloids by larvae of a polyphagous lycaenid butterfly, Callophrys rubi. Oecologia 1993, 94, 441–445. [Google Scholar] [CrossRef]
- Berenbaum, M.R. Target site sensitivity in insect-plant interactions. In Molecular Aspects of Insect-Plant Associations; Ahmed, S., Brattsten, L.B., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 257–272. [Google Scholar]
- Dobler, S.; Petschenka, G.; Pankoke, H. Coping with toxic plant compounds—The insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 2011, 72, 1593–1604. [Google Scholar] [CrossRef]
- Fitzgerald, T.D. Larvae of the fall webworm, Hyphantria cunea, inhibit cyanogenesis in Prunus serotina. J. Exp. Biol. 2008, 211, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Zagrobelny, M.; Bak, S.; Rasmussen, A.V.; Jørgensen, B.; Naumann, C.M.; Lindberg Møller, B. Cyanogenic glucosides and plant–insect interactions. Phytochemistry 2004, 65, 293–306. [Google Scholar] [CrossRef]
- Bowers, M.D.; Puttick, G.M. Response of generalist and specialist insects to qualitative allelochemical variation. J. Chem. Ecol. 1988, 14, 319–334. [Google Scholar] [CrossRef]
- Petzel-Witt, S.; Wunder, C.; Pogoda, W.; Toennes, S.W.; Mebs, D. Missed chances? Sequestration and non-sequestration of alkaloids by moths (Lepidoptera). Toxicon 2023, 227, 107098. [Google Scholar] [CrossRef] [PubMed]
- Mebs, D.; Schneider, M. Aristolochic acid content of South East Asian troidine swallowtails (Lepidoptera: Papilionidae) and of Aristolochia plant species (Aristolochiaceae). Chemoecology 2002, 12, 11–13. [Google Scholar] [CrossRef]
- Quicke, D.L.J. The Braconid and Ichneumonid Parasitic Wasps: Biology, Systematics, Evolution and Ecology; Wiley Blackwell: Oxford, UK, 2015; pp. 1–688. [Google Scholar]
- Morais, A.B.B.; Brown, K.S.; Stanton, M.A.; Massuda, K.F.; Trigo, J.R. Are aristolochic acids responsible for the chemical defence of aposematic larvae of Battus polydamas (L.) (Lepidoptera: Papilionidae)? Neotrop. Entomol. 2013, 42, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Sime, K. Chemical defence of Battus philenor larvae against attack by the parasitoid Trogus pennator. Ecol. Entomol. 2002, 27, 337–345. [Google Scholar] [CrossRef]
- Rothschild, R.; Reichstein, T.; von Euw, J.; Aplin, R.; Harman, R.R.M. Toxic Lepidoptera. Toxicon 1970, 8, 293–296. [Google Scholar] [CrossRef]
- Priestap, H.A.; Velandia, A.E.; Johnson, J.V.; Barbieri, M.A. Secondary metabolite uptake by the Aristolochia-feeding papilionoid butterfly Battus polydamas. Biochem. Syst. Ecol. 2012, 40, 126–137. [Google Scholar] [CrossRef]
- Gupta, A.; Pereira, B.; Churi, P.V. Illustrated notes on some reared parasitic wasps (Braconidae: Microgastrinae) with new host and distribution records from India along with reassignment of Glyptapanteles aristolochiae (Wilkinson) as a new combination. Entomol. News 2011, 122, 451–468. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Petschenka, G.; Bingham, R.A.; Weber, M.G.; Rasmann, S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol. 2012, 194, 28–45. [Google Scholar] [CrossRef]
- Francisco, I.A.; Pimenta Pinotti, M.H. Cyanogenic glycosides in plants. Brazil. Archiv. Biol. Technol. 2000, 43, 487–492. [Google Scholar] [CrossRef]
- Opitz, S.E.W.; Müller, C. Plant chemistry and insect sequestration. Chemoecology 2009, 19, 117–154. [Google Scholar] [CrossRef]
- Poulton, J.E. Cyanogenesis in plants. Plant Physiol. 1990, 94, 401–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, N.B.; Zagrobelny, M.; Hjernø, K.; Olsen, C.E.; Houghton-Larsen, J.; Borch, J.; Lindberg Møller, B.; Bak, S. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat. Commun. 2012, 2, 273. [Google Scholar] [CrossRef] [Green Version]
- Nahrstedt, A.; Davis, R.H. Biosynthesis and quantitative relationships of the cyanoglucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 1985, 82, 745–749. [Google Scholar]
- Nahrstedt, A.; Davis, R.H. Uptake of linamarin and lotaustralin from their foodplant by larvae of Zygaena trifolii. Phytochemistry 1986, 25, 2299–2302. [Google Scholar] [CrossRef]
- Naumann, C.M.; Tarmann, G.M.; Tremewan, W.G. The Western Palaearctic Zygaenidae; Apollo Books: Stenstrup, Denmark, 1999. [Google Scholar]
- Witthohn, K.; Naumann, C.M. Cyanogenesis—A general phenomenon in the Lepidoptera. J. Chem. Ecol. 1987, 13, 1789–1809. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-F.; Berenbaum, M.R.; Schuler, M.A. Isolation and characterization of CYP6B4, a furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera: Papilionidae). Insect Biochem. Mol. Biol. 1997, 27, 377–385. [Google Scholar] [CrossRef]
- Diawara, M.M.; Trumble, J.T. Linear Furanocoumarins. Handbook of Plant and Fungal Toxicants; CRC Press: Boca Raton, FL, USA, 2020; pp. 175–189. [Google Scholar]
- Berenbaum, M. Patterns of furanocoumarin distribution and insect herbivory in the Umbelliferae: Plant chemistry and community structure. Ecology 1981, 62, 1254–1266. [Google Scholar] [CrossRef]
- Cohen, M.B.; Schuler, M.A.; Berenbaum, M.R. A host inducible cytochrome P-450 from a host-specific caterpillar: Molecular cloning and evolution. Proc. Natl. Acad. Sci. USA 1992, 89, 10920–10924. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.L.; Cohen, M.B.; Berenbaum, M.R.; Schuler, M.A. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch. Biochem. Biophys. 1994, 310, 332–340. [Google Scholar] [CrossRef]
- Hung, C.-F.; Harrison, T.L.; Berenbaum, M.R.; Schuler, M.A. CYP6B3: A second furanocoumarin-inducible cytochrome P450 expressed in Papilio polyxenes. Ins. Mol. Biol. 1995, 4, 149–160. [Google Scholar] [CrossRef]
- Petersen, R.A.; Zangerl, A.R.; Berenbaum, M.R.; Schuler, M.A. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae). Ins. Biochem. Mol. Biol. 2001, 31, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Reitz, S.R.; Trumble, J.T. Tritrophic interactions among linear furanocoumarins, the herbivore Trichoplusia ni (Lepidoptera: Noctuidae), and the polyembryonic Parasitoid Copidosoma floridanum (Hymenoptera: Encyrtidae). Environ. Entomol. 1996, 25, 1391–1397. [Google Scholar] [CrossRef]
- Burrows, G.E.; Tyrl, R.J. Toxic Plants of North America, 2nd eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–1022. [Google Scholar]
- Mumm, R.; Burow, M.; Bukovinszkine’Kiss, G.; Kazantzidou, E.; Wittstock, U.; Dicke, M.; Gershenzon, J. Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. J. Chem. Ecol. 2008, 34, 1311–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef] [Green Version]
- Ratzka, A.; Vogel, H.; Kliebenstein, D.J.; Mitchell-Olds, T.; Kroymann, J. Disarming the mustard oil bomb. Proc. Natl Acad. Sci. USA 2002, 99, 11223–11228. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Gols, R.; Harvey, J.A.; Reichelt, M.; Gershenzon, J.; Pandit, S.S.; Vassão, D.G. Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Molec. Ecol. 2020, 29, 4014–4031. [Google Scholar] [CrossRef]
- Wittstock, U.; Agerbirk, N.; Stauber, E.J.; Olsen, C.E.; Hippler, M.; Mitchell-Olds, T.; Gershenzon, J.; Vogel, H. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl Acad. Sci. USA 2004, 101, 4859–4864. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.; Fitton, M.G.; Quicke, D.L.J. Key to the Diadegma species (Hymenoptera: Ichneumonidae) parasitising diamondback moth, Plutella xylostella, with the description of a new species. Bull. Entomol. Res. 2000, 90, 375–389. [Google Scholar]
- Malcicka, M.; Harvey, J.A. Development of two related endoparasitoids in larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BioControl 2015, 60, 149–155. [Google Scholar] [CrossRef]
- Bowers, M.D. Iridoid glycosides. In Herbivores. Their Interaction with Secondary Plant Metabolites, 2nd ed.; Rosenthal, G., Berenbaum, M., Eds.; Academic Press: New York, NY, USA, 1991; pp. 297–325. [Google Scholar]
- Inouye, H.; Uesato, S. Biosynthesis of iridoids and secoiridoids. In Progress in the Chemistry of Organic Natural Products; Hert, W., Grisebach, H., Kirby, G., Tamm, C., Eds.; Springer: Wien, Austria; New York, NY, USA, 1986; pp. 169–236. [Google Scholar]
- Keeler, R.F.; van Kampen, K.R.; James, L.F. Effects of Poisonous Plants on Livestock; Academic Press: New York, NY, USA, 1978; pp. 1–600. [Google Scholar]
- Pankoke, H.; Gehring, R.; Müller, C. Impact of the dual defence system of Plantago lanceolata (Plantaginaceae) on performance, nutrient utilisation and feeding choice behaviour of Amata mogadorensis larvae (Lepidoptera, Erebidae). J. Insect Physiol. 2015, 82, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Nayar, J.K.; Fraenkel, G. The chemical basis of the host selection in the catalpa sphinx, Ceratomia catalpae (Lepidoptera, Sphingidae). Ann. Entomol. Soc. Am. 1963, 56, 119–122. [Google Scholar] [CrossRef]
- Boros, C.A.; Stermitz, F.R.; McFarland, N. Processing of iridoid glycoside antirrinoside from Maurandya antirrhiniflora (Scrophulariaceae) by Meris paradoxa (Geometridae) and Lepipolys species (Noctuidae). J. Chem. Ecol. 1991, 17, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Bernays, E.A.; Chapman, R.F. Deterrent chemicals as a basis of oligophagy in Locusta migratoria. Ecol. Entomol. 1977, 2, 1–18. [Google Scholar] [CrossRef]
- Lu, W.; Liu, Z.; Fan, X.; Zhang, X.; Qiao, X.; Huang, J. Nicotinic acetylcholine receptor modulator insecticides act on diverse receptor subtypes with distinct subunit compositions. PLoS Genet. 2022, 18, e1009920. [Google Scholar] [CrossRef]
- Schramm, S.; Köhler, N.; Rozhon, W. Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules 2019, 24, 498. [Google Scholar] [CrossRef] [Green Version]
- Bodi, D.; Ronczka, S.; Gottschalk, C.; Behr, N.; Skibba, A.; Wagner, M.; Lahrssen-Wiederholt, M.; Preiss-Weigert, A.; These, A. Determination of pyrrolizidine alkaloids in tea, herbal drugs and honey. Food Addit. Contam. Part A 2014, 31, 1886–1895. [Google Scholar] [CrossRef]
- Bezzerides, A.; Yong, T.H.; Bezzerides, J.; Husseini, J.; Ladau, J.; Eisner, M.; Eisner, T. Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a parasitoid wasp (Trichogramma ostriniae). Proc. Natl. Acad. Sci. USA 2004, 101, 9029–9032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmeller, T.; El-Shazly, A.; Wink, M. Allelochemical activities of pyrrolizidine alkaloids: Interactions with neuroreceptors and acetylcholine related enzymes. J. Chem. Ecol. 1997, 23, 399–416. [Google Scholar] [CrossRef]
- Hartmann, T.; Witte, L. Chemistry, biology and chemoecology of pyrrolizidine alkaloids. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S.W., Ed.; Elsevier Science: Oxford, UK, 1995; Volume 9, pp. 155–233. [Google Scholar]
- Conner, W.E.; Eisner, T.; Vander Meer, R.K.; Guerrero, A.; Ghiringelli, D.; Meinwald, J. Precopulatory sexual interaction in an arctiid moth (Utethesia ornatrix): Role of a pheromone derived from dietary alkaloids. Behav. Ecol. Sociobiol. 1981, 9, 227–235. [Google Scholar] [CrossRef]
- Boppré, M. Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology. J. Chem. Ecol. 1990, 16, 165–185. [Google Scholar] [CrossRef]
- Yang, Y.H.; Michaud, J.P.; Guan, X.M.; Cao, J.J.; Li, Z.; Yang, Q.P.; Zhang, Q.W.; Liu, X.X. Direct and indirect consumption of tannic acid Impedes the development and survival of parasitoid when parasitizing cotton bollworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 2016, 109, 839–844. [Google Scholar] [CrossRef]
- Roth, S.; Knorr, C.; Lindroth, R.L. Dietary phenolics affects performance of the gypsy moth (Lepidoptera: Lymantriidae) and its parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environ. Entomol. 1997, 26, 668–671. [Google Scholar] [CrossRef]
- Schmeller, T.; Sporer, F.; Sauerwein, M.; Wink, M. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie 1995, 50, 493–495. [Google Scholar]
- Nishida, R.; Fukami, H. Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids. J. Chem. Ecol. 1989, 15, 2549–2563. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Brower, L.P. Cardenolide sequestration by the dobgane tiger moth (Cycnia tenera: Arctiidae). J. Chem. Ecol. 1983, 9, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Brower, L.P.; Edmunds, M.; Moffitt, C.M. Cardenolide content and palatability of a population of Danaus chrysippus butterflies from West Africa. J. Entomol. Ser. A Gen. Entomol. 1975, 49, 183–196. [Google Scholar] [CrossRef]
- Wray, V.; Davis, R.H.; Nahrstedt, A. Biosynthesis of cyanogenic glucosides in butterflies and moths: Incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Z. Naturforsch. 1983, 38, 583–588. [Google Scholar] [CrossRef]
- Raubenheimer, D. Cyanoglycoside gynocardin from Acraea horta (L.) (Lepidoptera: Acraeinae): Possible implication for evolution of Acraeine host choice. J. Chem. Ecol. 1989, 15, 2177–2189. [Google Scholar] [CrossRef]
- Zagrobelny, M.; Bak, S.; Ekstrøm, C.T.; Olsen, C.E.; Møller, B.L. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem. Mol. Biol. 2007, 37, 10–18. [Google Scholar] [CrossRef]
- Pathak, M.A.; Daniels, F., Jr.; Fitzpatrick, T.B. The presently known distribution of furocoumarins (psoralens) in plants. J. Investig. Dermatol. 1962, 39, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Aplin, R.T.; Ward, R.D.; Rothschild, M. Examination of the large white and small white butterflies (Pieris spp.) for the presence of mustard oils and mustard oil glycosides. J. Entomol. Ser. A Gen. Entomol. 1975, 50, 73–78. [Google Scholar] [CrossRef]
- Raybould, A.; Moyes, C. The ecological genetics of aliphatic glucosinolates. Heredity 2001, 87, 383–391. [Google Scholar] [CrossRef]
- Gols, R.; Harvey, J.A. Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem. Rev. 2009, 8, 187–206. [Google Scholar] [CrossRef] [Green Version]
- Tsubuki, M.; Hayashi, F. Pupal Warning coloration of three species of Cystidia (Lepidoptera: Geometridae: Ennominae) in relation to their pupation sites. Insects 2023, 14, 38. [Google Scholar] [CrossRef] [PubMed]
- Nishida, R.; Fukami, H.; Iriye, R.; Kumazawa, Z. Accumulation of highly toxic ericaceous diterpenoids by the geometrid moth, Arichanna gaschkevitichii. Agric. Biol. Chem. 1990, 54, 2347–2352. [Google Scholar]
- Iwaga, T.; Hamada, T.; Kurogi, S.; Hase, T.; Okubo, T.; Kim, M. Iridoids from Catalpa bignonioides. Phytochemistry 1991, 30, 4057–4060. [Google Scholar] [CrossRef]
- Von Poser, G.L.; Schripsema, J.; Henriques, A.T.; Jensen, S.R. The distribution of iridoids in Bignoniaceae. Biochem. Syst. Ecol. 2000, 28, 351–366. [Google Scholar] [CrossRef]
- Wahlberg, N. The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 2001, 55, 522–537. [Google Scholar] [CrossRef]
- Mead, E.W.; Foderaro, T.A.; Gardner, D.R.; Stermitz, F.R. Iridoid glycoside sequestration by Thessalia leanira (Lepidoptera: Nymphalidae) feeding on Castilleja integra (Scrophulariaceae). J. Chem. Ecol. 1993, 19, 1155–1166. [Google Scholar] [CrossRef]
- Amasifuen Guerra, C.A.; Patel, K.; Delprete, P.G.; Spina, A.P.; Grados, J.; Vásquez-Ocmín, P.; Gadea, A.; Rojas, R.; Guzmán, J.; Sauvain, M. Patterns of plumericin concentration in leaves of Himatanthus tarapotensis (Apocynaceae) and its interactions with herbivory in the Peruvian Amazon. Plants 2022, 11, 1011. [Google Scholar] [CrossRef]
- Bowers, M.D.; Stamp, N.E. Fate of hostplant iridoid glycosides in larvae of the Nymphalidae and Arctiidae. J. Chem. Ecol. 1997, 23, 2955–2965. [Google Scholar] [CrossRef]
- Taskova, R.; Handjieva, N.; Evstatieva, L.; Popov, S. Iridoid glucosides from Veronica cymbalaria, Plantago cornutii and Plantago major. Phytochemistry 1999, 52, 1443–1445. [Google Scholar] [CrossRef]
- Shaw, M.R. Cotesia Cameron (Hymenoptera: Braconidae: Microgastrinae) parasitoids of Heliconiinae (Lepidoptera: Nymphalidae) in Europe, with description of three new species. Br. J. Ent. Nat. Hist. 2009, 22, 133–146. [Google Scholar]
- Damu, A.G.; Kuo, P.-C.; Shi, L.-S.; Li, C.-Y.; Kuoh, C.-S.; Wu, P.L.; Wu, T.-S. Phenanthroindolizidine alkaloids from the stems of Ficus Septica. J. Nat. Prod. 2005, 68, 1071–1075. [Google Scholar] [CrossRef]
- Scott, C.H.; Zaspel, J.M.; Chialvo, P.; Weller, S.J. A preliminary molecular phylogenetic assessment of the lichen moths (Lepidoptera: Erebidae: Arctiinae: Lithosiini) with comments on palatability and chemical sequestration. Syst. Ent. 2014, 39, 286–303. [Google Scholar] [CrossRef]
- Thorpe, K.; Barbosa, W.P. Effects of comsumption of high and low nicotine tobacco by Manduca sexta (Lepidoptera: Sphingidae) on survival of gregarious endoparasitoid Cotesia congregata (Hymenoptera: Braconidae). J. Chem. Ecol. 1986, 12, 1329–1337. [Google Scholar] [CrossRef]
- Mebs, D.; Wagner, M.G.; Toennes, S.W.; Wunder, C.; Boppré, M. Selective sequestration of cardenolide isomers by two species of Danaus butterflies (Lepidoptera: Nymphalidae: Danainae). Chemoecology 2012, 22, 269–272. [Google Scholar] [CrossRef]
- Orr, A.G.; Trigo, J.R.; Witte, L.; Hartmann, T. Sequestration of pyrrolizidine alkaloids by larvae of Tellervo zoilus (Lepidoptera: Ithomiinae) and their role in the chemical protection of adults against the spider Nephila maculata (Araneidae). Chemoecology 1996, 7, 68–73. [Google Scholar] [CrossRef]
- El-Shazly, A.; Wink, M. Diversity of Pyrrolizidine Alkaloids in the Boraginaceae Structures, Distribution, and Biological Properties. Diversity 2014, 6, 188–282. [Google Scholar] [CrossRef] [Green Version]
- Sourakov, A. You are what you eat: Native versus exotic Crotalaria species (Fabaceae) as host plants of the Ornate Bella Moth, Utetheisa ornatrix (Lepidoptera: Erebidae: Arctiinae). J. Nat. Hist. 2015, 49, 2397–2415. [Google Scholar] [CrossRef]
- Trigo, J.R.; Brown, K.S. Variation of pyrrolizidine alkaloids in Ithomiinae: A comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1990, 1, 22–29. [Google Scholar] [CrossRef]
- Trigo, J.R.; Brown, K.S.; Witte, L.; Hartmann, T.; Ernst, L.; Barata, L.E.S. Pyrrolizidine alkaloids: Different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 1996, 58, 99–123. [Google Scholar] [CrossRef]
- Jenett-Siems, K.; Kaloga, M.; Eich, E. Ipangulines, the first pyrrolizidine alkaloids from the convolvulaceae. Phytochemistry 1993, 34, 437–440. [Google Scholar] [CrossRef]
- Wesseling, A.-M.; Demetrowitsch, T.J.; Schwarz, K.; Ober, D. Variability of pyrrolizidine alkaloid occurrence in species of the grass subfamily Pooideae (Poaceae). Front. Plant Sci. 2017, 8, 2046. [Google Scholar] [CrossRef] [Green Version]
- Bowers, M.D.; Larin, Z. Acquired chemical defence in the lycaenid butterfly, Eumaeus atala. J. Chem. Ecol. 1989, 15, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Montllor, C.B.; Bernays, E.A.; Barbehenn, R.V. Importance of quinolizidine alkaloids in the relationship between larvae of Uresiphita reversalis (Lepidoptera: Pyralidae) and a host plant, Genista monspessulana. J. Chem. Ecol. 1990, 16, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.; Duffey, S.S. Tomatine and parasitic wasps: Potential incompatibility of plant antibiosis with biological control. Science 1979, 205, 700–702. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.V.L.; Trigo, J.R.; Brown, K.S., Jr.; Witte, L.; Hartmann, T.; Barata, L.E.S. Tropane and pyrrolizidine alkaloids in the ithomiines Placidula euryanassa and Miraleria cymothoe (Lepidoptera: Nymphalidae). Chemoecology 1996, 7, 61–67. [Google Scholar] [CrossRef]
- Marsh, N.; Rothschild, M. Aposematic and cryptic Lepidoptera tested on the mouse. J. Zool. 1974, 174, 89–122. [Google Scholar] [CrossRef]
- Zahiri, R.; Holloway, J.D.; Kitching, I.J.; Lafontaine, J.D.; Mutanen, M.; Wahlberg, N. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Ent. 2011, 37, 102–124. [Google Scholar] [CrossRef]
- Rothschild, M.; Aplin, R.T.; Cockrum, P.A.; Edgar, J.A.; Fairweather, P.; Lees, R. Pyrrolizidine alkaloids in Erebid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Erebidae. Biol. J. Linn. Soc. 1979, 12, 305–326. [Google Scholar] [CrossRef]
- Volf, M.; Segar, S.T.; Miller, S.E.; Isua, B.; Sisol, M.; Aubona, G.; Šimek, P.; Moos, M.; Laitila, J.; Kim, J.; et al. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. 2017, 21, 83–92. [Google Scholar] [CrossRef]
- Fontanilla, A.M.; Aubona, G.; Sisol, M.; Kuukkanen, I.; Salminen, J.-P.; Miller, S.E.; Holloway, J.D.; Novotny, V.; Volf, M.; Segar, S.T. What goes in must come out? The metabolic profile of plants and caterpillars, frass, and adults of Asota (Erebidae: Aganainae) feeding on Ficus (Moraceae) in New Guinea. J. Chem. Ecol. 2022, 48, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Zaspel, J.M.; Weller, S.J.; Wardwell, C.T.; Zahiri, R.; Wahlberg, N. Phylogeny and evolution of pharmacophagy in tiger moths (Lepidoptera: Erebidae: Arctiinae). PLoS ONE 2014, 9, e101975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nieukerken, E.J.; Kaila, L.; Kitching, I.J.; Kristensen, N.P.; Lees, D.C.; Minet, J.; Mitter, C.; Mutanen, M.; Regier, J.C.; Simonsen, T.J.; et al. Order Lepidoptera Linnaeus, 1758. Zootaxa 2011, 3148, 212–221. [Google Scholar]
- Rothschild, M.; Rowan, M.G.; Fairbairn, J.W. Storage of cannabinoids by Arctia caja and Zonocerus elegans fed on chemically distinct strains of Cannabis sativa. Nature 1977, 266, 650–655. [Google Scholar] [CrossRef]
- Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Ann. Rev. Ent. 2002, 47, 57–92. [Google Scholar] [CrossRef]
- Weller, S.J.; Jacovsen, N.L.; Conner, W.E. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol. J. Linn. Soc. 2000, 68, 557–578. [Google Scholar] [CrossRef]
- Smilanich, A.M.; Mason, P.A.; Sprung, L.; Chase, T.R.; Singer, M.S. Complex effects of parasitoids on pharmacophagy and diet choice of a polyphagous caterpillar. Oecologia 2011, 165, 995–1005. [Google Scholar] [CrossRef]
- Singer, M.S.; Mace, K.C.; Bernays, E.A. Self-medication as adaptive plasticity: Increased ingestion of plant toxins by parasitized caterpillars. PLoS ONE 2009, 4, e4796. [Google Scholar] [CrossRef]
- Bernays, E.A.; Singer, M.S. Taste alteration and endoparasites. Nature 2005, 436, 476. [Google Scholar] [CrossRef] [PubMed]
- Carpinelli de Jesus, M.; Hungerford, N.L.; Carter, S.J.; Anuj, S.R.; Blanchfield, J.T.; De Voss, J.J.; Fletcher, M.T. Pyrrolizidine alkaloids of blue heliotrope (Heliotropium amplexicaule) and their presence in Australian honey. J. Agric. Food Chem. 2019, 67, 7995–8006. [Google Scholar] [CrossRef]
- Yu, D.S.; van Achterberg, C.; Horstmann, K. World Ichneumonoidea 2015: Taxonomy, Biology, Morphology, and Distribution; Nepean: Ottawa, ON, Canada, 2016. [Google Scholar]
- Rothschild, M.; Von Euw, J.; Reichstein, T. Cardiac glycosides (heart poisons) in the polka-dot moth Syntomeida epilais Walk. (Ctenuchidae: Lep.) with some observations on the toxic qualities of Amata (=Syntomis) phegea (L.). Proc. R. Soc. Lond. B 1973, 183, 227–247. [Google Scholar] [PubMed]
- McAuslane, H.J.; Bennett, F.D. Parasitoids and predators associated with Syntomeida epilais (Lepidoptera: Arctiidae) on oleander. Fla. Entomol. 1995, 78, 543–546. [Google Scholar] [CrossRef]
- Hesbacher, S.; Giez, I.; Embacher, G.; Fiedler, K.; Max, W.; Trawoger, A.; Turk, R.; Lange, O.L.; Proksch, P. Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J. Chem. Ecol. 1995, 21, 2079–2089. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.L.; Rota, J.; McCabe, T.L. Larva of Abablemma (Noctuidae) with notes on algivory and lichenivory in macrolepidoptera. Ann. Entomol. Soc. Amer. 2008, 101, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.; Wagner, D.L.; Cooper, B.R.; McCarty, M.E.; Zaspel, J. HPLC-MS Analysis of lichen-derived metabolites in the life stages of Crambidia cephalica (Grote and Robinson). J. Chem. Ecol. 2017, 43, 66–74. [Google Scholar] [CrossRef]
- Scott Chialvo, C.H.; Chialvo, P.; Holland, J.D.; Anderson, T.J.; Breinholt, J.W.; Kawahara, A.Y.; Zhou, X.; Liu, S.; Zaspel, J.M. A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration. Mol. Phylogenet. Evol. 2018, 121, 23–34. [Google Scholar] [CrossRef]
- Rothschild, M.; Moore, B.P.; Brown, W.V. Pyrazines as warning odour components in the monarch butterfly, Danaus plexippus, and in moths of the genera Zygaena and Amata (Lepidoptera). Biol. J. Linn. Soc. 1984, 23, 375–380. [Google Scholar] [CrossRef]
- Kawahara, A.Y.; Storer, C.; Carvalho AP, S.; Plotkin, D.M.; Condamine, F.L.; Braga, M.P.; Ellis, E.A.; St Laurent, R.A.; Li, X.; Barve, V.; et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol. 2023, 7, 903–913. [Google Scholar] [CrossRef]
- Bowers, M.D.; Collinge, S.K. Fate of iridoid glycosides in different life stages of the buckeye, Junonia coenia (Lepidoptera: Nymphalidae). J. Chem. Ecol. 1992, 18, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Murilla-Hiller, L.R. Early stages and natural history of Cithaerias p. pireta (Satyrinae) from Costa Rica. J. Lepidopt. Soc. 2009, 63, 169–172. [Google Scholar]
- Dring, J.V.; Kite, G.C.; Nash, R.J.; Reynolds, T. Chemicals in aroids: A survey, including new results for polyhydroxy alkaloids and alkylresorcinols. Bot. J. Linn. Soc. 1995, 117, 1–12. [Google Scholar] [CrossRef]
- Brown, K.S., Jr.; Francini, R.B. Evolutionary strategies of chemical defense in aposematic butterflies: Cyanogenesis in Asteraceae-feeding American Acraeinae. Chemoecology 1990, 1, 52–56. [Google Scholar] [CrossRef]
- Rothschild, M.; Von Euw, J.; Reichstein, T.; Smith, D.A.S.; Pierre, J. Cardenolide storage in Danaus chrysippus (L.) with additional notes on D. plexippus (L.). Proc. R. Soc. Lond. 1975, 190, 1–31. [Google Scholar]
- Moranz, R.; Brower, L.P. Geographic and temporal variation of cardenolide-based chemical defenses of queen butterfly (Danaus gilippus) in northern Florida. J. Chem. Ecol. 1998, 24, 905–932. [Google Scholar] [CrossRef]
- Holzinger, F.; Frick, C.; Wink, M. Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett. 1992, 314, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Holzinger, F.; Wink, M. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+, K+-ATPase. J. Chem. Ecol. 1996, 22, 1921–1937. [Google Scholar] [CrossRef]
- Trigo, J.R.; Motta, P.C. Evolutionary implications of pyrrolizidine alkaloid assimilation by danaine and ithomiine larvae (Lepidoptera: Nymphalidae). Experientia 1990, 46, 332–334. [Google Scholar] [CrossRef]
- Singer, M.C. Evolution of food-plant preference in the butterfly Euphydryas editha. Evolution 1971, 25, 383–389. [Google Scholar]
- Gardner, D.R.; Stermitz, F.R. Host plant utilization and iridoid glycoside sequestration by Euphydryas anicia (Lepidoptera: Nymphalidae). J. Chem. Ecol. 1988, 14, 2147–2168. [Google Scholar] [CrossRef]
- Stamp, N.E. Behavioral interactions of parasitoids and Baltimore checkerspot caterpillars (Euphydryas phaeton). Environ. Entomol. 1982, 11, 100–104. [Google Scholar] [CrossRef]
- Wahlberg, N.; Kullberg, J.; Hanski, I. Natural history of some Siberian melitaeine butterfly species (Melitaeini: Nymphalidae) and their parasitoids. Entomol. Fenn. 2001, 12, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Kankare, M.; Shaw, M.R. Molecular phylogeny of Cotesia Cameron, 1891 (Insecta: Hymenoptera: Braconidae: Microgastrinae) parasitoids associated with Melitaeini butterflies (Insecta: Lepidoptera: Nymphalidae: Melitaeini). Mol. Phylogenet. Evol. 2004, 32, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Kankare, M.; Stefanescu, C.; Van Nouhuys, S.; Shaw, M.R. Host specialization by Cotesia wasps (Hymenoptera: Braconidae) parasitizing species-rich Melitaeini (Lepidoptera: Nymphalidae) communities in north-eastern Spain. Biol. J. Linn. Soc. 2005, 86, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Stefanescu, C.; Planas, J.; Shaw, M.R. The parasitoid complex attacking coexisting Spanish populations of Euphydryas aurinia and Euphydryas desfontainii (Lepidoptera: Nymphalidae, Melitaeini). J. Nat. Hist. 2009, 43, 553–568. [Google Scholar] [CrossRef]
- Shaw, M.R.; Stefanescu, C.; van Nouhuys, S. Parasitism of European butterflies. In Ecology of Butterflies in Europe; Settele, J., Shreeve, T.G., Konvicka, M., Van Dyck, H., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 130–156. [Google Scholar]
- Sime, K.R. Experimental studies of the host-finding behavior of Trogus pennator, a parasitoid of swallowtail butterflies. J. Chem. Ecol. 2002, 28, 1377–1392. [Google Scholar] [CrossRef]
- Silva-Brandão, K.L.; Solferini, V.N. Use of host plants by Troidini butterflies (Papilionidae, Papilioninae): Constraints on host shift. Biol. J. Linn. Soc. 2007, 90, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.S. Host-plant relationships in the Papilionidae (Lepidoptera): Parallel cladogenesis or colonization? Cladistics 1987, 3, 105–120. [Google Scholar] [CrossRef]
- Courtney, S.P. Coevolution of pierid butterflies and their cruciferous foodplants: III. Anthocharis cardamines (L.) survival, development and oviposition on different hostplants. Oecologia 1981, 51, 91–96. [Google Scholar] [CrossRef]
- Canfield, M.R.; Pierce, N.E. Facultative mimicry? The evolutionary significance of seasonal forms in several Indo-Australian butterflies in the family Pieridae. Trop. Lepid. Res. 2010, 20, 1–7. [Google Scholar]
- Franzl, S.; Naumann, C.M.; Nahrstedt, A. Cyanoglucoside storing cuticle of Zygaena larvae (Insecta, Lepidoptera)—Morphological and cyanoglucoside changes during the molt. Zoomorphology 1988, 108, 183–190. [Google Scholar] [CrossRef]
- Franzl, S.; Naumann, C.M. Cuticular cavities—Storage chambers for cyanoglucoside—Containing defensive secretions in larvae of a Zygaenid moth. Tissue Cell 1985, 17, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Zikic, V.; Stankovic, S.S.; Petrovic, A.; Ilic-Milosevic, M.; van Achterberg, K. Parasitoid complex of Zygaena filipendulae L. (Lepidoptera; Zygaenidae). Arch. Biol. Sci. 2013, 65, 1027–1035. [Google Scholar] [CrossRef]
- Askew, R.R.; Shaw, M.R. Brachymeria tibialis (Walker, 1834) (Hymenoptera: Chalcididae), a parasitoid of Zygaena Fabricius, 1777, and other Lepidoptera. Entomol. Gaz. 2001, 52, 263–268. [Google Scholar]
- Quicke, D.L.J.; Yen, S.-H.; Mori, M.; Shaw, M.R. First host records for the rogadine genus Conspinaria (Hymenoptera: Braconidae), and notes on Rogadinae as parasitoids of Zygaenidae (Lepidoptera). J. Nat Hist. 2003, 38, 1437–1442. [Google Scholar]
- Nishida, R.; Rothschild, M.; Mummery, R. A cyanoglucoside, sarmentosin, from the magpie moth, Abraxas grossulariata, Geometridae: Lepidoptera. Phytochemistry 1994, 36, 37–38. [Google Scholar] [CrossRef]
- Nishida, R. Sequestration of plant secondary compounds by butterflies and moths. Chemoecology 1995, 5, 127–138. [Google Scholar] [CrossRef]
- Konno, Y.; Matsuda, K.; Konishi, K. Hymenopterous parasitoids of Cystidia couggaria (Guenee) (Lepidoptera: Geometridae). Jpn. J. Appl. Entomol. Zool. 2002, 46, 182–184. [Google Scholar] [CrossRef] [Green Version]
- Yazaki, H.; Kishimura, M.; Tsubuki, M.; Hayashi, F. Müllerian mimicry between cohabiting final-instar larval Pryeria sinica Moore, 1877 (Lepidoptera: Zygaenidae) and pupal Ivela auripes (Butler, 1877) (Lepidoptera: Lymantriidae). Pan Pac. Entomol. 2019, 95, 83–91. [Google Scholar] [CrossRef]
- Leen, R. Larval hosts of Uresiphita Hubner (Crambidae). J. Lepid. Soc. 1997, 51, 139–148. [Google Scholar]
- Whitaker, M.R.; Salzman, S. Ecology and evolution of cycad-feeding Lepidoptera. Ecol. Lett. 2020, 23, 1862–1877. [Google Scholar] [CrossRef] [PubMed]
- Brenner, E.D.; Stevenson, D.W.; Twigg, R.W. Cycads: Evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci. 2003, 8, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Li, L.; Yang, T.; Dong, S.; Wei, T.; Wu, S.; Liu, Y.; Gong, Y.; Feng, X.; et al. The Cycas genome and the early evolution of seed plants. Nat. Plants 2022, 8, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Bukovinszky, T.; Poelman, E.H.; Gols, R.; Prekatsakis, G.; Vet, L.E.; Harvey, J.A.; Dicke, M. Consequences of constitutive and induced variation in plant nutritional quality for immune defence of an herbivore against parasitism. Oecologia 2009, 160, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Glendinning, J.I. How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol. Exp. Appl. 2002, 104, 15–25. [Google Scholar] [CrossRef]
- Quicke, D.L.J. Preliminary notes on homeochromatic associations within and between the Afrotropical Braconinae (Hym., Braconidae) and Lamiinae (Col., Cerambycidae). Entomologists’ Mon. Mag. 1986, 122, 97–109. [Google Scholar]
- Quicke, D.L.J.; Ingram, S.N.; Proctor, J.; Huddleston, T. Batesian and Müllerian mimicry between species with connected life histories, with a new example involving braconid wasp parasites of Phoracantha beetles. J. Nat. Hist. 1992, 26, 1013–1034. [Google Scholar] [CrossRef]
- Skowron Volponi, M. A vivid orange new genus and species of braconid-mimicking clearwing moth (Lepidoptera: Sesiidae) found puddling on Plecoptera exuviae. Insects 2020, 11, 425. [Google Scholar] [CrossRef]
- Sharanowski, B.J.; Dowling, A.P.; Sharkey, M.J. Molecular phylogenetics of Braconidae (Hymenoptera: Ichneumonoidea), based on multiple nuclear genes, and implications for classification. Syst. Entomol. 2011, 36, 549–572. [Google Scholar] [CrossRef]
- Jasso-Martínez, J.M.; Santos, B.F.; Zaldívar-Riverón, A.; Fernández-Triana, J.L.; Sharanowski, B.J.; Richter, R.; Dettman, J.R.; Blaimer, B.B.; Brady, S.G.; Kula, R.R. Phylogenomics of braconid wasps (Hymenoptera, Braconidae) sheds light on classification and the evolution of parasitoid life history traits. Mol. Phylogenet. Evol. 2022, 173, 107452. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.R. On[e] evolution of endoparasitism; the biology of some genera of Rogadinae (Braconidae). Contribs Amer. Entomol. Inst. 1983, 20, 307–328. [Google Scholar]
- Jiang, D.; Wu, S.; Tan, M.; Wang, Q.; Zheng, L.; Yan, S.C. The high adaptability of Hyphantria cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response. Pestic. Biochem. Physiol. 2021, 174, 104805. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.R.; Jones, G.Z. A new species of solitary Meteorus (Hymenoptera: Braconidae) reared from caterpillars of toxic butterflies (Lepidoptera: Nymphalidae) in Ecuador. J. Insect Sci. 2009, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.S. Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 1984, 309, 707–709. [Google Scholar] [CrossRef]
- Loncle, M.K.; Quicke, D.L.J.; Deowanish, S.; Butcher, B.A. The first record of Charmon Haliday, 1833 (Braconidae: Charmontinae) from Southeast Asia with description of a new species from Thailand. Zootaxa 2022, 5213, 93–100. [Google Scholar] [CrossRef]
- Butcher, B.A.; Quicke, D.L.J. The Parasitoid Wasps of South East Asia; CAB International Press: Wallingford, UK, In press.
- Beckage, N.E. Insect Immunology, 2nd ed.; Academic Press: Oxford, UK, 2008; pp. 1–337. [Google Scholar]
- Strand, M.R. The interactions between polydnavirus carrying parasitoids and their lepidopteran hosts. In Molecular Biology and Genetics of the Lepidoptera; Goldsmith, M.R., Marec, F., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 321–336. [Google Scholar]
- Ghafouri Moghaddam, M.; Fernandez-Triana, J.L.; Ward, D. Microgastrinae Wasps of the World. Available online: https://microgastrinae.myspecies.info/ (accessed on 11 May 2023).
- Rodriguez, J.J.; Fernández-Triana, J.L.; Smith, M.A.; Janzen, D.H.; Hallwachs, W.; Erwin, T.; Whitfield, J.B. Extrapolations from field studies and known faunas converge on dramatically increased estimates of global microgastrine parasitoid wasp species richness (Hymenoptera: Braconidae). Insect Conserv. Divers. 2013, 6, 530–536. [Google Scholar] [CrossRef]
- Aarvik, L.; Bengtsson, B.Å.; Elven, H.; Ivinskis, P.; Jürivete, U.; Karshol, O.; Mutanen, M.; Savenkov, N. Nordic-Baltic Checklist of Lepidoptera. Nor. J. Entomol. 2017, 3, 1–236. [Google Scholar]
- Whitfield, J.B.; Austin, A.; Fernandez-Triana, J.L. Systematics, Biology, and Evolution of Microgastrine Parasitoid Wasps. Annu. Rev. Entomol. 2018, 63, 389–406. [Google Scholar] [CrossRef]
- Mason, W.R.M. The polyphyletic nature of Apanteles Foerster (Hymenoptera: Braconidae): A phylogeny and reclassification of Microgastrinae. Mem. Ent. Soc. Can. 1981, 113, 1–147. [Google Scholar] [CrossRef]
- Stigenberg, J.; Vikberg, V.; Belokobylskij, S.A. Meteorus acerbiavorus sp. nov.(Hymenoptera, Braconidae), a gregarious parasitoid of Acerbia alpina (Quensel) (Lepidoptera, Arctiidae) in North Finland. J. Nat. Hist. 2011, 6, 1275–1294. [Google Scholar] [CrossRef] [Green Version]
- Shaw, M.R.; Vikberg, V.; Malinen, P. Cotesia acerbia sp. nov. (Hymenoptera: Braconidae, Microgastrinae), a gregarious parasitoid of Acerbia alpina (Quensel, 1802) (Lepidoptera: Erebidae, Arctiinae) in Polar Ural, Russia. Entomols Gaz. 2015, 66, 131–137. [Google Scholar]
- Benn, M.; DeGrave, J.; Gnanasunderam, C.; Hutchins, R. Host-plant pyrrolizidine alkaloids in Nyctemera annulata Boisduval: Their persistence through the life-cycle and transfer to a parasite. Experientia 1979, 35, 731–732. [Google Scholar] [CrossRef]
- Zaldivar-Riverón, A.; Shaw, M.R.; Saez, A.G.; Mori, M.; Belokobylskij, S.A.; Shaw, S.R.; Quicke, D.L.J. Evolution of the parasitic wasp subfamily Rogadinae (Braconidae): Phylogeny and evolution of lepidopteran host ranges and mummy characteristics. BMC Evol. Biol. 2009, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Quicke, D.L.J.; Laurenne, N.M.; Fitton, M.G.; Broad, G.R. A thousand and one wasps: A 28S rDNA and morphological phylogeny of the Ichneumonidae (Insecta: Hymenoptera) with an investigation into alignment parameter space and elision. J. Nat. Hist. 2009, 43, 1305–1421. [Google Scholar] [CrossRef]
- Bennett, A.M.R.; Cardinal, S.; Gauld, I.D.; Wahl, D.B. Phylogeny of the subfamilies of Ichneumonidae (Hymenoptera). J. Hymenopt. Res. 2019, 71, 1–156. [Google Scholar] [CrossRef] [Green Version]
- Tothill, J.D. The natural control of the fall webworm (Hyphantria cunea) with an account of its several parasites. Bull. Dept. Agric. Can. Entomol. Branch 1922, 19, 1–107. [Google Scholar]
- Béliveau, C.; Cohen, A.; Stewart, D.; Periquet, G.; Djoumad, A.; Kuhn, L.; Stoltz, D.; Boyle, B.; Volkoff, A.N.; Herniou, E.A.; et al. Genomic and proteomic analyses indicate that banchine and campoplegine polydnaviruses have similar, if not identical, viral ancestors. J. Virol. 2015, 89, 8909–8921. [Google Scholar] [CrossRef] [Green Version]
- Gunasena, G.H.; Vinson, S.B.; Williams, H.J. Effects of nicotine on growth, development, and survival of the tobacco budworm (Lepidoptera: Noctuidae) and the parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae). J. Econ. Entomol. 1990, 83, 1777–1782. [Google Scholar] [CrossRef]
- Beeson, C.F.C.; Chatterjee, S.N. On the biology of the Braconidae (Hymenoptera). Indian Forest Rec. 1935, 1, 105–138. [Google Scholar]
- Price, P.W. Evolutionary theory of host and parasitoid interactions. Biol. Control 1991, 1, 83–93. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Raven, P.H. Butterflies and plants: A study in coevolution. Evolution 1964, 18, 586–608. [Google Scholar] [CrossRef]
- Ode, P.J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 2006, 51, 163–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, C.H.Z.; Cunha, B.P.; Solferini, V.N.; Trigo, J.R. Feeding on host plants with different concentrations and structures of pyrrolizidine alkaloids impacts the chemical-defense effectiveness of a specialist herbivore. PLoS ONE 2015, 10, e0141480. [Google Scholar] [CrossRef] [PubMed]
- Naumann, C.M.; Feist, R. The structure and distribution of cyanoglicoside-storing cuticular cavities in Pryeria sinica Moore (Lepidoptera, Zygaenidae). Zool. Scr. 1987, 16, 89–93. [Google Scholar] [CrossRef]
- R Development Core Team: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna. 2016. Available online: https://cran.r-project.org (accessed on 22 June 2023).
Subfamily (Total Number of Published Host Records) | Number of Associations with Palatable Host Groups | Number of Associations with Unpalatable Host Groups | Proportion of Associations Involving Unpalatable Hosts |
---|---|---|---|
Anomaloninae (1017) | 921 | 59 | 0.064 |
Banchinae (1303) | 1231 | 17 | 0.0138 |
Campopleginae (4192) | 3485 | 156 | 0.0448 |
Cremastinae (734) | 662 | 5 | 0.0076 |
Ichneumoninae (2896) | 2639 | 159 | 0.0602 |
Metopiinae (676) | 621 | 9 | 0.0145 |
Ophioninae (633) | 607 | 23 | 0.0145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quicke, D.L.J.; Ghafouri Moghaddam, M.; Butcher, B.A. Dietary Challenges for Parasitoid Wasps (Hymenoptera: Ichneumonoidea); Coping with Toxic Hosts, or Not? Toxins 2023, 15, 424. https://doi.org/10.3390/toxins15070424
Quicke DLJ, Ghafouri Moghaddam M, Butcher BA. Dietary Challenges for Parasitoid Wasps (Hymenoptera: Ichneumonoidea); Coping with Toxic Hosts, or Not? Toxins. 2023; 15(7):424. https://doi.org/10.3390/toxins15070424
Chicago/Turabian StyleQuicke, Donald L. J., Mostafa Ghafouri Moghaddam, and Buntika A. Butcher. 2023. "Dietary Challenges for Parasitoid Wasps (Hymenoptera: Ichneumonoidea); Coping with Toxic Hosts, or Not?" Toxins 15, no. 7: 424. https://doi.org/10.3390/toxins15070424
APA StyleQuicke, D. L. J., Ghafouri Moghaddam, M., & Butcher, B. A. (2023). Dietary Challenges for Parasitoid Wasps (Hymenoptera: Ichneumonoidea); Coping with Toxic Hosts, or Not? Toxins, 15(7), 424. https://doi.org/10.3390/toxins15070424