Presence, Co-Occurrence, and Daily Intake Estimates of Aflatoxins and Fumonisins in Maize Consumed in Food-Insecure Regions of Western Honduras
Abstract
:1. Introduction
2. Results
2.1. Aflatoxin Contamination Levels and Dietary Exposure
2.2. Fumonisin Contamination Levels and Dietary Exposure
2.3. Co-Occurrence of Aflatoxin with Fumonisin
3. Discussion
4. Materials and Methods
4.1. Study Area and Sampling Methodology
4.2. Collection and Storage of Maize Samples
4.3. Sample Preparation for Mycotoxin Analysis
4.4. Mycotoxin Analysis
4.4.1. Extraction and Quantification of Aflatoxins
4.4.2. Extraction and Quantification of Fumonisins
4.5. Assessment of Dietary Exposure
4.6. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Rocha, M.E.B.; da Chagas Oliveira Freire, F.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2002; Volume 82. [Google Scholar]
- Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Moore, S.E.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environ. Health Perspect. 2003, 111, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Professional Publishing: Ames, IA, USA, 2006. [Google Scholar]
- Kimanya, M.E.; De Meulenaer, B.; Roberfroid, D.; Lachat, C.; Kolsteren, P. Fumonisin exposure through maize in complementary foods is inversely associated with linear growth of infants in Tanzania. Mol. Nutr. Food Res. 2010, 54, 1659–1667. [Google Scholar] [CrossRef]
- Wang, H.; Wei, H.; Ma, J.; Luo, X. The fumonisin B1 content in corn from North China, a high-risk area of esophageal cancer. J. Environ. Pathol. Toxicol. Oncol. 2000, 19, 139–141. [Google Scholar] [PubMed]
- Scott, P. Recent research on fumonisins: A review. Food Addit. Contam. Part A 2012, 29, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Shirima, C.P.; Kimanya, M.E.; Routledge, M.N.; Srey, C.; Kinabo, J.L.; Humpf, H.-U.; Wild, C.P.; Tu, Y.-K.; Gong, Y.Y. A prospective study of growth and biomarkers of exposure to aflatoxin and fumonisin during early childhood in Tanzania. Environ. Health Perspect. 2014, 123, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Torres, O.; Matute, J.; Gelineau-van Waes, J.; Maddox, J.; Gregory, S.; Ashley-Koch, A.; Showker, J.; Voss, K.; Riley, R. Human health implications from co-exposure to aflatoxins and fumonisins in maize-based foods in Latin America: Guatemala as a case study. World Mycotoxin J. 2015, 8, 143–159. [Google Scholar] [CrossRef]
- US-FDA (U.S. Food & Drug Administration). Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed (accessed on 9 February 2023).
- US-FDA (U.S. Food & Drug Administration). Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds (accessed on 9 February 2023).
- European Union. Commission regulation (EC) No. 1881/2006 of 19 December Setting Maximumlevels for Certain Contaminants in Food Stuffs. Official Journal of the European Union. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 10 February 2023).
- JECFA (Joint Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants: Fifty-Fifth Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series No 901; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Magrine, I.; Ferrari, S.; Souza, G.; Minamihara, L.; Kemmelmeier, C.; Bando, E.; Machinski, M., Jr. Intake of aflatoxins through the consumption of peanut products in Brazil. Food Addit. Contam. Part B 2011, 4, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of mycotoxins and their consequences on human health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Strosnider, H.; Azziz-Baumgartner, E.; Banziger, M.; Bhat, R.V.; Breiman, R.; Brune, M.-N.; DeCock, K.; Dilley, A.; Groopman, J.; Hell, K. Workgroup report: Public health strategies for reducing aflatoxin exposure in developing countries. Environ. Health Perspect. 2006, 114, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, J.R.; Rodas, A.; Oliva, A.; Sabillón, L.; Colmenares, A.; Clarke, J.; Hallen-Adams, H.E.; Campabadal, C.; Bianchini, A. Safety and quality assessment of smallholder farmers’ maize in the western highlands of Guatemala. J. Food Prot. 2018, 81, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Torres, O.; Palencia, E.; de Pratdesaba, L.L.; Grajeda, R.; Fuentes, M.; Speer, M.C.; Merrill, A.H., Jr.; O’Donnell, K.; Bacon, C.W.; Glenn, A.E. Estimated fumonisin exposure in Guatemala is greatest in consumers of lowland maize. J. Nutr. 2007, 137, 2723–2729. [Google Scholar] [CrossRef]
- Riley, R.T.; Torres, O.; Matute, J.; Gregory, S.G.; Ashley-Koch, A.E.; Showker, J.L.; Mitchell, T.; Voss, K.A.; Maddox, J.R.; Gelineau-van Waes, J.B. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol. Nutr. Food Res. 2015, 59, 2209–2224. [Google Scholar] [CrossRef]
- Voth-Gaeddert, L.E.; Stoker, M.; Torres, O.; Oerther, D.B. Association of aflatoxin exposure and height-for-age among young children in Guatemala. Int. J. Environ. Health Res. 2018, 28, 280–292. [Google Scholar] [CrossRef] [PubMed]
- IFPRI (International Food Policy Research Institute). Feed the Future Honduras 2015—Zone of Influence Interim Indicator Assessment Report; Markets, Trade and Institutions/International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar]
- US-FDA (Food and Drug Administration). Compliance Policy Guide. Sec. 683.100 Action Levels for Aflatoxins in Animal Feeds; Food and Drug Administration: Silver Spring, MD, USA, 2019.
- Julian, A.M.; Wareing, P.W.; Phillips, S.I.; Medlock, V.F.; MacDonald, M.V.; Luis, E. Fungal contamination and selected mycotoxins in pre-and post-harvest maize in Honduras. Mycopathologia 1995, 129, 5–16. [Google Scholar] [CrossRef]
- MacDonald, M.; Chapman, R. The incidence of Fusarium moniliforme on maize from Central America, Africa and Asia during 1992–1995. Plant Pathol. 1997, 46, 112–125. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef]
- Robens, J.; Richard, J. Aflatoxins in animal and human health. Rev. Environ. Contam. Toxicol. 1992, 127, 69–94. [Google Scholar] [CrossRef]
- Fink-Gremmels, J.; Van der Merwe, D. Mycotoxins in the food chain: Contamination of foods of animal origin. In Food Safety Assurance and Veterinary Public Health—Chemical Hazards in Foods of Animal Origin; Smulders, F., Rietjens, I., Rose, M., Eds.; Wageningen Academics: Wageningen, The Netherlands, 2019; Volume 7, pp. 241–261. [Google Scholar]
- Völkel, I.; Schröer-Merker, E.; Czerny, C.-P. The carry-over of mycotoxins in products of animal origin with special regard to its implications for the European food safety legislation. Food Nutr. Sci. 2011, 2, 852–867. [Google Scholar] [CrossRef]
- Bucci, T.J.; Howard, P.C. Effect of Fumonisin Mycotoxins in Animals. J. Toxicol. Toxin Rev. 1996, 15, 293–302. [Google Scholar] [CrossRef]
- EFSA (EFSA Panel on Contaminants in the Food Chain (CONTAM)); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J. 2018, 16, e05242. [Google Scholar] [CrossRef]
- Gelderblom, W.; Marasas, W.; Lebepe-Mazur, S.; Swanevelder, S.; Vessey, C.; De la M Hall, P. Interaction of fumonisin B1 and aflatoxin B1 in a short-term carcinogenesis model in rat liver. Toxicology 2002, 171, 161–173. [Google Scholar] [CrossRef] [PubMed]
- McKean, C.; Tang, L.; Tang, M.; Billam, M.; Wang, Z.; Theodorakis, C.; Kendall, R.; Wang, J.-S. Comparative acute and combinative toxicity of aflatoxin B1 and fumonisin B1 in animals and human cells. Food Chem. Toxicol. 2006, 44, 868–876. [Google Scholar] [CrossRef]
- Chen, C.; Mitchell, N.J.; Gratz, J.; Houpt, E.R.; Gong, Y.; Egner, P.A.; Groopman, J.D.; Riley, R.T.; Showker, J.L.; Svensen, E. Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania. Environ. Int. 2018, 115, 29–37. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.O.; Turna, N.S.; Ademola, O.; Obadina, A.; Wu, F. The occurrence and co-occurrence of aflatoxin and fumonisin along the maize value chain in southwest Nigeria. Food Chem. Toxicol. 2019, 129, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Kimanya, M.E.; De Meulenaer, B.; Tiisekwa, B.; Ndomondo-Sigonda, M.; Devlieghere, F.; Van Camp, J.; Kolsteren, P. Co-occurrence of fumonisins with aflatoxins in home-stored maize for human consumption in rural villages of Tanzania. Food Addit. Contam. Part A 2008, 25, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Kpodo, K.; Thrane, U.; Hald, B. Fusaria and fumonisins in maize from Ghana and their co-occurrence with aflatoxins. Int. J. Food Microbiol. 2000, 61, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Murashiki, T.C.; Chidewe, C.; Benhura, M.A.; Maringe, D.T.; Dembedza, M.P.; Manema, L.R.; Mvumi, B.M.; Nyanga, L.K. Levels and daily intake estimates of aflatoxin B1 and fumonisin B1 in maize consumed by rural households in Shamva and Makoni districts of Zimbabwe. Food Control 2017, 72, 105–109. [Google Scholar] [CrossRef]
- USAID (United States Agency for International Development). Guidance on the Feed the Future Phase Two Zone of Influence Midline Indicator Assessment. Available online: https://www.feedthefuture.gov/resource/guidance-on-the-feed-the-future-phase-two-zone-of-influence-midline-indicator-assessment/ (accessed on 12 February 2023).
- WorldData. Average Sizes of Men and Women—Heights and Weights by Continents. NCD Risk Factor Collaboration. Available online: https://www.worlddata.info/average-bodyheight.php (accessed on 15 March 2023).
- Bressani, R. Chemistry, technology, and nutritive value of maize tortillas. Food Rev. Int. 1990, 6, 225–264. [Google Scholar] [CrossRef]
- Ohri-Vachaspati, P.; Swindale, A.J. Iron in the diets of rural Honduran women and children. Ecol. Food Nutr. 1999, 38, 285–306. [Google Scholar] [CrossRef]
Sample Source (Type) a | Department Name | Number of Samples | Prevalence (%) b | Frequency Distribution (µg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Concentration Range (µg/kg) | Mean ± SE c | Median | 10th Percentile | 90th Percentile | |||||||
x < LOD | LOD ≤ x < 4 | 4 ≤ x < 10 | 10 ≤ x < 20 | x ≥ 20 | ||||||||
Producer (Human consumption) | Copán | 111 | 93 | 4 | 4 | 4 | 6 | 16 | 11.0 ± 5.5 z | 0.0 | 0 | 8.0 |
Intibucá | 80 | 70 | 2 | 1 | 3 | 4 | 13 | 2.7 ± 1.2 z | 0.0 | 0 | 3.1 | |
Lempira | 103 | 91 | 6 | 4 | 2 | 0 | 12 | 0.7 ± 0.2 z | 0.0 | 0 | 1.1 | |
La Paz | 64 | 61 | 0 | 0 | 1 | 2 | 5 | 0.9 ± 0.5 z | 0.0 | 0 | 0 | |
Ocotepeque | 54 | 49 | 3 | 1 | 1 | 0 | 9 | 0.6 ± 0.3 z | 0.0 | 0 | 0 | |
Santa Bárbara | 94 | 62 | 7 | 7 | 5 | 13 | 34 | 18.2 ± 6.9 z | 0.0 | 0 | 29 | |
Overall d | 506 | 426 (84%) | 22 (4%) | 17 (4%) | 16 (3%) | 25 (5%) | 16 w | c = 6.5 ± 1.8 z | ||||
Market (Human consumption) | Copán | 43 | 34 | 2 | 5 | 0 | 2 | 21 | 2.3 ± 1.0 z | 0.0 | 0 | 6.7 |
Intibucá | 16 | 14 | 0 | 1 | 1 | 0 | 13 | 1.7 ± 1.3 z | 0.0 | 0 | 3.5 | |
Lempira | 17 | 13 | 4 | 0 | 0 | 0 | 24 | 0.4 ± 0.2 z | 0.0 | 0 | 1.7 | |
La Paz | 14 | 11 | 1 | 1 | 0 | 1 | 21 | 3.6 ± 2.9 z | 0.0 | 0 | 6.4 | |
Ocotepeque | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 z | 0.0 | 0 | 0 | |
Santa Bárbara | 27 | 16 | 1 | 2 | 2 | 6 | 41 | 26.6 ± 15 z | 0.0 | 0 | 52 | |
Overall | 125 | 96 (77%) | 8 (6%) | 9 (7%) | 3 (3%) | 9 (7%) | 23 w | = 7.2 ± 3.3 z | ||||
Producer (Animal feed) | Copán | 30 | 22 | 2 | 3 | 0 | 3 | 27 | 8.8 ± 5.2 z | 0.0 | 0 | 9.2 |
Intibucá | 6 | 5 | 0 | 0 | 0 | 1 | 17 | 81.6 ± 82 z | 0.0 | 0 | 245 | |
Lempira | 27 | 17 | 4 | 3 | 1 | 2 | 37 | 3.2 ± 1.3 z | 0.0 | 0 | 12 | |
La Paz | 11 | 9 | 2 | 0 | 0 | 0 | 18 | 0.3 ± 0.2 z | 0.0 | 0 | 1.4 | |
Ocotepeque | 6 | 4 | 2 | 0 | 0 | 0 | 33 | 0.5 ± 0.3 z | 0.0 | 0 | 1.4 | |
Santa Bárbara | 29 | 15 | 1 | 0 | 2 | 11 | 48 | 51.9 ± 20 z | 0.0 | 0 | 220 | |
Overall | 109 | 72 (66%) | 11 (10%) | 6 (5%) | 3 (3%) | 17 (16%) | 34 v | = 22 ± 7.2 y |
Sample Source a | Department Name | Women (ng/kg bw/day) b | Men (ng/kg bw/day) b | ||||
---|---|---|---|---|---|---|---|
10th Percentile c | Average d | 90th Percentile e | 10th Percentile c | Average d | 90th Percentile e | ||
Rural Areas (Producer) | Copán | 0 | 110 | 80 | 0 | 90 | 60 |
Intibucá | 0 | 30 | 30 | 0 | 20 | 20 | |
Lempira | 0 | 10 | 10 | 0 | 10 | 10 | |
La Paz | 0 | 10 | 0 | 0 | 10 | 0 | |
Ocotepeque | 0 | 10 | 0 | 0 | 4 | 0 | |
Santa Bárbara | 0 | 180 | 280 | 0 | 140 | 230 | |
Overall | 0 | 60 | 60 | 0 | 50 | 50 | |
Urban Areas (Market) | Copán | 0 | 20 | 60 | 0 | 20 | 50 |
Intibucá | 0 | 20 | 30 | 0 | 10 | 30 | |
Lempira | 0 | 0 | 20 | 0 | 0 | 10 | |
La Paz | 0 | 30 | 60 | 0 | 30 | 50 | |
Ocotepeque | ND f | ND | ND | ND | ND | ND | |
Santa Bárbara | 0 | 260 | 510 | 0 | 210 | 410 | |
Overall | 0 | 70 | 100 | 0 | 60 | 80 |
Sample Source (type) a | Department Name | Number of Samples | Prevalence (%) b | Frequency Distribution (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Concentration Range (mg/kg) | Mean ± SE c | Median | 10th Percentile | 90th Percentile | |||||||
x < LOD | LOD ≤ x < 1 | 1 ≤ x < 3 | 3 ≤ x < 4 | x ≥ 4 | ||||||||
Producer (Human consumption) | Copán | 111 | 2 | 22 | 49 | 9 | 29 | 98 | 3.5 ± 0.4 z | 2.0 | 0.6 | 7.8 |
Intibucá | 80 | 3 | 26 | 32 | 3 | 16 | 96 | 2.6 ± 0.3 z | 1.6 | 0.5 | 5.9 | |
Lempira | 103 | 3 | 32 | 39 | 11 | 18 | 97 | 2.3 ± 0.2 z | 1.7 | 0.5 | 5.2 | |
La Paz | 64 | 3 | 21 | 25 | 6 | 9 | 95 | 2.1 ± 0.3 z | 1.4 | 0.4 | 5.0 | |
Ocotepeque | 54 | 1 | 13 | 22 | 4 | 14 | 98 | 3.1 ± 0.4 z | 2.2 | 0.6 | 7.5 | |
Santa Bárbara | 94 | 2 | 27 | 35 | 5 | 25 | 98 | 2.7 ± 0.2 z | 2.0 | 0.6 | 5.9 | |
Overall d | 506 | 14 (3%) | 141 (28%) | 202 (40%) | 38 (7%) | 111 (22%) | 97 u | c = 2.7 ± 0.1 z | ||||
Market (Human consumption) | Copán | 43 | 0 | 10 | 19 | 6 | 8 | 100 | 2.5 ± 0.3 z | 2.0 | 0.7 | 4.9 |
Intibucá | 16 | 0 | 2 | 6 | 1 | 7 | 100 | 3.5 ± 0.7 y,z | 3.1 | 0.8 | 7.1 | |
Lempira | 17 | 2 | 3 | 5 | 2 | 5 | 88 | 3.0 ± 0.5 y,z | 2.6 | 0.6 | 5.3 | |
La Paz | 14 | 0 | 1 | 4 | 0 | 9 | 100 | 5.4 ± 1.0 y | 5.3 | 1.9 | 8.0 | |
Ocotepeque | 8 | 1 | 1 | 3 | 1 | 2 | 88 | 3.0 ± 0.9 y,z | 2.6 | 0.6 | 5.8 | |
Santa Bárbara | 27 | 0 | 7 | 11 | 4 | 5 | 100 | 2.9 ± 0.5 z | 2.3 | 0.8 | 5.3 | |
Overall | 125 | 3 (2%) | 24 (19%) | 48 (39%) | 14 (11%) | 36 (29%) | 98 u | = 3.2 ± 0.2 z | ||||
Producer (Animal feed) | Copán | 30 | 0 | 0 | 4 | 3 | 23 | 100 | 9.9 ± 1.0 y | 11.0 | 2.6 | 15 |
Intibucá | 6 | 0 | 1 | 2 | 0 | 3 | 100 | 3.5 ± 1.1 y,z | 3.1 | 1.1 | 6.4 | |
Lempira | 27 | 1 | 1 | 4 | 4 | 17 | 96 | 9.7 ± 1.4 y | 12.0 | 1.8 | 15 | |
La Paz | 11 | 1 | 4 | 2 | 1 | 3 | 91 | 3.5 ± 1.3 z | 1.1 | 0.3 | 11 | |
Ocotepeque | 6 | 1 | 0 | 2 | 0 | 3 | 83 | 5.3 ± 2.3 y,z | 3.2 | 0.7 | 12 | |
Santa Bárbara | 29 | 1 | 4 | 12 | 1 | 11 | 97 | 5.9 ± 1.1 y,z | 2.1 | 0.9 | 14 | |
Overall | 109 | 4 (4%) | 10 (9%) | 26 (24%) | 9 (8%) | 60 (55%) | 96 u | = 7.6 ± 0.6 y |
Sample Source a | Department Name | Women (µg/kg bw/day) b | Men (µg/kg bw/day) b | ||||
---|---|---|---|---|---|---|---|
10th Percentile c | Average d | 90th Percentile e | 10th Percentile c | Average d | 90th Percentile e | ||
Rural Areas (Producer) | Copán | 6.2 | 34 | 76 | 5.0 | 27 | 61 |
Intibucá | 5.2 | 25 | 58 | 4.2 | 20 | 47 | |
Lempira | 4.5 | 23 | 51 | 3.7 | 18 | 41 | |
La Paz | 4.0 | 21 | 49 | 3.2 | 17 | 39 | |
Ocotepeque | 5.9 | 30 | 73 | 4.8 | 24 | 59 | |
Santa Bárbara | 5.5 | 26 | 58 | 4.5 | 21 | 47 | |
Overall | 5.1 | 27 | 57 | 4.1 | 22 | 46 | |
Urban Areas (Market) | Copán | 6.5 | 25 | 48 | 5.2 | 20 | 38 |
Intibucá | 7.9 | 34 | 69 | 6.4 | 28 | 56 | |
Lempira | 5.7 | 29 | 52 | 4.6 | 24 | 42 | |
La Paz | 19 | 53 | 78 | 15.1 | 43 | 63 | |
Ocotepeque | 6.2 | 30 | 56 | 5.0 | 24 | 45 | |
Santa Bárbara | 7.4 | 28 | 52 | 6.0 | 23 | 42 | |
Overall | 6.6 | 31 | 64 | 5.3 | 25 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabillón, L.; Alvarado, J.; Leiva, A.; Mendoza, R.; Espinal, R.; Leslie, J.F.; Bianchini, A. Presence, Co-Occurrence, and Daily Intake Estimates of Aflatoxins and Fumonisins in Maize Consumed in Food-Insecure Regions of Western Honduras. Toxins 2023, 15, 559. https://doi.org/10.3390/toxins15090559
Sabillón L, Alvarado J, Leiva A, Mendoza R, Espinal R, Leslie JF, Bianchini A. Presence, Co-Occurrence, and Daily Intake Estimates of Aflatoxins and Fumonisins in Maize Consumed in Food-Insecure Regions of Western Honduras. Toxins. 2023; 15(9):559. https://doi.org/10.3390/toxins15090559
Chicago/Turabian StyleSabillón, Luis, Jackeline Alvarado, Alejandra Leiva, Rodrigo Mendoza, Raúl Espinal, John F. Leslie, and Andréia Bianchini. 2023. "Presence, Co-Occurrence, and Daily Intake Estimates of Aflatoxins and Fumonisins in Maize Consumed in Food-Insecure Regions of Western Honduras" Toxins 15, no. 9: 559. https://doi.org/10.3390/toxins15090559
APA StyleSabillón, L., Alvarado, J., Leiva, A., Mendoza, R., Espinal, R., Leslie, J. F., & Bianchini, A. (2023). Presence, Co-Occurrence, and Daily Intake Estimates of Aflatoxins and Fumonisins in Maize Consumed in Food-Insecure Regions of Western Honduras. Toxins, 15(9), 559. https://doi.org/10.3390/toxins15090559