Multi-Mycotoxin Analysis in Italian Grains Using Ultra-High-Performance Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Optimization of Sample Preparation
2.2. Analytical Features of the Proposed Approach
2.3. Real Samples Analyses
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sampling
4.3. Mycotoxin Extraction
4.4. UHPLC Q-Orbitrap HRMS Analysis
4.5. Method Validation
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mir, S.A.; Dar, B.; Shah, M.A.; Sofi, S.A.; Hamdani, A.M.; Oliveira, C.A.; Moosavi, M.H.; Khaneghah, A.M.; Sant’Ana, A.S. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem. Toxicol. 2021, 148, 111976. [Google Scholar] [CrossRef] [PubMed]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; ACS Publications: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- Luo, Y.; Zhang, Z.; Cao, J.; Zhang, L.; Zhang, J.; Han, J.; Zhuang, H.; Cheng, F.; Tao, F. Accurately mapping global wheat production system using deep learning algorithms. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102823. [Google Scholar] [CrossRef]
- Gurikar, C.; Shivaprasad, D.; Sabillón, L.; Gowda, N.N.; Siliveru, K. Impact of mycotoxins and their metabolites associated with food grains. Grain Oil Sci. Technol. 2022, 6, 1–9. [Google Scholar] [CrossRef]
- Ayeni, K.I.; Atanda, O.O.; Krska, R.; Ezekiel, C.N. Present status and future perspectives of grain drying and storage practices as a means to reduce mycotoxin exposure in Nigeria. Food Control 2021, 126, 108074. [Google Scholar] [CrossRef]
- Torres, A.M.; Barros, G.G.; Palacios, S.A.; Chulze, S.N.; Battilani, P. Review on pre-and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int. 2014, 62, 11–19. [Google Scholar] [CrossRef]
- Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Adeyeye, S.A. Fungal mycotoxins in foods: A review. Cogent Food Agric. 2016, 2, 1213127. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Izzo, L.; Castaldo, L.; Narváez, A.; Gaspari, A.; Grosso, M.; Rodríguez-Carrasco, Y.; Ritieni, A. Target analysis and retrospective screening of contaminants in ready-to-eat cooked ham samples through UHPLC-Q-Orbitrap HRMS. Food Chem. 2023, 408, 135244. [Google Scholar] [CrossRef]
- Tolosa, J.; Rodríguez-Carrasco, Y.; Ruiz, M.; Vila-Donat, P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. J. Food Chem. Toxicol. 2021, 15c8, 112661. [Google Scholar] [CrossRef] [PubMed]
- Abrunhosa, L.; Morales, H.; Soares, C.; Calado, T.; Vila-Chã, A.S.; Pereira, M.; Venâncio, A. A review of mycotoxins in food and feed products in Portugal and estimation of probable daily intakes. J. Crit. Rev. Food Sci. Nutr. 2016, 56, 249–265. [Google Scholar] [CrossRef] [PubMed]
- González-Curbelo, M.; Socas-Rodríguez, B.; Herrera-Herrera, A.; Gonzcález-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M. Evolution and applications of the QuEChERS method. TrAC Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- da Silva, J.L.; Oreste, E.Q.; Dias, D.; Garda-Buffon, J. Electrochemistry Applied to Mycotoxin Determination in Food and Beverages. Food Anal. Methods 2023, 16, 541–566. [Google Scholar] [CrossRef]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef]
- Wu, W.; Huang, X.; Liang, R.; Guo, T.; Xiao, Q.; Xia, B.; Wan, Y.; Zhou, Y. Determination of 63 mycotoxins in grain products by ultrahigh-performance liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry. Food Control 2023, 150, 109772. [Google Scholar] [CrossRef]
- Cigić, I.K.; Prosen, H. An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int. J. Mol. Sci. 2009, 10, 62–115. [Google Scholar] [CrossRef]
- Commission Regulation. Commission Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; European Union: Luxembourg, 2006. [Google Scholar]
- Dey, D.K.; Kang, J.I.; Bajpai, V.K.; Kim, K.; Lee, H.; Sonwal, S.; Simal-Gandara, J.; Xiao, J.; Ali, S.; Huh, Y.S. Mycotoxins in food and feed: Toxicity, preventive challenges, and advanced detection techniques for associated diseases. Crit. Rev. Food Sci. Nutr. 2022, 1–22. [Google Scholar] [CrossRef]
- Ayelign, A.; De Saeger, S. Mycotoxins in Ethiopia: Current status, implications to food safety and mitigation strategies. Food Control 2020, 113, 107163. [Google Scholar] [CrossRef]
- Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food: Perspectives in a global and European context. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.Z. Mycotoxins in food, recent development in food analysis and future challenges; a review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Juan, C.; Covarelli, L.; Beccari, G.; Colasante, V.; Mañes, J. Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy. Food Control 2016, 62, 322–329. [Google Scholar] [CrossRef]
- Alkadri, D.; Rubert, J.; Prodi, A.; Pisi, A.; Mañes, J.; Soler, C. Natural co-occurrence of mycotoxins in wheat grains from Italy and Syria. Food Chem. 2014, 157, 111–118. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.-C.; Madec, S.; Coton, E.; Hymery, N. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Juan, C.; Ritieni, A.; Mañes, J. Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming. Food Chem. 2013, 141, 1747–1755. [Google Scholar] [CrossRef]
- Medina, D.A.V.; Borsatto, J.V.B.; Maciel, E.V.S.; Lancas, F.M. Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC Trends Anal. Chem. 2021, 135, 116156. [Google Scholar] [CrossRef]
- Logrieco, A.; Battilani, P.; Leggieri, M.C.; Jiang, Y.; Haesaert, G.; Lanubile, A.; Mahuku, G.; Mesterházy, A.; Ortega-Beltran, A.; Pasti, M. Perspectives on global mycotoxin issues and management from the MycoKey Maize Working Group. Plant Dis. 2021, 105, 525–537. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, T.; Wen, C.; Liu, B.; Gao, L.; Chen, W. Determination and contamination of Fusarium mycotoxins in different wheat planting regions of China. J. Plant Prot. 2019, 46, 266–273. [Google Scholar]
- Liu, C.; Van der Fels-Klerx, H.J.T. Quantitative modeling of climate change impacts on mycotoxins in cereals: A review. Toxins 2021, 13, 276. [Google Scholar] [CrossRef] [PubMed]
- Narváez, A.; Izzo, L.; Castaldo, L.; Lombardi, S.; Rodríguez-Carrasco, Y.; Ritieni, A. Multi-Mycotoxin Method Development Using Ultra-High Liquid Chromatography with Orbitrap High-Resolution Mass Spectrometry Detection in Breakfast Cereals from the Campania Region, Italy. Toxins 2023, 15, 148. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Narváez, A.; Castaldo, L.; Gaspari, A.; Rodríguez-Carrasco, Y.; Grosso, M.; Ritieni, A. Multiclass and multi-residue screening of mycotoxins, pharmacologically active substances, and pesticides in infant milk formulas through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry analysis. J. Dairy Sci. 2022, 105, 2948–2962. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Available online: https://www.legislation.gov.uk/eur/2006/401/contents (accessed on 15 July 2023).
- SANTE. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727 (accessed on 15 July 2023).
- Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods to Be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC; European Commission: Commission Regulation (EC). 2021. Available online: https://leap.unep.org/countries/eu/national-legislation/commission-implementing-regulation-eu-2021808-performance (accessed on 15 July 2023).
Analyte | Linearity (R2) | SSE (%) | Recovery (%) (RSD (%)) | LOQ | |||
---|---|---|---|---|---|---|---|
50 µg/kg | 100 µg/kg | 200 µg/kg | 500 µg/kg | (µg/kg) | |||
DON | 0.988 | 101 | 98 (5) | 115 (4) | 75 (20) | 89 (18) | 6.25 |
FB1 | 0.996 | 93 | 114 (9) | 75 (15) | 114 (12) | 107 (19) | 6.25 |
FB2 | 0.998 | 86 | 101 (11) | 102 (10) | 114 (9) | 104 (13) | 0.78 |
2 µg/kg | 10 µg/kg | 50 µg/kg | 100 µg/kg | ||||
AFB1 | 0.999 | 67 | 110 (8) | 88 (12) | 89 (8) | 102 (6) | 1.56 |
AFB2 | 1.000 | 80 | 85 (15) | 108 (13) | 124 (7) | 121 (13) | 0.78 |
AFG1 | 1.000 | 84 | 96 (11) | 149 (10) | 110 (11) | 104 (7) | 0.78 |
AFG2 | 0.998 | 86 | 78 (6) | 122 (9) | 108 (17) | 102 (8) | 3.12 |
5 µg/kg | 10 µg/kg | 50 µg/kg | 100 µg/kg | ||||
NEO | 1.000 | 70 | 75 (19) | 87 (9) | 96 (16) | 94 (10) | 1.56 |
α-ZAL | 1.000 | 75 | 85 (11) | 125 (11) | 94 (9) | 99 (8) | 3.12 |
β-ZAL | 0.998 | 81 | 96 (8) | 106 (15) | 103 (14) | 96 (10) | 1.56 |
α-ZEL | 0.999 | 63 | 87 (12) | 77 (10) | 78 (16) | 87 (8) | 6.25 |
β-ZEL | 0.996 | 80 | 84 (5) | 102 (12) | 102 (6) | 98 (12) | 6.25 |
T2 | 1.000 | 84 | 83 (9) | 89 (6) | 83 (8) | 84 (11) | 1.56 |
HT-2 | 1.000 | 71 | 87 (8) | 134 (6) | 116 (11) | 105 (8) | 1.56 |
ENNA | 1.000 | 96 | 71 (6) | 74 (14) | 101 (13) | 101 (13) | 3.12 |
ENNA1 | 1.000 | 81 | 78 (4) | 112 (7) | 107 (15) | 102 (15) | 6.25 |
ENNB | 1.000 | 122 | 101 (13) | 116 (14) | 99 (9) | 103 (13) | 3.12 |
ENNB1 | 0.998 | 79 | 89 (9) | 80 (16) | 111 (17) | 98 (8) | 3.12 |
OTA | 0.999 | 68 | 99 (18) | 94 (16) | 108 (7) | 98 (7) | 3.12 |
ZAN | 1.000 | 91 | 85 (14) | 77 (8) | 98 (12) | 107 (10) | 0.39 |
ZEN | 0.999 | 88 | 71 (8) | 96 (17) | 105 (4) | 105 (14) | 1.56 |
Analyte | Positive Samples | Percentage (%) | Concentration Range (µg/kg) |
---|---|---|---|
DON | 3/200 | 1.5 | 104.08–292.62 |
α-ZAL | 84/200 | 42 | 19.58–147.20 |
β-ZAL | 28/200 | 14 | 31.48–176.88 |
α-ZEL | 1/200 | 0.5 | 13.99 |
β-ZEL | 4/200 | 2 | 6.52–12.44 |
T2 | 1/200 | 0.5 | 2.76 |
HT-2 | 9/200 | 4.5 | 3.3–28.34 |
ENNA | 1/200 | 0.5 | 1.28 |
ENNA1 | 1/200 | 0.5 | 2.62 |
ENNB1 | 1/200 | 0.5 | 2.18 |
ZAN | 2/200 | 1 | 4.58; 4.88 |
Co-Occurrence Combination | Combination Frequency | ∑ Concentration (µg/kg) |
---|---|---|
β-ZAL, ENN A1 | 1 | 29.48 |
β-ZAL, β-ZEL | 1 | 51.15 |
β-ZAL, α-ZAL | 11 | 903.19 |
T-2, α-ZAL | 1 | 31.14 |
DON, α-ZAL | 1 | 195.53 |
α-ZEL, β-ZAL | 1 | 32.30 |
HT-2, α-ZAL | 2 | 61.10 |
HT-2, α-ZAL, β-ZAL | 1 | 87.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima da Silva, J.; Lombardi, S.; Castaldo, L.; Morelli, E.; Garda-Buffon, J.; Izzo, L.; Ritieni, A. Multi-Mycotoxin Analysis in Italian Grains Using Ultra-High-Performance Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins 2023, 15, 562. https://doi.org/10.3390/toxins15090562
Lima da Silva J, Lombardi S, Castaldo L, Morelli E, Garda-Buffon J, Izzo L, Ritieni A. Multi-Mycotoxin Analysis in Italian Grains Using Ultra-High-Performance Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins. 2023; 15(9):562. https://doi.org/10.3390/toxins15090562
Chicago/Turabian StyleLima da Silva, Juliane, Sonia Lombardi, Luigi Castaldo, Elena Morelli, Jaqueline Garda-Buffon, Luana Izzo, and Alberto Ritieni. 2023. "Multi-Mycotoxin Analysis in Italian Grains Using Ultra-High-Performance Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry" Toxins 15, no. 9: 562. https://doi.org/10.3390/toxins15090562
APA StyleLima da Silva, J., Lombardi, S., Castaldo, L., Morelli, E., Garda-Buffon, J., Izzo, L., & Ritieni, A. (2023). Multi-Mycotoxin Analysis in Italian Grains Using Ultra-High-Performance Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins, 15(9), 562. https://doi.org/10.3390/toxins15090562