Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms
Abstract
:1. Introduction
2. Existing Strategies for HCB Mitigation
2.1. Physical or Mechanical Methods
- Artificial mixing involves the manipulation of water circulation within a lake or reservoir to weaken or eradicate the density stratification of the water column.
- Hypolimnetic oxygenation or aeration treatments can maintain or increase the dissolved oxygen (DO) level and meet oxygen demand in the anoxic hypolimnion without disrupting thermal stratification.
- Dredging is a geoengineering technique that excavates sediments in surface water sources and relocates the sediments to a disposal site, leading to the removal of nutrients from their sink (sediment).
- Sonication (ultrasonic radiation) applies high-frequency (>20 KHz) ultrasound to generate a cyclic expansion and compression phase, leading to the disruption and collapse of gas vacuoles responsible for regulating buoyancy in cyanobacteria cells. Such acoustic cavitation results in sedimentation and subsequent photosynthesis inhibition of the floating cells (e.g., Microcystis aeruginosa, Synechococcus sp., and Anabaena circinalis).
- Mechanical harvesting can remove the accumulated biomass of toxic cyanobacterial cells (e.g., pelagic colony-forming Microcystis spp. and benthic mat-forming Microseira wollei).
- Magnetic separation uses recyclable natural magnetic sphalerite (NMS, a naturally occurring and earth-abundant mineral [19]) or a mixture of iron oxide and chloride powder to adsorb and disrupt bloom plankton (including cyanobacteria) through physical interactions and a magnetic separator to remove the adsorbed plankton from the water column.
- Centrifugal separation works by pumping bloom water through a centrifugal separator to segregate cyanobacteria in the bloom water.
- UV radiation can induce drastic damage to the thylakoid, a membrane-bound photosynthesis compartment inside cyanobacteria, leading to cell death. For example, a 6 h treatment of 11.8 W/m2 UV-A (315–400 nm) caused 90% mortality in Cylindrospermopsis raciborskii, a filamentous nitrogen-fixing cyanobacterium [20].
2.2. Chemical Methods
2.3. Biological Methods
3. Nanotechnology and Nanoparticles
4. Emerging Application of Nanoparticles to HCB Mitigation
4.1. NPs as Algaecide: From Cytotoxicity to HCB Mitigation
4.2. NPs as Photocatalysts for HCB Mitigation
4.2.1. Doping and Compounding
4.2.2. Recycling and Replacing
4.3. NPs as Flocculant/Coagulant for Cyanobacteria Removal
4.4. NPs as an Adsorbent for Nutrient and Cyanotoxin Removal
5. Challenges, Limitations, and Prospectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sukenik, A.; Kaplan, A. Cyanobacterial harmful algal blooms in aquatic ecosystems: A comprehensive outlook on current and emerging mitigation and control approaches. Microorganisms 2021, 9, 1472. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Gobler, C.J. Climate change and harmful algal blooms: Insights and perspective. Harmful Algae 2020, 91, 101731. [Google Scholar] [CrossRef]
- Cheng, R.; Shen, L.-J.; Xiang, S.-Y.; Dai, D.-Y.; Zheng, X. Nanomaterials for effective control of algal blooms in water. Environ. Nanotechnol. 2021, 5, 173–203. [Google Scholar]
- Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: “Strategies” for nutrient uptake and growth outside the Redfield comfort zone. Chin. J. Oceanol. Limnol. 2011, 29, 724–738. [Google Scholar] [CrossRef]
- Paerl, H.; Paul, V. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef]
- Zamparas, M.; Zacharias, I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci. Total Environ. 2014, 496, 551–562. [Google Scholar] [CrossRef]
- Raven, J.; Gobler, C.; Hansen, P. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms. Harmful Algae 2020, 91, 101594. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Oliver, R.L.; Walsby, A.E. Cyanobacterial dominance: The role of buoyancy regulation in dynamic lake environments. N. Z. J. Mar. Freshwater Res. 1987, 21, 379–390. [Google Scholar] [CrossRef]
- Capuzzo, E.; Stephens, D.; Silvia, T. Decrease in water clarity of the southern and central North Sea during the 20th century. Glob. Chang. Biol. 2015, 21, 2206–2214. [Google Scholar] [CrossRef]
- Orihel, D.M.; Baulch, H.M.; Casson, N.J.; North, R.L.; Parsons, C.T.; Seckar, D.C.M.; Venkiteswaran, J.J. Internal phosphorus loading in Canadian fresh waters: A critical review and data analysis. Can. J. Fish. Aquat. Sci. 2017, 74, 2005–2029. [Google Scholar] [CrossRef]
- Meriluoto, J.; Spoof, L.; Codd, G.A. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 1st ed.; John Wiley & Sons: Chichester, UK, 2017; 548p. [Google Scholar]
- Kosiba, J.; Krztoń, W. Insight into the role of cyanobacterial bloom in the trophic link between ciliates and predatory copepods. Hydrobiologia 2022, 849, 1195–1206. [Google Scholar] [CrossRef]
- Zhang, J.; Phaneuf, D.J.; Schaeffer, B.A. Property values and cyanobacterial algal blooms: Evidence from satellite monitoring of Inland Lakes. Ecol. Econ. 2022, 199, 107481. [Google Scholar] [CrossRef]
- Pal, M.; Yesankar, P.J.; Dwivedi, A.; Qureshi, A. Biotic control of harmful algal blooms (HABs): A brief review. J. Environ. Manag. 2020, 268, 110687. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Zamyadi, A.; Wert, E.C. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods. Harmful Algae 2021, 109, 102099. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Zamyadi, A.; Wert, E.C. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part II-mechanical and biological control methods. Harmful Algae 2021, 109, 102119. [Google Scholar] [CrossRef] [PubMed]
- Balaji-Prasath, B.; Wang, Y.; Su, Y.P.; Hamilton, D.P.; Lin, H.; Zheng, L.; Zhang, Y. Methods to control harmful algal blooms: A review. Environ. Chem. Lett. 2022, 20, 3133–3152. [Google Scholar] [CrossRef]
- Wang, B.; Wu, D.; Chu, K.H.; Ye, L.; Yip, H.Y.; Cai, Z.; Wong, P.K. Removal of harmful alga, Chattonella marina, by recyclable natural magnetic sphalerite. J. Hazard. Mater. 2017, 324 Pt B, 498–506. [Google Scholar] [CrossRef]
- Noyma, N.P.; Silva, T.P.; Chiarini-Garcia, H.; Amado, A.M.; Roland, F.; Melo, R.C.N. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01. Front. Microbiol. 2015, 6, 1202. [Google Scholar] [CrossRef]
- Grasso, C.R.; Pokrzywinski, K.L.; Waechter, C.; Rycroft, T.; Zhang, Y.; Aligata, A.; Kramer, M.; Lamsal, A. A review of cyanophage-host relationships: Highlighting cyanophages as a potential cyanobacteria control strategy. Toxins 2022, 14, 385. [Google Scholar] [CrossRef]
- Yunes, J.S. Chapter 22—Cyanobacterial Toxins. In Cyanobacteria—From Basic Science to Applications; Mishra, A.K., Tiwari, D.N., Rai, A.N., Eds.; Academic Press: London, UK, 2019; pp. 443–458. [Google Scholar]
- European Commission. Communication (COM(2012) 572 Final) from the Commission to the European Parliament, the Council and the European Economic and Social Committee: Second Regulatory Review on Nanomaterials; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Hamida, R.S.; Ali, M.A.; Redhwan, A.; Bin-Meferij, M.M. Cyanobacteria—A promising platform in green nanotechnology: A review on nanoparticles fabrication and their prospective applications. Int. J. Nanomed. 2020, 15, 6033–6066. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Liu, N.; Wang, W.; Sun, J.T.; Zhu, L.Z. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front. Environ. Sci. Eng. 2020, 14, 103. [Google Scholar] [CrossRef]
- Jiang, Z.; Tan, X.; Huang, Y. Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. Sci. Total Environ. 2022, 806 Pt 4, 150924. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087. [Google Scholar] [CrossRef]
- Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods 2019, 163, 105656. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine 2010, 6, 257–262. [Google Scholar] [CrossRef]
- Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Genetically engineered organisms: Possibilities and challenges of heavy metal removal and nanoparticle synthesis. Clean Technol. 2022, 4, 502–511. [Google Scholar] [CrossRef]
- Thakur, M.; Sharma, A.; Chandel, M.; Pathania, D. Chapter 9—Modern applications and current status of green nanotechnology in environmental industry. In Green Functionalized Nanomaterials for Environmental Applications; Shanker, U., Hussain, C.M., Rani, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 259–281. [Google Scholar]
- Wang, F.; Guan, W.; Xu, L.; Ding, Z.; Ma, H.; Ma, A.; Terry, N. Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Appl. Sci. 2019, 9, 1534. [Google Scholar] [CrossRef]
- Majhi, K.C.; Yadav, M. Chapter 5—Synthesis of inorganic nanomaterials using carbohydrates. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, Boddula, R., Ahamed, M.I., Asiri, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 109–135. [Google Scholar]
- Huang, Y.; Gao, M.; Wang, W.; Liu, Z.; Qian, W.; Chen, C.C.; Zhu, X.; Cai, Z. Effects of manufactured nanomaterials on algae: Implications and applications. Front. Environ. Sci. Eng. 2022, 16, 122. [Google Scholar] [CrossRef]
- Xu, K.; Li, Z.; Juneau, P.; Xiao, F.; Lian, Y.; Zhang, W.; Shu, L.; Jiang, H.; Zhang, K.; Wang, C.; et al. Toxic and protective mechanisms of cyanobacterium Synechocystis sp. in response to titanium dioxide nanoparticles. Environ. Pollut. 2021, 274, 116508. [Google Scholar] [CrossRef]
- Cherchi, C.; Gu, A.Z. Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ. Sci. Technol. 2010, 44, 8302–8307. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, C.; Miljkovic, M.; Diem, M.; Gu, A.Z. nTiO2 induced changes in intracellular composition and nutrient stoichiometry in primary producer—Cyanobacteria. Sci. Total Environ. 2015, 512–513, 345–352. [Google Scholar] [CrossRef]
- Gong, P.; Antrim, A.K.; Tseytlin, I.; Cooley, E.; Fernando, P.A.; Barker, N.D.; Alberts, E.; Kosgei, G.K. Assessment of carbon nanoparticle toxicity to cyanobacteria. In Proceedings of the SETAC (Society of Environmental Toxicology and Chemistry) North America 44th Annual Meeting, Louisville, KY, USA, 12–16 November 2023. [Google Scholar]
- Cherchi, C.; Chernenko, T.; Diem, M.; Gu, A.Z. Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ. Toxicol. Chem. 2011, 30, 861–869. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, K.; Yang, K.; Lin, D. Heteroagglomeration of oxide nanoparticles with algal cells: Effects of particle type, ionic strength and pH. Environ. Sci. Technol. 2015, 49, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Perreault, F.; Bogdan, N.; Morin, M.; Claverie, J.; Popovic, R. Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology 2012, 6, 109–120. [Google Scholar] [CrossRef]
- Sadiq, I.M.; Pakrashi, S.; Chandrasekaran, N.; Mukherjee, A. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J. Nanoparticle Res. 2011, 13, 3287–3299. [Google Scholar] [CrossRef]
- Schwab, F.; Bucheli, T.D.; Lukhele, L.P.; Magrez, A.; Nowack, B.; Sigg, L.; Knauer, K. Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ. Sci. Technol. 2011, 45, 6136–6144. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, X.; Liu, X.; Wang, Z.; Zhang, C.; White, J.C.; Xing, B. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity. Nanotoxicology 2016, 10, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, F.; Vijver, M.G.; Peijnenburg, W.J.G.M. Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere 2021, 276, 130015. [Google Scholar] [CrossRef] [PubMed]
- Middepogu, A.; Hou, J.; Gao, X.; Lin, D. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicol. Environ. Saf. 2018, 161, 497–506. [Google Scholar] [CrossRef]
- Song, J.; Xu, Z.; Chen, Y.; Guo, J. Nanoparticles, an emerging control method for harmful algal blooms: Current technologies, challenges, and perspectives. Nanomaterials 2023, 13, 2384. [Google Scholar] [CrossRef]
- Foyer, C.H.; Shigeoka, S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011, 155, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lu, K.; Mu, L.; Kang, J.; Zhou, Q. Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon 2014, 80, 665–676. [Google Scholar] [CrossRef]
- Bhuvaneshwari, M.; Iswarya, V.; Archanaa, S.; Madhu, G.M.; Kumar, G.K.; Nagarajan, R.; Chandrasekaran, N.; Mukherjee, A. Cytotoxicity of ZnO NPs towards freshwater algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat Toxicol. 2015, 162, 29–38. [Google Scholar] [CrossRef]
- Cao, L.; Huang, F.; Massey, I.Y.; Wen, C.; Zheng, S.; Xu, S.; Yang, F. Effects of microcystin-LR on the microstructure and inflammation-related factors of jejunum in mice. Toxins 2019, 11, 482. [Google Scholar] [CrossRef]
- Antoniou, M.G.; Shoemaker, J.A.; de la Cruz, A.A.; Dionysiou, D.D. LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR. Toxicon 2008, 51, 1103–1118. [Google Scholar] [CrossRef]
- Su, Y.; Deng, Y.; Du, Y. Alternative pathways for photocatalytic degradation of microcystin-LR revealed by TiO2 nanotubes. J. Mol. Catal. A Chem. 2013, 373, 18–24. [Google Scholar] [CrossRef]
- Wu, L.; Lan, J.; Wang, S.; Zhu, J. Synthesis of N-doped carbon Xerogel (N-CX) and its applications for adsorption removal of microcystin-LR. Z. Phys. Chem. 2017, 231, 1525–1541. [Google Scholar] [CrossRef]
- Wu, S.; Lv, J.; Wang, F.; Duan, N.; Li, Q.; Wang, Z. Photocatalytic degradation of microcystin-LR with a nanostructured photocatalyst based on upconversion nanoparticles@TiO2 composite under simulated solar lights. Sci. Rep. 2017, 7, 14435. [Google Scholar] [CrossRef] [PubMed]
- Pinho, L.X.; Azevedo, J.; Brito, A.; Santos, A.; Tamagnini, P.; Vilar, V.J.P.; Vasconcelos, V.M.; Boaventura, R.A.R. Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin. Chem. Eng. J. 2015, 268, 144–152. [Google Scholar] [CrossRef]
- Kennedy, A.; McQueen, A.; Ballentine, M.; May, L.; Fernando, B.; Das, A.; Klaus, K.; Williams, C.; Bortner, M. Degradation of microcystin algal toxin by 3D printable polymer immobilized photocatalytic TiO2. Chem. Eng. J. 2023, 455, 140866. [Google Scholar] [CrossRef]
- Barolo, G.; Livraghi, S.; Chiesa, M.; Paganini, M.C.; Giamello, E. Mechanism of the photoactivity under visible light of N-doped titanium dioxide. Charge carriers migration in irradiated N-TiO2 investigated by electron paramagnetic resonance. J. Phys. Chem. C 2012, 116, 20887–20894. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, T.; Tojo, S.; Kawai, K.; Endo, M.; Fujitsuka, M.; Ohno, T.; Nishijima, K.; Miyamoto, Z.; Majima, T. Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J. Phys. Chem. B 2004, 108, 19299–19306. [Google Scholar] [CrossRef]
- Di Valentin, C.; Pacchioni, G.; Selloni, A. Theory of carbon doping of titanium dioxide. Chem. Mater. 2005, 17, 6656–6665. [Google Scholar] [CrossRef]
- Likodimos, V.; Han, C.; Pelaez, M.; Kontos, A.G.; Liu, G.; Zhu, D.; Liao, S.; de la Cruz, A.A.; O’Shea, K.; Dunlop, P.S.M.; et al. Anion-doped TiO2 nanocatalysts for water purification under visible light. Ind. Eng. Chem. Res. 2013, 52, 13957–13964. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.J.; Song, J.K.; Li, Y.; Wang, Z.C.; Gao, Y.X. A highly efficient TiOX (X = N and P) photocatalyst for inactivation of Microcystis aeruginosa under visible light irradiation. Sep. Purif. Technol. 2019, 222, 99–108. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Zhang, G.; El-Hosainy, H.M.; Ismail, A.A.; O’Shea, K.E.; Falaras, P.; Kontos, A.G.; Dionysiou, D.D. High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 2014, 280, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Pelaez, M.; Falaras, P.; Likodimos, V.; O’Shea, K.; de la Cruz, A.A.; Dunlop, P.S.M.; Byrne, J.A.; Dionysiou, D.D. Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation. J. Mol. Catal. A Chem. 2016, 425, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Khan, M.; He, J.; Lo, I.M.C. Visible–light–driven magnetically recyclable terephthalic acid functionalized g-C3N4/TiO2 heterojunction nanophotocatalyst for enhanced degradation of PPCPs. Appl. Catal. B Environ. 2020, 270, 118898. [Google Scholar] [CrossRef]
- Pestana, C.J.; Hui, J.; Camacho-Muñoz, D.; Edwards, C.; Robertson, P.K.J.; Irvine, J.T.S.; Lawton, L.A. Solar-driven semi-conductor photocatalytic water treatment (TiO2, g-C3N4, and TiO2+g-C3N4) of cyanotoxins: Proof-of-concept study with microcystin-LR. Chemosphere 2023, 310, 136828. [Google Scholar] [CrossRef] [PubMed]
- Song, J.K.; Li, C.Y.; Wang, X.J.; Zhi, S.S.; Wang, X.; Sun, J.H. Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Front. Environ. Sci. Eng. 2021, 15, 129. [Google Scholar] [CrossRef]
- Fan, G.D.; Lin, X.; You, Y.F.; Du, B.H.; Li, X.; Luo, J. Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism. J. Hazard. Mater. 2022, 421, 126703. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, X.; Li, Y.; Jin, Z. Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 499, 143862. [Google Scholar] [CrossRef]
- Seo, Y.J.; Das, P.K.; Arunachalam, M.; Ahn, K.; Ha, J.; Kang, S.H. Drawing the distinguished graphite carbon nitride (g-C3N4) on SnO2 nanoflake film for solar water oxidation. Int. J. Hydrogen Energ. 2020, 45, 22567–22575. [Google Scholar] [CrossRef]
- Pourshirband, N.; Nezamzadeh-Ejhieh, A.; Mirsattari, S.N. The CdS/g-C3N4 nano-photocatalyst: Brief characterization and kinetic study of photodegradation and mineralization of methyl orange. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248, 119110. [Google Scholar] [CrossRef]
- Fan, G.D.; Zhou, J.J.; Zheng, X.M.; Luo, J.; Hong, L.; Qu, F.S. Fast photocatalytic inactivation of Microcystis aeruginosa by metal-organic frameworks under visible light. Chemosphere 2020, 239, 124721. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Xu, Y.O.; Wang, C.X.; Yue, L.; Liu, T.X.; Lan, Q.Q.; Cao, X.S.; Xing, B.S. Photocatalytic inactivation of harmful algae Microcystis aeruginosa and degradation of microcystin by g-C3N4/Cu-MOF nanocomposite under visible light. Sep. Purif. Technol. 2023, 313, 123515. [Google Scholar] [CrossRef]
- Li, X.M.; Schirmer, K.; Bernard, L.; Sigg, L.; Pillai, S.; Behra, R. Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ. Sci. Nano 2015, 2, 594–602. [Google Scholar] [CrossRef]
- Gunasekaran, D.; Chandrasekaran, N.; Jenkins, D.; Mukherjee, A. Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina. J. Environ. Chem. Eng. 2020, 8, 104250. [Google Scholar] [CrossRef]
- Kong, Y.; Sun, H.; Zhang, S.; Zhao, B.; Zhao, Q.; Zhang, X.; Li, H. Oxidation process of lead sulfide nanoparticle in the atmosphere or natural water and influence on toxicity toward Chlorella vulgaris. J. Hazard. Mater. 2021, 417, 126016. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Zhang, B.; Muneeb-Ur-Rehman, M.; Fan, W. Effect of different shapes of Nano-Cu2O and humic acid on two-generations of Daphnia magna. Ecotoxicol. Environ. Saf. 2021, 207, 111274. [Google Scholar] [CrossRef]
- Zhao, C.M.; Wang, W.X. Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 2010, 44, 7699–7704. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.; Hu, X.; Liu, E.; Fan, J. Enhanced photocatalytic H2 production over dual-cocatalyst-modified g-C3N4 heterojunctions. Chin. J. Catal. 2019, 40, 434–445. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, F.; Li, Z.; Zhang, N.; Hao, S. Z-scheme g-C3N4/C/S-g-C3N4 heterostructural nanotube with enhanced porous structure and visible light driven photocatalysis. Micropor. Mesopor. Mat. 2021, 314, 110891. [Google Scholar] [CrossRef]
- Xia, P.; Liu, M.; Cheng, B.; Yu, J.; Zhang, L. Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2—Production activity. ACS Sustain. Chem. Eng. 2018, 6, 8945–8953. [Google Scholar] [CrossRef]
- Fan, G.D.; Cai, C.J.; Chen, Z.Y.; Luo, J.; Du, B.H.; Yang, S.W.; Wu, J.X. Visible-light-driven self-floating Ag2MoO4/TACN@LF photocatalyst inactivation of Microcystis aeruginosa: Performance and mechanisms. J. Hazard. Mater. 2023, 441, 129932. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.J.; Zhao, J.F.; Song, J.K.; Wang, J.Y.; Ma, R.R.; Ma, J.X. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites. Chem. Eng. J. 2017, 320, 253–263. [Google Scholar] [CrossRef]
- Qi, J.; Lan, H.C.; Liu, R.P.; Liu, H.J.; Qu, J.H. Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic Zn-doped Fe3O4 particles. Water Res. 2020, 171, 115448. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, Y.X.; Gao, B.Y.; Zhao, Q. Enhanced algae removal by Ti-based coagulant: Comparison with conventional Al- and Fe-based coagulants. Environ. Sci. Pollut. Res. 2018, 25, 13147–13158. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Y.; Xia, W.; Fu, X.; Ding, L.; Kong, Y.L.; Zhang, H.W.; Fu, K. Magnetic flocculation of algae-laden raw water and removal of extracellular organic matter by using composite flocculant of Fe3O4/cationic polyacrylamide. J. Clean. Prod. 2020, 248, 119276. [Google Scholar] [CrossRef]
- Lu, S.H.; Li, X.Z.; Yu, B.Z.; Ding, J.F.; Zhong, Y.C.; Zhang, H.J.; Liu, G. Efficient Microcystis aeruginosa coagulation and removal by palladium clusters doped g-C3N4 with no light irradiation. Ecotoxicol. Environ. Saf. 2022, 246, 114148. [Google Scholar] [CrossRef]
- Li, Y.L.; Xu, Z.T.; Wang, W.X. Effective flocculation of harmful algae Microcystis aeruginosa by nanoscale metal-organic framework NH2-MIL-101(Cr). Chem. Eng. J. 2022, 433, 134584. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.Y.; Sun, Y.J.; Sun, W.Q.; Xu, Y.H.; Zheng, H.L. Synthesis and characterization of ampholytic flocculant CPCTS-g-P (CTA-DMDAAC) and its flocculation properties for Microcystis aeruginosa removal. Processes 2018, 6, 54. [Google Scholar] [CrossRef]
- Yang, Z.J.; Hou, J.; Wu, M.; Miao, L.Z.; Wu, J.; Li, Y.P. A novel co-graft tannin-based flocculant for the mitigation of harmful algal blooms (HABs): The effect of charge density and molecular weight. Sci. Total Environ. 2022, 806, 150518. [Google Scholar] [CrossRef]
- Singh, G.; Patidar, S.K. Microalgae harvesting techniques: A review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef]
- Lin, M.Z.; Li, W.X.; Hu, T.; Bu, H.T.; Li, Z.L.; Wu, T.F.; Wu, X.X.; Sun, C.; Li, Y.T.; Jiang, G.B. One-step removal of harmful algal blooms by dual-functional flocculant based on self-branched chitosan integrated with flotation function. Carbohydr. Polym. 2021, 259, 117710. [Google Scholar] [CrossRef]
- Copetti, D.; Finsterle, K.; Marziali, L.; Stefani, F.; Tartari, G.; Douglas, G.; Reitzel, K.; Spears, B.M.; Winfield, I.J.; Crosa, G.; et al. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Res. 2016, 97, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.H.; Wang, Y.L.; Li, X.H.; Wang, Y.Y. Investigation of phosphate removal mechanisms by a lanthanum hydroxide adsorbent using p-XRD, FTIR and XPS. Appl. Surf. Sci. 2021, 557, 149838. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.Z.; Sun, Y.B.; Chen, Y.; Qian, J.S. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability. Chem. Eng. J. 2019, 360, 342–348. [Google Scholar] [CrossRef]
- Maamoun, I.; Eljamal, R.; Falyouna, O.; Bensaida, K.; Sugihara, Y.; Eljamal, O. Insights into kinetics, isotherms and thermodynamics of phosphorus sorption onto nanoscale zero-valent iron. J. Mol. Liq. 2021, 328, 115402. [Google Scholar] [CrossRef]
- Zhou, R.; Li, H.; Yu, J.; Chi, R. Nanoscale zero-valent-iron-loaded sugarcane bagasse composite as an efficient adsorbent for phosphate sorption from aqueous solution. Int. J. Environ. Sci. Technol. 2023, 20, 451–460. [Google Scholar] [CrossRef]
- Shanableh, A.; Darwish, N.; Bhattacharjee, S.; Al-Khayyat, G.; Khalil, M.; Mousa, M.; Tayara, A.; Al-Samarai, M. Phosphorous removal by nanoscale zero-valent iron (nZVI) and chitosan-coated nZVI (CS-nZVI). Desalination Water Treat. 2020, 184, 282–291. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Pavagadhi, S.; Vijayaraghavan, K.; Balasubramanian, R.; Ong, S.L. Experimental studies on removal of microcystin-LR by peat. J. Hazard. Mater. 2010, 184, 417–424. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, X.; Xu, L.; Wang, Y.; Linc, J.; Zou, R. Facile and economical synthesis of metal-organic framework MIL-100(Al) gels for high efficiency removal of microcystin-LR. RSC Adv. 2013, 3, 11007–11013. [Google Scholar] [CrossRef]
- Buchman, J.; Hudson-Smith, N.; Landy, K.; Haynes, C. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc. Chem. Res. 2019, 52, 1632–1642. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseytlin, I.N.; Antrim, A.K.; Gong, P. Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms. Toxins 2024, 16, 41. https://doi.org/10.3390/toxins16010041
Tseytlin IN, Antrim AK, Gong P. Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms. Toxins. 2024; 16(1):41. https://doi.org/10.3390/toxins16010041
Chicago/Turabian StyleTseytlin, Ilana N., Anna K. Antrim, and Ping Gong. 2024. "Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms" Toxins 16, no. 1: 41. https://doi.org/10.3390/toxins16010041
APA StyleTseytlin, I. N., Antrim, A. K., & Gong, P. (2024). Nanoparticles for Mitigation of Harmful Cyanobacterial Blooms. Toxins, 16(1), 41. https://doi.org/10.3390/toxins16010041