Beauvericin Immunotoxicity Prevention by Gentiana lutea L. Flower In Vitro
Abstract
:1. Introduction
2. Results
2.1. Differentially Expressed Proteins
2.2. Functional Analysis of Differentially Expressed Proteins
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Reagents
5.2. Plant Material
5.3. In Vitro Digestion of G. lutea Flower
5.4. Cell Culture and Exposure Conditions
5.5. Protein Extraction and Sample Preparation
5.6. Q-TOF Mass Spectrometry and Data Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission (EC) Regulation No 915/2023 of 25 April 2023 on maximum levels for certain contaminants in food. Off. J. Eur. Union. 2023, 119, 103–157.
- EFSA. Call for Continuous Collection of Chemical Contaminants Occurrence Data in Food and Feed. Available online: https://www.efsa.europa.eu/en/call/call-continuous-collection-chemical-contaminants-occurrence-data-food-and-feed-0. (accessed on 19 July 2022).
- Urbaniak, M.; Waśkiewicz, A.; Stępień, Ł. Fusarium cyclodepsipeptide mycotoxins: Chemistry, biosynthesis, and occurrence. Toxins 2020, 12, 765. [Google Scholar] [CrossRef] [PubMed]
- Carballo, D.; Tolosa, J.; Ferrer, E.; Berrada, H. Dietary exposure assessment to mycotoxins through total diet studies. A review. Food Chem. Toxicol. 2019, 128, 8–20. [Google Scholar] [CrossRef]
- Carballo, D.; Moltó, J.C.; Berrada, H.; Ferrer, E. Presence of mycotoxins in ready-to-eat food and subsequent risk assessment. Food Chem. Toxicol. 2018, 121, 558–565. [Google Scholar] [CrossRef]
- Cimbalo, A.; Alonso-Garrido, M.; Font, G.; Manyes, L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem. Toxicol. 2020, 137, 111161. [Google Scholar] [CrossRef]
- Alonso-Garrido, M.; Frangiamone, M.; Font, G.; Cimbalo, A.; Manyes, L. In vitro blood brain barrier exposure to mycotoxins and carotenoids pumpkin extract alters mitochondrial gene expression and oxidative stress. Food Chem. Toxicol. 2021, 153, 112261. [Google Scholar] [CrossRef] [PubMed]
- Frangiamone, M.; Alonso-Garrido, M.; Font, G.; Cimbalo, A.; Manyes, L. Pumpkin extract and fermented whey individually and in combination alleviated AFB1-and OTA-induced alterations on neuronal differentiation in vitro. Food Chem. Toxicol. 2022, 164, 113011. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Singh, R.; Kumar, S.; Srivastava, S.; Ved, A. Gentiana lutea Linn. (Yellow Gentian): A comprehensive review. J. Ayurvedic Herb. Med. 2017, 3, 175–181. [Google Scholar] [CrossRef]
- Šavikin, K.; Menković, N.; Zdunić, G.; Stević, T.; Radanović, D.; Janković, T. Antimicrobial activity of Gentiana lutea L. extracts. Z. Naturforsch. C. 2009, 64, 339–342. [Google Scholar] [CrossRef]
- Karalija, E.; Ćavar Zeljković, S.; Dahija, S.; Bešta-Gajević, R.; Parić, A. Phenolics of aerial parts of Gentiana lutea L. and their biological activity. Agronomy 2021, 11, 1442. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.; Korzeniowska, M.; Guiné, R.P. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef]
- Escrivá, L.; Agahi, F.; Vila-Donat, P.; Mañes, J.; Meca, G.; Manyes, L. Bioaccessibility study of aflatoxin B1 and ochratoxin A in bread enriched with fermented milk whey and/or pumpkin. Toxins 2021, 14, 6. [Google Scholar] [CrossRef]
- Frangiamone, M.; Lozano, M.; Cimbalo, A.; Lazaro, A.; Font, G.; Manyes, L. The protective effect of pumpkin and fermented whey mixture against AFB1 and OTA immune toxicity in vitro. A transcriptomic approach. Mol. Nutr. Food Res. 2023, 68, 2200902. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Rodriguez, L.; Romano, R.; Mañes, J.; Meca, G. A natural strategy to improve the shelf life of the loaf bread against toxigenic fungi: The employment of fermented whey powder. Int. J. Dairy Technol. 2020, 73, 88–97. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3802. [Google Scholar] [CrossRef]
- Maranghi, F.; Tassinari, R.; Narciso, L.; Tait, S.; Rocca, C.L.; Felice, G.D.; Reale, O. In vivo toxicity and genotoxicity of beauvericin and enniatins. Combined approach to study in vivo toxicity and genotoxicity of mycotoxins beauvericin (BEA) and enniatin B (ENNB). EFSA Support. Pub. 2018, 15, 1406E. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, Y.L.; Zhang, J.; Li, W.Y.; Wang, Y.Z. Phytochemistry and pharmacological activities of the genus Gentiana (Gentianaceae). Chem. Biodivers. 2016, 13, 107–150. [Google Scholar] [CrossRef]
- Niu, Y.-T.; Zhao, Y.-P.; Jiao, Y.-F.; Zheng, J.; Yang, W.-L.; Zhou, R.; Niu, Y.; Sun, T.; Li, Y.-X.; Yu, J.-Q. Protective effect of gentiopicroside against dextran sodium sulfate induced colitis in mice. Int. Immunopharmacol. 2016, 39, 16–22. [Google Scholar] [CrossRef]
- Bižanov, G.; Ramanavičienė, A.; Normantienė, T.; Jonauskienė, I. Immune responses induced in rabbits after oral administration of bovine serum albumin in combination with different adjuvants (herb extracts, aluminium hydroxide and platinum nanoparticles). World Rabbit Sci. 2016, 24, 295–301. [Google Scholar] [CrossRef]
- Lombardi, P.; Palatucci, A.T.; Giovazzino, A.; Mastellone, V.; Ruggiero, G.; Rubino, V.; Musco, N.; Crupi, R.; Cutrignelli, M.I.; Britti, D.; et al. Clinical and Immunological Response in Dogs Naturally Infected by L. infantum Treated with a Nutritional Supplement. Animals 2019, 9, 501. [Google Scholar] [CrossRef]
- Wölfle, U.; Haarhaus, B.; Schempp, C.M. Amarogentin displays immunomodulatory effects in human mast cells and keratinocytes. Mediators of Inflamm. 2015, 2015, 630128. [Google Scholar] [CrossRef]
- Nastasijević, B.; Lazarević-Pašti, T.; Dimitrijević-Branković, S.; Pašti, I.; Vujačić, A.; Joksić, G.; Vasić, V. Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts. J. Pharm. Biomed. Anal. 2012, 66, 191–196. [Google Scholar] [CrossRef]
- Mallebrera, B.; Prosperini, A.; Font, G.; Ruiz, M.J. In vitro mechanisms of Beauvericin toxicity: A review. Food Chem. Toxicol. 2018, 111, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.F.; Tsai, M.C.; Jow, G.M. Induction of calcium influx from extracellular fluid by beauvericin in human leukemia cells. Biochem. Biophys. Res. Commun. 2006, 340, 134–139. [Google Scholar] [CrossRef]
- Qadri, S.M.; Kucherenko, Y.; Lang, F. Beauvericin induced erythrocyte cell membrane scrambling. Toxicology 2011, 283, 24–31. [Google Scholar] [CrossRef]
- Feske, S.; Skolnik, E.Y.; Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 2012, 12, 532–547. [Google Scholar] [CrossRef] [PubMed]
- Mastrorocco, A.; Martino, N.A.; Marzano, G.; Lacalandra, G.M.; Ciani, E.; Roelen, B.A.J.; Dell’Aquila, M.E.; Minervini, F. The mycotoxin beauvericin induces oocyte mitochondrial dysfunction and affects embryo development in the juvenile sheep. Mol. Reprod. Dev. 2019, 86, 1430–1443. [Google Scholar] [CrossRef]
- Mastrorocco, A.; Ciani, E.; Nicassio, L.; Roelen, B.A.; Minervini, F.; Dell’Aquila, M.E. Beauvericin alters the expression of genes coding for key proteins of the mitochondrial chain in ovine cumulus-oocyte complexes. Mycotoxin Res. 2021, 37, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Castello, A.; Schwarzl, T.; Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 2018, 19, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Muñoz, M.D.; Turner, M. Uncovering the role of RNA-binding proteins in gene expression in the immune system. Front. immunol. 2018, 9, 1094. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Kishimoto, T. Roles of RNA-binding proteins in immune diseases and cancer. Semin. Cancer Biol. 2022, 86, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, M.; Lela, L.; Moles, M.; Mangieri, C.; Bisaccia, D.; Faraone, I.; Falabella, R.; Milella, L. The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. Phytochemistry 2022, 206, 113518. [Google Scholar] [CrossRef] [PubMed]
- Kesavan, R.; Potunuru, U.R.; Nastasijević, B.; Joksić, G.; Dixit, M. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. PLoS ONE 2013, 8, e61393. [Google Scholar] [CrossRef]
- Wang, J.; Song, Z.; Ren, L.; Zhang, B.; Zhang, Y.; Yang, X.; Liu, T.; Gu, Y.; Feng, C. Pan cancer analysis supports MAPK12 as a potential prognostic and immunotherapeutic target in multiple tumor types, including in THCA. Oncol. Lett. 2022, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Sun, D.; Zhang, X. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int. 2019, 19, 216. [Google Scholar] [CrossRef]
- Wang, W.; Guo, M.; Hu, L.; Cai, J.; Zeng, Y.; Luo, J.; Shu, Z.; Li, W.; Huang, Z. The zinc finger protein ZNF268 is overexpressed in human cervical cancer and contributes to tumorigenesis via enhancing NF-κB signaling. J. Biol. Chem. 2012, 287, 42856–42866. [Google Scholar] [CrossRef] [PubMed]
- Azzarelli, R.; McNally, A.; Dell’Amico, C.; Onorati, M.; Simons, B.; Philpott, A. ASCL1 phosphorylation and ID2 upregulation are roadblocks to glioblastoma stem cell differentiation. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Saoudi, A.; Kassem, S.; Dejean, A.S.; Gaud, G. Rho-GTPases as key regulators of T lymphocyte biology. Small GTPases 2014, 5, e983862. [Google Scholar] [CrossRef] [PubMed]
- Héraud, C.; Pinault, M.; Lagrée, V.; Moreau, V. p190RhoGAPs, the ARHGAP35-and ARHGAP5-encoded proteins, in health and disease. Cells 2019, 8, 351. [Google Scholar] [CrossRef]
- Eid, R.A.; Soltan, M.A.; Eldeen, M.A.; Shati, A.A.; Dawood, S.A.; Eissa, M.; Zaki, M.S.A.; Algahtani, M.; Theyab, A.; Abdel-Daim, M.M.; et al. Assessment of RACGAP1 as a Prognostic and Immunological Biomarker in Multiple Human Tumors: A Multiomics Analysis. Int. J. Mol. Sci. 2022, 23, 14102. [Google Scholar] [CrossRef]
- Kunimura, K.; Uruno, T.; Fukui, Y. DOCK family proteins: Key players in immune surveillance mechanisms. Int. Immunol. 2020, 32, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Torgersen, K.M.; Vang, T.; Abrahamsen, H.; Yaqub, S.; Taskén, K. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal. 2002, 14, 1–9. [Google Scholar] [CrossRef]
- Gil-Izquierdo, A.; Zafrilla, P.; Tomás-Barberán, F.A. An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur. Food Res. Technol. 2002, 214, 155–159. [Google Scholar] [CrossRef]
- Alonso-Garrido, M.; Manyes, L.; Pralea, I.E.; Iuga, C.A. Mitochondrial proteomics profile points oxidative phosphorylation as main target for beauvericin and enniatin B mixture. Food chem. Toxicol. 2020, 141, 111432. [Google Scholar] [CrossRef]
- Cimbalo, A.; Frangiamone, M.; Lozano, M.; Escrivá, L.; Vila-Donat, P.; Manyes, L. Protective role of fermented whey and pumpkin extract against aflatoxin B1 and ochratoxin A toxicity in Jurkat T-cells. World Mycotoxin J. 2023, 16, 165–178. [Google Scholar] [CrossRef]
- Cimbalo, A.; Frangiamone, M.; Juan, C.; Font, G.; Lozano, M.; Manyes, L. Proteomics evaluation of enniatins acute toxicity in rat liver. Food Chem. Toxicol. 2021, 151, 112130. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Zheng, X.; Yang, J.; Imamichi, T.; Stephens, R.; Lempicki, R.A. Extracting biological meaning from large gene lists with DAVID. Curr. Protoc. Bioinform. 2009, 27, 13.11.1–13.11.13. [Google Scholar] [CrossRef]
- Oliveros, J.C. Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. 2007. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 17 July 2023).
Term | Count | % | p-Value | Fold Enrichment |
---|---|---|---|---|
BEA | ||||
Complex I biogenesis | 4 | 2.4 | 1.8 × 10−2 | 7.1 |
Ion transport by P-type ATPases | 4 | 2.4 | 1.8 × 10−2 | 7.1 |
Respiratory electron transport | 5 | 3 | 1.8 × 10−2 | 4.9 |
Potassium Channels | 5 | 3 | 1.8 × 10−2 | 4.9 |
Ion channel transport | 6 | 3.6 | 2.7 × 10−2 | 3.3 |
Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins. | 5 | 3 | 3.6 × 10−2 | 4 |
NOD1/2 Signaling Pathway | 3 | 1.8 | 3.6 × 10−2 | 8.2 |
Ca2+ activated K+ channels | 2 | 1.2 | 5.0 × 10−2 | 22.5 |
The citric acid (TCA) cycle and respiratory electron transport | 5 | 3 | 5.1 × 10−2 | 2.8 |
DG | ||||
RHOD GTPase cycle | 4 | 2.7 | 1.0 × 10−2 | 8.9 |
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 3 | 2.1 | 1.7 × 10−2 | 15 |
RHO GTPase cycle | 9 | 6.2 | 3.2 × 10−2 | 2.4 |
Synthesis of bile acids and bile salts | 3 | 2.1 | 2.8 × 10−2 | 11.2 |
TLR3-mediated TICAM1-dependent programmed cell death | 2 | 1.4 | 4.6 × 10−2 | 42.4 |
Bile acid and bile salt metabolism | 3 | 2.1 | 4.8 × 10−2 | 8.5 |
Ion transport by P-type ATPases | 3 | 2.1 | 7.2 × 10−2 | 6.7 |
TRIF-mediated programmed cell death | 2 | 1.4 | 7.5 × 10−2 | 25.5 |
Peroxisomal protein import | 3 | 2.1 | 8.6 × 10−2 | 6.1 |
Cell-cell junction organization | 3 | 2.1 | 8.8 × 10−2 | 6 |
Signaling by Rho GTPases | 10 | 6.9 | 9.7 × 10−2 | 1.8 |
BEA + DG | ||||
Ion transport by P-type ATPases | 4 | 2.9 | 9.9 × 10−3 | 8.9 |
Sensory processing of sound by inner hair cells of the cochlea | 4 | 2.9 | 1.7 × 10−2 | 7.3 |
Sensory processing of sound | 4 | 2.9 | 2.1 × 10−2 | 6.7 |
Ion channel transport | 5 | 3.6 | 5.7 × 10−2 | 3.4 |
RHO GTPase cycle | 8 | 5.8 | 6.1 × 10−2 | 2.3 |
RHOD GTPase cycle | 3 | 2.2 | 6.6 × 10−2 | 7 |
rRNA modification in the nucleus and cytosol | 3 | 2.2 | 8.2 × 10−2 | 6.2 |
Peroxisomal protein import | 3 | 2.2 | 8.7 × 10−2 | 6 |
Conditions | BEA (nM) | DG (%) | DMSO (%) |
---|---|---|---|
DMSO 0.1% | - | - | 0.1 |
BEA in DMSO 0.1% | 100 | - | 0.1 |
DG 2% | - | 2 | 0.1 |
BEA in DMSO 0.1% + DG 2% | 100 | 2 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Matteo, G.; Cimbalo, A.; Manyes, L.; Mannina, L. Beauvericin Immunotoxicity Prevention by Gentiana lutea L. Flower In Vitro. Toxins 2023, 15, 538. https://doi.org/10.3390/toxins15090538
Di Matteo G, Cimbalo A, Manyes L, Mannina L. Beauvericin Immunotoxicity Prevention by Gentiana lutea L. Flower In Vitro. Toxins. 2023; 15(9):538. https://doi.org/10.3390/toxins15090538
Chicago/Turabian StyleDi Matteo, Giacomo, Alessandra Cimbalo, Lara Manyes, and Luisa Mannina. 2023. "Beauvericin Immunotoxicity Prevention by Gentiana lutea L. Flower In Vitro" Toxins 15, no. 9: 538. https://doi.org/10.3390/toxins15090538
APA StyleDi Matteo, G., Cimbalo, A., Manyes, L., & Mannina, L. (2023). Beauvericin Immunotoxicity Prevention by Gentiana lutea L. Flower In Vitro. Toxins, 15(9), 538. https://doi.org/10.3390/toxins15090538