Description of Pegethrix niliensis sp. nov., a Novel Cyanobacterium from the Nile River Basin, Egypt: A Polyphasic Analysis and Comparative Study of Related Genera in the Oculatellales Order
Abstract
:1. Introduction
2. Results
- Description of the new taxon
- Order Oculatellales
- Family Oculatellaceae
- Pegethrix niliensis G. S. Hentschke sp. nov.
3. Discussion
4. Materials and Methods
4.1. Sampling, Isolation of Strains, and Morphological Analysis
4.2. DNA Extraction, PCR Amplification, and Sequencing
4.3. Phylogenetic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schirrmeister, B.E.; Gugger, M.; Donoghue, P.C.J. Cyanobacteria and the Great Oxidation Event: Evidence from Genes and Fossils. Paleontology 2015, 58, 769–785. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.A. Toxic Cyanobacteria and Cyanotoxins in Public Hot Springs in Saudi Arabia. Toxicon 2008, 51, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Sciuto, K.; Moro, I. Detection of the New Cosmopolitan Genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) Using the 16S RRNA Gene and 16S–23S ITS Region. Mol. Phylogenet. Evol. 2016, 105, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.J.; Kim, T.; Kim, D.H.; Ki, J.S.; Lee, O.M. Edaphophycus Epilithus Gen. et Sp. Nov. (Oscillatoriales, Cyanobacteria) with a Description of the Morphology and Molecular Phylogeny. Phycol. Res. 2022, 70, 171–184. [Google Scholar] [CrossRef]
- Brocke, H.J.; Piltz, B.; Herz, N.; Abed, R.M.M.; Palinska, K.A.; John, U.; Haan, J.; de Beer, D.; Nugues, M.M. Nitrogen Fixation and Diversity of Benthic Cyanobacterial Mats on Coral Reefs in Curaçao. Coral Reefs 2018, 37, 861–874. [Google Scholar] [CrossRef]
- Nuryadi, H.; Sumimoto, S.; Suda, S. Discovery of Novel Nodosilinea Species (Cyanobacteria, Nodosilineales) Isolated from Terrestrial Habitat in Ryukyus Campus, Okinawa, Japan. Algae 2024, 39, 59–74. [Google Scholar] [CrossRef]
- Komárek, J. Several Problems of the Polyphasic Approach in the Modern Cyanobacterial System. Hydrobiologia 2018, 811, 7–17. [Google Scholar] [CrossRef]
- Cheng, Y.; Geng, R.; Shan, L.; Liu, Y.; Zhang, H.; Xiao, P.; Ma, Z.; Li, R. Taxonomic Discussion on Cyanobacterial Systematics at Family Level, with Special Regards to Phormidiaceae by Using the Strains of Chinese Newly Recorded Genera Ancylothrix and Potamolinea. Diversity 2022, 14, 301. [Google Scholar] [CrossRef]
- Strunecký, O.; Ivanova, A.P.; Mareš, J. An Updated Classification of Cyanobacterial Orders and Families Based on Phylogenomic and Polyphasic Analysis. J. Phycol. 2023, 59, 12–51. [Google Scholar] [CrossRef]
- Gao, K.; Cheng, Y.; Geng, R.; Xiao, P.; Zhang, H.; Wu, Z.; Cai, F.; Li, R. Revealing the Diversity of Thin Filamentous Cyanobacteria, with the Discovery of a Novel Species, Pegethrix qiandaoensis Sp. Nov. (Oculatellaceae, Oculatellales), in a Freshwater Lake in China. Diversity 2024, 16, 161. [Google Scholar] [CrossRef]
- Mai, T.; Johansen, J.R.; Pietrasiak, N.; Bohunická, M.; Martin, M.P. Revision of the Synechococcales (Cyanobacteria) through Recognition of Four Families Including Oculatellaceae Fam. Nov. and Trichocoleaceae Fam. Nov. and Six New Genera Containing 14 Species. Phytotaxa 2018, 365, 1–59. [Google Scholar] [CrossRef]
- Pietrasiak, N.; Reeve, S.; Osorio-Santos, K.; Lipson, D.A.; Johansen, J.R. Trichotorquatus Gen. Nov.—A New Genus of Soil Cyanobacteria Discovered from American Drylands. J. Phycol. 2021, 57, 886–902. [Google Scholar] [CrossRef] [PubMed]
- Luz, R.; Kastovsky, J.; Johansen, J.R.; Dias, E.; Fonseca, A.; Urbatzka, R.; Vasconcelos, V.; Gonçalves, V. New Terrestrial Cyanobacteria from the Azores Islands: Description of Venetifunis Gen. Nov. and New Species of Albertania, Kovacikia and Pegethrix. Phycologia 2023, 62, 483–498. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Z.; Huang, L.; Zhang, L.; Yu, G.; Chen, M.; Li, R.; Qiu, B. Chlorophyll Production in Two New Subaerial Cyanobacteria of the Family Oculatellaceae. J. Phycol. 2023, 59, 370–382. [Google Scholar] [CrossRef]
- Elnazer, A.A.; Mostafa, A.; Salman, S.A.; Seleem, E.M.; Al-Gamal, A.G.-A. Temporal and Spatial Evaluation of the River Nile Water Quality between Qena and Sohag Cities, Egypt. Bull. Nat. Res. Cent. 2018, 42, 3. [Google Scholar] [CrossRef]
- Mohamed, Z. Harmful Cyanobacteria and Their Cyanotoxins in Egyptian Fresh Waters–State of Knowledge and Research Needs. Afr. J. Aquat. Sci. 2016, 4, 361–368. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; El-Sharouny, H.M.; Ali, W.S. Microcystin Production in Benthic Mats of Cyanobacteria in the Nile River and Irrigation Canals, Egypt. Toxicon 2006, 47, 584–590. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Elnour, R.O.; Alamri, S.; Hashem, M.; Campos, A.; Vasconcelos, V.; Badawye, H. Presence of the Neurotoxin β-N-Methylamino-L-Alanine in Irrigation Water and Accumulation in Cereal Grains with Human Exposure Risk. Environ. Sci. Pullut. Res. 2024, 31, 31479–31491. [Google Scholar] [CrossRef]
- Johansen, J.R.; Casamatta, D.A. Recognizing Cyanobacterial Diversity through Adoption of a New Species Paradigm. Algol. Stud./Arch. Für Hydrobiol. Suppl. Vol. 2005, 117, 71–93. [Google Scholar] [CrossRef]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló–Móra, R. Uniting the Classification of Cultured and Uncultured Bacteria and Archaea Using 16S RRNA Gene Sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef]
- Jahodářová, E.; Dvořák, P.; Hašler, P.; Holušová, K.; Poulíčková, A. Elainella Gen. Nov.: A New Tropical Cyanobacterium Characterized Using a Complex Genomic Approach. Eur. J. Phycol. 2018, 53, 39–51. [Google Scholar] [CrossRef]
- Geng, R.; Cheng, Y.; Chen, S.; Zhang, H.; Xiao, P.; Chen, S.; Ma, Z.; Han, B.; Li, R. Maricoleus Vaginatus Gen. et Sp. Nov. (Oculatellaceae, Synechococcales), a Novel Cyanobacterium Isolated from a Marine Ecosystem in China. Fottea 2024, 24, 27–41. [Google Scholar] [CrossRef]
- Oliveira, F.; Hentschke, G.S.; Morais, J.; Silva, R.; Cruz, P.; Vasconcelos, V. Exploring the Cyanobacterial Diversity in Portugal: Description of Four New Genera from LEGE-CC Using the Polyphasic Approach. J. Phycol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Saraf, A.; Singh, P.; Kumar, N.; Pal, S.; Johansen, J.R. Two New Species of Dulcicalothrix (Nostocales, Cyanobacteria) from India and Erection of Brunnivagina gen. nov., with Observations on the Problem of Using Multiple Ribosomal Operons in Cyanobacterial Taxonomy. J. Phycol. 2024. [Google Scholar] [CrossRef]
- Bohunická, M.; Johansen, J.R.; VIllanueva, C.D.; Mares, J.; Stenclová, L.; Becerra-Absalón, I.; Hauer, T.; Kastovsky, J. Revision of the Pantropical Genus Brasilonema (Nostocales, Cyanobacteria), with the Description of 24 Species New to Science. Fottea 2024, 24, 137–184. [Google Scholar] [CrossRef]
- VIllanueva, C.; Bohunická, M.; Johansen, J.R. We Are Doing It Wrong: Putting Homology before Phylogeny in Cyanobacterial Taxonomy. J. Phycol. 2024. [Google Scholar] [CrossRef]
- Jusko, B.M.; Johansen, J.R.; Mehda, S.; Perona, E.; Munoz-Martin, M.A. Four Novel Species of Kastovskya (Coleofasciculaceae, Cyanobacteriota) from Three Continents with a Taxonomic Revision of Symplocastrum. Diversity 2024, 16, 474. [Google Scholar] [CrossRef]
- Turland, E.; Wiersema, J.H.; Barrie, F.R.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Kusber, W.-H.; Li, D.-Z.; Marhold, K.; et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code), Proceedings of the Nineteenth International Botanical Congress Shenzhen, China, 23–29 July 2017; Koeltz Botanical Books: Kenzingen, Germany, 2018. [Google Scholar]
- Kotai, J. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae; Norwegian Institute for Water Research: Oslo, Norway, 1972. [Google Scholar]
- Neilan, B.A.; Jacobs, D.; Del Dot, T.; Blackall, L.L.; Hawkins, P.R.; Cox, P.T.; Goodman, A.E. RRNA Sequences and Evolutionary Relationships among Toxic and Nontoxic Cyanobacteria of the Genus Microcystis. Int. J. Syst. Bacteriol. 1997, 47, 693–697. [Google Scholar] [CrossRef]
- Taton, A.; Grubisic, S.; Brambilla, E.; De Wit, R.; Wilmotte, A. Cyanobacterial Diversity in Natural and Artificial Microbial Mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): A Morphological and Molecular Approach. Appl. Environ. Microbiol. 2003, 69, 5157–5169. [Google Scholar] [CrossRef]
- Katana, A.; Kwiatowski, J.; Spalik, K.; Zakrys, B.; Szalacha, E.; Szymanska, H. Phylogenetic Position of Koliella (Chlorophyta) as Inferred from Nuclear and Chloroplast Small Subunit RDNA. J. Phycol. 2001, 37, 443–451. [Google Scholar] [CrossRef]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR Primers to Amplify 16S RRNA Genes from Cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.J. 16S/23S RRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; Wiley & Sons: Hoboken, NJ, USA, 1991; pp. 115–175. [Google Scholar]
- Firth, H.V.; Richards, S.M.; Bevan, A.P.; Clayton, S.; Corpas, M.; Rajan, D.; Van Vooren, S.; Moreau, Y.; Pettett, R.M.; Carter, N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009, 84, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum-Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acid. Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.T.; Von Haeseler, A.; Minh, B.Q. W- 421 IQ-TREE: A Fast Online Phylogenetic Tool for Maximum Likelihood Analysis. Nucleic Acids Res. 2016, 44, 232–235. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.; Huelsenbeck, J.P. MrBayes 15 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Katoh, K.; Kazuharu, M.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Zuker, M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Lukesova, A.; Johansen, J.R.; Martin, M.P.; Casamatta, D.A. Aulosira Bohemensis Sp. Nov.: Further Phylogenetic Uncertainty at the Base of the Nostocales (Cyanobacteria). Phycologia 2009, 48, 118–129. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
P. niliensis sp. nov. | Pegethrix | Cartusia | Maricoleus | Elainella | Drouetiella | |
---|---|---|---|---|---|---|
Trichome/filaments mode of growth | Erect fascicles from the bottom of the culture flasks (liquid medium) | Radially spreading | Not described | Benthic masses | Fascicles or tufts | Not described |
Filaments | Long, wavy, intensely entangled or forming fascicles | Entangled or in fascicles, with nodule formation. Straight, flexuous, sometimes coiled, with nodules. | Sometimes in fascicles. Straight or flexuous, sometimes with more than one trichome in a sheath | Entangled, rarely with more than one trichome within a sheath | Forming fascicles | Solitary or in fascicles. Straight, flexuous, or coiled |
Trichomes | Not tapered. Apical cells rounded | Not tapered. Apical cells rounded | Not tapered. Apical cells rounded | Not tapered | Not tapered. | Not tapered. Apical cells |
False branching | Not present | Rare, single or double | Not present | Facultative | Yes, single and double | Rare, single |
Constrictions at cell walls | Facultative | Facultative | Facultative | Facultative | Facultative | Facultative |
Sheaths | Firm, colorless, attached to the trichome | Firm to soft and thin or widened, colorless | Firm, thin or widened, colorless | Facultative, layered, colorless, thin or widened | Firm, thin, colorless | Firm, thin, colorless |
Motility | No | Yes | Not described | Not described | No | Not described |
Cell shape | Isodiametric, longer or shorter than wide | Isodiametric, longer or shorter than wide | Isodiametric or shorter than wide | Isodiametric | Isodiametric or longer than wide | Isodiametric, longer or shorter than wide |
Cell content | Homogenous or with granule | Homogenous or with granule | Homogenous or with granule | Granular | Often with granules | Homogenous or with granule |
Necridia | Yes | Yes | Yes | Not described | Yes | Facultative |
Cell dimensions (μm) | 2.1–3.1 long × 1.9–2.8 wide | 1–3 long × 1.3–3.3 wide | 1.3–2 long × 1.8–3.5 wide | 1.3–5.4 long × 1.4–4.2 | 1.7–2.6 long × 1.3–3.8 wide | 2.1–5.4 long × 1.7–2.1 wide |
Habitat | Benthic mat. Irrigation canal from Nile River, Egypt | Terrestrial. Seep walls | Terrestrial | Marine | On rock in a lake | Terrestrial |
P. niliensis sp. nov. | P. bostrychoides | P. olivacea | P. atlantica | P. indistincta | P. sichuanica | P. convoluta | P. qiandaoensis | |
---|---|---|---|---|---|---|---|---|
Trichome/filaments mode of growth | Erect fascicles from the bottom of the culture flasks (liquid medium) | Radial fasciculation, penetrating the agar | Spreading radially, flat and mucilaginous or mounded | Not described | Not described | Radially spreading, with loose fasciculation or clustered | Radially spreading, growing into the agar | Not described |
Filaments | Long, wavy, intensely entangled or forming fascicles | Long or short, sometimes forming nodules or loosely to tightly spirally coiled | Long or short, frequently irregularly bent due to uneven cell division along filament. Sometimes loosely coiled to form irregular nodules | Long, fasciculate, straight or loosely coiled | Long, with variation in width between young and mature trichomes. Rarely with more than one trichome sharing a common sheath | Straight or slightly bent | Fasciculate, long, straight or slightly bent, frequently forming loose to compact nodules | Long. Not forming nodules |
Trichomes | Not tapered. Apical cells rounded | Not tappered | Cell division along trichomes often irregular, producing cells with variable shape and width | Not tapered | Not tapered. Apical cells rounded | Apical cells rounded | Not tapered | Not tapered. Apical cells rounded |
False branching | Not present | Rare, single | Yes | Rare, single | Rare, single or double | Not described | Sometimes singly or doubly false branched | Single or double |
Constrictions at cell walls | Facultative | More or less constricted at the distinctly visible cross-walls | Constricted at indistinctly visible cross-walls | Not or slightly constricted at the visible cross-walls | Not or slightly constricted at distinctly visible cross-walls | Not or slightly constricted at the cross-walls | Not or slightly constricted at distinctly visible cross-walls, | Not or slightly constricted at visible cross-walls |
Sheaths | Firm, colorless, tightly embracing the trichome (up to 1 μm) or widened (up to 3 μm) | Firm, colorless, usually attached to trichome, occasionally softer, widened, sometimes irregular and stratified | Sheath firm, colorless, usually attached to trichome, occasionally widened | Firm, colorless, attached to the trichome | Firm, usually attached to trichome, occasionally widened, rarely irregular and stratified, absent in immature filaments | Firm, colorless, thin, usually attached to the trichome, occasionally distinct, clear, but occasionally widened | Firm, colorless, usually attached to trichome, occasionally widened, rarely irregular and stratified | Firm, attached to the trichome, occasionally widened |
Cell shape | Isodiametric, longer or shorter than wide | Slightly shorter than wide to longer than wide | Cells occasionally isodiametric, shorter than wide in meristematic regions | Mostly shorter than wide | Isodiametric, often shorter than wide especially in meristematic zones, slightly longer than wide in young trichomes | Isodiametric or slightly shorter than wide | Slightly shorter than wide to longer than wide | Isodiametric, longer or shorter than wide |
Cell content (light microscopy) | Homogenous or with granule | Rarely with a single central granule | Large central granule | Sometimes with a unique central granule | Not described | Polyphosphate body commonly visible in nucleoid region | Sometimes with a single central granule | Not described |
Necridia | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Not described |
Cell dimensions (μm) | 2.1–3.1 long × 1.9–2.8 wide | 1.0–3.0 long × 1.5–2.5–(3.0) wide | 1.7–2.6 long × 1.9–3.5 wide | 2.4 long × 1.8–3.0 wide | (1.3)–1.7–2.7 long × 1.9–3.3 wide | 1.0–2.5–(3.7) long × 1.3–2.5 (3.2) wide | (1.3)1.7–2.7 long × 2.3–4.0 wide | |
Habitat | Benthic mat. Irrigation canal from Nile River, Egypt | Terrestrial. Sandstone seep wall, UT, USA | Terrestrial. Sandstone seep wall, UT, USA | Rocky substrate over lakes, Azores, Portugal | Terrestrial. Seep wall and waterfall in Navajo Sandstone, UT, USA | Terrestrial. Brick wall alongside mountain, Sichuan, China | Terrestrial. Large seep wall and waterfall in Navajo Sandstone | Planktonic. Freshwater |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hentschke, G.S.; Mohamed, Z.; Campos, A.; Vasconcelos, V.M. Description of Pegethrix niliensis sp. nov., a Novel Cyanobacterium from the Nile River Basin, Egypt: A Polyphasic Analysis and Comparative Study of Related Genera in the Oculatellales Order. Toxins 2024, 16, 451. https://doi.org/10.3390/toxins16100451
Hentschke GS, Mohamed Z, Campos A, Vasconcelos VM. Description of Pegethrix niliensis sp. nov., a Novel Cyanobacterium from the Nile River Basin, Egypt: A Polyphasic Analysis and Comparative Study of Related Genera in the Oculatellales Order. Toxins. 2024; 16(10):451. https://doi.org/10.3390/toxins16100451
Chicago/Turabian StyleHentschke, Guilherme Scotta, Zakaria Mohamed, Alexandre Campos, and Vitor M. Vasconcelos. 2024. "Description of Pegethrix niliensis sp. nov., a Novel Cyanobacterium from the Nile River Basin, Egypt: A Polyphasic Analysis and Comparative Study of Related Genera in the Oculatellales Order" Toxins 16, no. 10: 451. https://doi.org/10.3390/toxins16100451
APA StyleHentschke, G. S., Mohamed, Z., Campos, A., & Vasconcelos, V. M. (2024). Description of Pegethrix niliensis sp. nov., a Novel Cyanobacterium from the Nile River Basin, Egypt: A Polyphasic Analysis and Comparative Study of Related Genera in the Oculatellales Order. Toxins, 16(10), 451. https://doi.org/10.3390/toxins16100451