Therapeutic Potential of Bee and Wasp Venom in Anti-Arthritic Treatment: A Review
Abstract
:1. Introduction
1.1. The Types of Arthritis
1.2. Bee (Apis) Venom
1.3. Wasp (Vespa) Venom
2. Anti-Arthritic Effects of Bee Venom and Its Major Components
2.1. Anti-Arthritic Effects of Bee Venom
2.2. Anti-Arthritic Effects of the Main Components of Bee Venom
3. Anti-Arthritic Effects of Wasp Venom and Its Major Components
3.1. Anti-Arthritic Effects of Wasp Venom
3.2. Potential Anti-Arthritic Effects of the Main Components of Wasp Venom
4. Conclusions and Future Prospects
5. Methodology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tang, C.H. Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0. Int. J. Mol. Sci. 2020, 21, 8125. [Google Scholar] [CrossRef] [PubMed]
- Petrovská, N.; Prajzlerová, K.; Vencovský, J.; Šenolt, L.; Filková, M. The Pre-Clinical Phase of Rheumatoid Arthritis: From Risk Factors to Prevention of Arthritis. Autoimmun. Rev. 2021, 20, 102797. [Google Scholar] [CrossRef] [PubMed]
- Harth, M.; Nielson, W.R. Pain and Affective Distress in Arthritis: Relationship to Immunity and Inflammation. Expert. Rev. Clin. Immunol. 2019, 15, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.J.; Ravindran, V. Infections and Arthritis. Best. Pract. Res. Clin. Rheumatol. 2014, 28, 935–959. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, P.; Zhang, R.D.; Fang, Y.; Jiang, L.Q.; Fang, X.; Zhao, Y.; Wang, D.G.; Ni, J.; Pan, H.F. Mendelian Randomization as a Tool to Gain Insights into the Mosaic Causes of Autoimmune Diseases. Autoimmun. Rev. 2022, 21, 103210. [Google Scholar] [CrossRef]
- Prakken, B.; Albani, S.; Martini, A. Juvenile Idiopathic Arthritis. Lancet 2011, 377, 2138–2149. [Google Scholar] [CrossRef]
- Charles, J.; Britt, H.; Pan, Y. Rheumatoid Arthritis. Aust. Fam. Physician 2013, 42, 765. [Google Scholar]
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef]
- Lee, D.M.; Weinblatt, M.E. Rheumatoid Arthritis. Lancet 2001, 358, 903–911. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef]
- Prasad, P.; Verma, S.; Surbhi; Ganguly, N.K.; Chaturvedi, V.; Mittal, S.A. Rheumatoid arthritis: Advances in treatment strategies. Mol. Cell Biochem. 2023, 478, 69–88. [Google Scholar] [CrossRef] [PubMed]
- Demoruelle, M.K.; Deane, K.D. Treatment Strategies in Early Rheumatoid Arthritis and Prevention of Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2012, 14, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St. Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1108–1123. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Maisha, J.A.; El-Gabalawy, H.S.; O’Neil, L.J. Modifiable risk factors linked to the development of rheumatoid arthritis: Evidence, immunological mechanisms and prevention. Front. Immunol. 2023, 14, 1221125. [Google Scholar] [CrossRef]
- Hawker, G.A.; King, L.K. The Burden of Osteoarthritis in Older Adults. Clin. Geriatr. Med. 2022, 38, 181–192. [Google Scholar] [CrossRef]
- Yan, Y.; Lu, A.; Dou, Y.; Zhang, Z.; Wang, X.Y.; Zhai, L.; Ai, L.Y.; Du, M.Z.; Jiang, L.X.; Zhu, Y.J.; et al. Nanomedicines Reprogram Synovial Macrophages by Scavenging Nitric Oxide and Silencing Ca9 in Progressive Osteoarthritis. Adv. Sci. 2023, 10, e2207490. [Google Scholar] [CrossRef]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Bai, M.; Hang, S.H.; Jin, S. Experience of Jin Shi Treating Psoriatic Arthritis from the Collaterals. Chin. J. Libr. Inf. Sci. Tradit. Chin. Med. 2023, 47, 72–74. [Google Scholar]
- Karmacharya, P.; Chakradhar, R.; Ogdie, A. The epidemiology of psoriatic arthritis: A literature review. Best. Pract. Res. Clin. Rheumatol. 2021, 35, 101692. [Google Scholar] [CrossRef]
- Jin, J.Q.; Elhage, K.G.; Spencer, R.K.; Davis, M.S.; Hakimi, M.; Bhutani, T.; Liao, W. Mendelian Randomization Studies in Psoriasis and Psoriatic Arthritis: A Systematic Review. J. Investig. Dermatol. 2023, 143, 762–776.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, Y.; Cui, L.; Shi, Y.; Guo, C. Advances in the Pathogenesis of Psoriasis: From Keratinocyte Perspective. Cell Death Dis. 2022, 13, 81. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Li, X.H. Research Status of Tofacitinib in the Treatment of Psoriatic Arthritis. Med. Innov. China 2022, 19, 170–173. [Google Scholar]
- Cui, R.; Dai, S.M. Disgnosis and treatment of psoriatic arthritis. J. Clin. Intern. Med. 2021, 38, 301–304. [Google Scholar]
- Kerschbaumer, A.; Smolen, J.S.; Dougados, M.; de Wit, M.; Primdahl, J.; McInnes, I.; van der Heijde, D.; Baraliakos, X.; Falzon, L.; Gossec, L. Pharmacological Treatment of Psoriatic Arthritis: A Systematic Literature Research for the 2019 Update of the Eular Recommendations for the Management of Psoriatic Arthritis. Ann. Rheum. Dis. 2020, 79, 778–786. [Google Scholar] [CrossRef]
- Xiaoru, D.; Song, Z. Treatment Strategies for Psoriatic Arthritis. Dermatol. Bull. 2024, 41, 34–42. [Google Scholar]
- Huynh, D.; Kavanaugh, A. Psoriatic Arthritis: Current Therapy and Future Approaches. Rheumatology 2015, 54, 20–28. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Jean, Y.H.; Lin, S.C.; Feng, C.W.; Kuo, H.M.; Lai, Y.C.; Kuo, T.J.; Chen, N.F.; Lee, H.P.; Wen, Z.H. Etoricoxib Prevents Progression of Osteolysis in Repeated Intra-Articular Monosodium Urate-Induced Gouty Arthritis in Rats. J. Adv. Res. 2020, 24, 109–120. [Google Scholar] [CrossRef]
- Liu, H.J.; Pan, X.X.; Liu, B.Q.; Gui, X.; Hu, L.; Jiang, C.Y.; Han, Y.; Fan, Y.X.; Tang, Y.L.; Liu, W.T. Grape Seed-Derived Procyanidins Alleviate Gout Pain via Nlrp3 Inflammasome Suppression. J. Neuroinflam. 2017, 14, 74. [Google Scholar] [CrossRef]
- Dalbeth, N.; Choi, H.K.; Joosten, L.A.B.; Khanna, P.P.; Matsuo, H.; Perez-Ruiz, F.; Stamp, L.K. Gout (primer). Nat. Rev. Dis. Primers 2019, 5, 69. [Google Scholar] [CrossRef]
- Rees, F.; Hui, M.; Doherty, M. Optimizing Current Treatment of Gout. Nat. Rev. Rheumatol. 2014, 10, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.J.; Ma, X.D.; Ai, G.X.; Yu, Q.X.; Chen, X.Y.; Yan, F.; Li, Y.C.; Xie, J.H.; Su, Z.R.; Xie, Q.F. Palmatine Protects against Msu-Induced Gouty Arthritis Via Regulating the Nf-Κb/Nlrp3 and Nrf2 Pathways. Drug Des. Dev. Ther. 2022, 16, 2119–2132. [Google Scholar] [CrossRef] [PubMed]
- Park, E.H.; Choi, S.T.; Song, J.S. Current state and prospects of gout treatment in Korea. Korean J. Intern. Med. 2022, 37, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Shiozawa, A.; Szabo, S.M.; Bolzani, A.; Cheung, A.; Choi, H.K. Serum Uric Acid and the Risk of Incident and Recurrent Gout: A Systematic Review. J. Rheumatol. 2017, 44, 388–396. [Google Scholar] [CrossRef]
- Ringold, S.; Weiss, P.F.; Beukelman, T.; DeWitt, E.M.; Ilowite, N.T.; Kimura, Y.; Laxer, R.M.; Lovell, D.J.; Nigrovic, P.A.; Robinson, A.B.; et al. 2013 Update of the 2011 American College of Rheumatology Recommendations for the Treatment of Juvenile Idiopathic Arthritis: Recommendations for the Medical Therapy of Children with Systemic Juvenile Idiopathic Arthritis and Tuberculosis Screening among Children Receiving Biologic Medications. Arthritis Rheum. 2013, 65, 2499–2512. [Google Scholar]
- Brunner, H.I.; Schanberg, L.E.; Kimura, Y.; Dennos, A.; Co, D.O.; Colbert, R.A.; Fuhlbrigge, R.C.; Goldmuntz, E.; Kingsbury, D.J.; Patty-Resk, C.; et al. New Medications Are Needed for Children with Juvenile Idiopathic Arthritis. Arthritis Rheumatol. 2020, 72, 1945–1951. [Google Scholar] [CrossRef]
- Huang, H.Y.R.; Wireko, A.A.; Miteu, G.D. Advancements and progress in juvenile idiopathic arthritis: A Review of pathophysiology and treatment. Medicine 2024, 103, e37567. [Google Scholar] [CrossRef]
- Ravelli, A.; Martini, A. Juvenile Idiopathic Arthritis. Lancet 2007, 369, 767–778. [Google Scholar] [CrossRef]
- Hinze, C.H.; Foell, D.; Kessel, C. Treatment of Systemic Juvenile Idiopathic Arthritis. Nat. Rev. Rheumatol. 2023, 19, 778–789. [Google Scholar] [CrossRef]
- Viola, S.; Felici, E.; Magni-Manzoni, S.; Pistorio, A.; Buoncompagni, A.; Ruperto, N.; Rossi, F.; Bartoli, M.; Martini, A.; Ravelli, A. Development and Validation of a Clinical Index for Assessment of Long-Term Damage in Juvenile Idiopathic Arthritis. Arthritis Rheum. 2005, 52, 2092–2102. [Google Scholar] [CrossRef]
- Giancane, G.; Muratore, V.; Marzetti, V.; Quilis, N.; Benavente, B.S.; Bagnasco, F.; Alongi, A.; Civino, A.; Quartulli, L.; Consolaro, A.; et al. Disease Activity and Damage in Juvenile Idiopathic Arthritis: Methotrexate Era Versus Biologic Era. Arthritis Res. Ther. 2019, 21, 168. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Lovell, D.J.; Albani, S.; Brunner, H.I.; Hyrich, K.L.; Thompson, S.D.; Ruperto, N. Juvenile Idiopathic Arthritis. Nat. Rev. Dis. Primers 2022, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Peng, X.; Zhang, Y.; Wang, P.; Xie, Z.; Li, J.; Liu, W.; Ye, G.; Lin, Y.; Li, G.; et al. A Novel Anti-Ros Osteoblast-Specific Delivery System for Ankylosing Spondylitis Treatment via Suppression of Both Inflammation and Pathological New Bone Formation. J. Nanobiotechnol. 2023, 21, 168. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.M.; Deodhar, A.; Gensler, L.S.; Dubreuil, M.; Yu, D.; Khan, M.A.; Haroon, N.; Borenstein, D.; Wang, R.; Biehl, A.; et al. 2019 Update of the American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network Recommendations for the Treatment of Ankylosing Spondylitis and Nonradiographic Axial Spondyloarthritis. Arthritis Care Res. 2019, 71, 1285–1299. [Google Scholar] [CrossRef]
- Sieper, J.; Poddubnyy, D. Axial Spondyloarthritis. Lancet 2017, 390, 73–84. [Google Scholar] [CrossRef]
- Ranganathan, V.; Gracey, E.; Brown, M.A.; Inman, R.D.; Haroon, N. Pathogenesis of Ankylosing Spondylitis—Recent Advances and Future Directions. Nat. Rev. Rheumatol. 2017, 13, 359–367. [Google Scholar] [CrossRef]
- Vander Cruyssen, B.; Vastesaeger, N.; Collantes-Estévez, E. Hip Disease in Ankylosing Spondylitis. Curr. Opin. Rheumatol. 2013, 25, 448–454. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Ma, Z. Multi-Target Mechanism of Tripteryguim Wilfordii Hook for Treatment of Ankylosing Spondylitis Based on Network Pharmacology and Molecular Docking. Ann. Med. 2021, 53, 1090–1098. [Google Scholar] [CrossRef]
- Li, Y.; Dai, M.; Wang, L.; Wang, G. Polysaccharides and Glycosides from Aralia Echinocaulis Protect Rats from Arthritis by Modulating the Gut Microbiota Composition. J. Ethnopharmacol. 2021, 269, 113749. [Google Scholar] [CrossRef]
- Li, W.; Yu, L.; Li, W.; Ge, G.; Ma, Y.; Xiao, L.; Qiao, Y.; Huang, W.; Huang, W.; Wei, M.; et al. Prevention and Treatment of Inflammatory Arthritis with Traditional Chinese Medicine: Underlying Mechanisms Based on Cell and Molecular Targets. Ageing Res. Rev. 2023, 89, 101981. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, D.; Cao, Z.; Chen, Q.; Wang, L.; Fang, G.; Pang, Y. Traditional Therapies of Zhuang Medicine Improve Pain and Joint Dysfunction of Patients in Rheumatoid Arthritis: A Protocol for Systematic Review and Meta-Analysis. Medicine 2020, 99, e22264. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Yang, J.; Meng, Q.; Ling, Y.; Wei, Q.; Wang, Z.G.; Wei, Q.; Chen, J.; Ye, J.; Han, X.; et al. Soufeng Sanjie Formula Alleviates Collagen-Induced Arthritis in Mice by Inhibiting Th17 Cell Differentiation. Chin. Med. 2021, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Cherniack, E.P.; Govorushko, S. To Bee or Not to Bee: The Potential Efficacy and Safety of Bee Venom Acupuncture in Humans. Toxicon 2018, 154, 74–78. [Google Scholar] [CrossRef]
- Yan, Y.B.; Yu, L.Q.; Chen, B.Y.; Cao, C.G.; Zhao, H.R.; Wang, Q.; Xie, D.; Xi, Y.; Zhang, C.G.; Cheng, J.D. Mastoparan M Suppressed Nlrp3 Inflammasome Activation by Inhibiting Mapk/Nf-Κb and Oxidative Stress in Gouty Arthritis. J. Inflamm. Res. 2023, 16, 6179–6193. [Google Scholar] [CrossRef]
- Hwang, D.S.; Kim, S.K.; Bae, H. Therapeutic Effects of Bee Venom on Immunological and Neurological Diseases. Toxins 2015, 7, 2413–2421. [Google Scholar] [CrossRef]
- Son, D.J.; Lee, J.W.; Lee, Y.H.; Song, H.S.; Lee, C.K.; Hong, J.T. Therapeutic Application of Anti-Arthritis, Pain-Releasing, and Anti-Cancer Effects of Bee Venom and Its Constituent Compounds. Pharmacol. Ther. 2007, 115, 246–270. [Google Scholar] [CrossRef]
- Shin, S.H.; Ye, M.K.; Choi, S.Y.; Park, K.K. Anti-Inflammatory Effect of Bee Venom in an Allergic Chronic Rhinosinusitis Mouse Model. Mol. Med. Rep. 2018, 17, 6632–6638. [Google Scholar] [CrossRef]
- Oršolić, N. Bee Venom in Cancer Therapy. Cancer Metastasis Rev. 2012, 31, 173–194. [Google Scholar] [CrossRef]
- Khalil, A.; Elesawy, B.H.; Ali, T.M.; Ahmed, O.M. Bee Venom: From Venom to Drug. Molecules 2021, 26, 4941. [Google Scholar] [CrossRef]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef]
- Chang, Y.H.; Bliven, M.L. Anti-Arthritic Effect of Bee Venom. Agents Actions 1979, 9, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Park, H.J.; Chae, Y.; Lim, S. An Overview of Bee Venom Acupuncture in the Treatment of Arthritis. Evid. Based Complement. Altern. Med. 2005, 2, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Jeong, Y.J.; Park, K.K.; Park, Y.Y.; Chung, I.K.; Lee, K.G.; Yeo, J.H.; Han, S.M.; Bae, Y.S.; Chang, Y.C. Bee Venom Suppresses Pma-Mediated Mmp-9 Gene Activation Via Jnk/P38 and Nf-Kappab-Dependent Mechanisms. J. Ethnopharmacol. 2010, 127, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Kim, W. Bee Venom and Its Sub-Components: Characterization, Pharmacology, and Therapeutics. Toxins 2021, 13, 191. [Google Scholar] [CrossRef] [PubMed]
- Habermann, E. Bee and wasp venoms. Science 1972, 177, 314–322. [Google Scholar] [CrossRef]
- Dong, S.H.; Sun, A.L.; Tan, K.; Nieh, J.C. Identification of Giant Hornet Vespa Mandarinia Queen Sex Pheromone Components. Curr. Biol. 2022, 32, R211–R212. [Google Scholar] [CrossRef]
- Wen, X.X.; Gongpan, P.; Meng, Y.; Nieh, J.C.; Yuan, H.; Tan, K. Functional Characterization, Antimicrobial Effects, and Potential Antibacterial Mechanisms of New Mastoparan Peptides from Hornet Venom (Vespa Ducalis, Vespa Mandarinia, and Vespa Affinis). Toxicon 2021, 200, 48–54. [Google Scholar] [CrossRef]
- Zhou, S.T.; Luan, K.; Ni, L.L.; Wang, Y.; Yuan, S.M.; Che, Y.H.; Yang, Z.Z.; Zhang, C.G.; Yang, Z.B. A Strategy for Quality Control of Vespa Magnifica (Smith) Venom Based on Hplc Fingerprint Analysis and Multi-Component Separation Combined with Quantitative Analysis. Molecules 2019, 24, 2920. [Google Scholar] [CrossRef]
- Dutta, P.; Dey, T.; Manna, P.; Kalita, J. Antioxidant Potential of Vespa Affinis L., a Traditional Edible Insect Species of North East India. PLoS ONE 2016, 11, e0156107. [Google Scholar] [CrossRef]
- Ni, L.L.; Che, Y.H.; Sun, H.M.; Wang, B.; Wang, M.Y.; Yang, Z.Z.; Liu, H.; Xiao, H.; Yang, D.S.; Zhu, H.L.; et al. The Therapeutic Effect of Wasp Venom (Vespa Magnifica, Smith) and Its Effective Part on Rheumatoid Arthritis Fibroblast-like Synoviocytes through Modulating Inflammation, Redox Homeostasis and Ferroptosis. J. Ethnopharmacol. 2023, 317, 116700. [Google Scholar] [CrossRef]
- Jin, F.M.; Wang, M.; Wu, X.M.; Xiao, H.; Wang, D.X.; Wang, G.M.; Zhang, C.G.; Zhao, H.R. Effects of Wasp Venom on Venous Thrombosis in Rats. Iran. J. Basic. Med. Sci. 2022, 25, 822–826. [Google Scholar] [PubMed]
- Gao, Y.; Yu, W.X.; Duan, X.M.; Ni, L.L.; Liu, H.; Zhao, H.R.; Xiao, H.; Zhang, C.G.; Yang, Z.B. Wasp Venom Possesses Potential Therapeutic Effect in Experimental Models of Rheumatoid Arthritis. Evid. Based Complement. Altern. Med. 2020, 2020, 6394625. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, X.M.; He, M.; Liu, H.; Yang, Z.B.; Li, Y.; Wang, G.M.; Zhao, H.R.; Zhang, C.G. Mastoparan M Extracted from Vespa Magnifica Alleviates Neuronal Death in Global Cerebral Ischemia-Reperfusion Rat Model. Iran. J. Basic. Med. Sci. 2022, 25, 320–329. [Google Scholar] [PubMed]
- Chen, R.; Wang, J.; Dai, X. Augmented PFKFB3-mediated glycolysis by interferon-γ promotes inflammatory M1 polarization through the JAK2/STAT1 pathway in local vascular inflammation in Takayasu arteritis. Arthritis Res. Ther. 2022, 24, 266. [Google Scholar] [CrossRef] [PubMed]
- Goo, B.; Lee, J.; Park, C.; Yune, T.; Park, Y. Bee Venom Alleviated Edema and Pain in Monosodium Urate Crystals-Induced Gouty Arthritis in Rat by Inhibiting Inflammation. Toxins 2021, 13, 661. [Google Scholar] [CrossRef]
- Tekeoğlu, İ.; Akdoğan, M.; Çelik, İ. Investigation of anti-inflammatory effects of bee venom in experimentally induced adjuvant arthritis. Reumatologia 2020, 58, 265–271. [Google Scholar] [CrossRef]
- Im, E.J.; Kim, S.J.; Hong, S.B.; Park, J.K.; Rhee, M.H. Anti-Inflammatory Activity of Bee Venom in Bv2 Microglial Cells: Mediation of Myd88-Dependent Nf-Κb Signaling Pathway. Evid. Based Complement. Altern. Med. 2016, 2016, 3704764. [Google Scholar] [CrossRef]
- Dos Santos-Pinto, J.R.A.; Perez-Riverol, A.; Lasa, A.M.; Palma, M.S. Diversity of Peptidic and Proteinaceous Toxins from Social Hymenoptera Venoms. Toxicon 2018, 148, 172–196. [Google Scholar] [CrossRef]
- Aufschnaiter, A.; Kohler, V.; Khalifa, S.; Abd El-Wahed, A.; Du, M.; El-Seedi, H.; Büttner, S. Apitoxin and Its Components against Cancer, Neurodegeneration and Rheumatoid Arthritis: Limitations and Possibilities. Toxins 2020, 12, 66. [Google Scholar] [CrossRef]
- Lee, G.; Bae, H. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend. Toxins 2016, 8, 48. [Google Scholar] [CrossRef]
- Kim, W.H.; An, H.J.; Kim, J.Y.; Gwon, M.G.; Gu, H.; Jeon, M.; Kim, M.K.; Han, S.M.; Park, K.K. Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis Lps-Stimulated Human Keratinocytes. Molecules 2018, 23, 332. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Son, D.J.; Lee, C.W. Melittin inhibits inflammatory target gene expression and mediator generation via interaction with IkappaB kinase. Biochem. Pharmacol. 2007, 73, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, S.H.; Son, D.J.; Oh, K.W.; Kim, K.H.; Song, H.S.; Kim, G.J.; Oh, G.T.; Yoon, D.Y.; Hong, J.T. Antiarthritic Effect of Bee Venom: Inhibition of Inflammation Mediator Generation by Suppression of Nf-Kappab through Interaction with the P50 Subunit. Arthritis Rheum. 2004, 50, 3504–3515. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Park, K.Y.; Yoon, W.C.; Park, S.H.; Park, K.K.; Yoo, D.H.; Choe, J.Y. Melittin Enhances Apoptosis through Suppression of Il-6/Sil-6r Complex-Induced Nf-Κb and Stat3 Activation and Bcl-2 Expression for Human Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. Jt. Bone Spine 2011, 78, 471–477. [Google Scholar] [CrossRef]
- Choe, J.Y.; Kim, S.K. Melittin Inhibits Osteoclast Formation through the Downregulation of the Rankl-Rank Signaling Pathway and the Inhibition of Interleukin-1β in Murine Macrophages. Int. J. Mol. Med. 2017, 39, 539–548. [Google Scholar] [CrossRef]
- Kim, H.; Hong, J.Y.; Lee, J.; Jeon, W.J.; Ha, I.H. Apamin Enhances Neurite Outgrowth and Regeneration after Laceration Injury in Cortical Neurons. Toxins 2021, 13, 603. [Google Scholar] [CrossRef]
- Lee, Y.M.; Cho, S.N.; Son, E.; Song, C.H.; Kim, D.S. Apamin from bee venom suppresses inflammation in a murine model of gouty arthritis. J. Ethnopharmacol. 2020, 257, 112860. [Google Scholar] [CrossRef]
- Shin, D.; Choi, W.; Bae, H. Bee Venom Phospholipase A2 Alleviate House Dust Mite-Induced Atopic Dermatitis-Like Skin Lesions by the Cd206 Mannose Receptor. Toxins 2018, 10, 146. [Google Scholar] [CrossRef]
- Rodriguez De Turco, E.B.; Jackson, F.R.; DeCoster, M.A.; Kolko, M.; Bazan, N.G. Glutamate Signalling and Secretory Phospholipase A2 Modulate the Release of Arachidonic Acid from Neuronal Membranes. J. Neurosci. Res. 2002, 68, 558–567. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, M.; Gao, Y.; Wu, X.M.; Xiao, H.; Yang, D.S.; He, F.R.; Lv, J.M.; Xie, D.; Wang, Q.; et al. Vespakinin-M, a Natural Peptide from Vespa Magnifica, Promotes Functional Recovery in Stroke Mice. Commun. Biol. 2022, 5, 74. [Google Scholar] [CrossRef]
- Duan, X.M.; Yu, W.X.; Liu, H.; Ni, L.L.; Yuan, S.M.; Yang, Z.B.; Zhang, C.G. Effect of Wasp Venom Extract on Collagen-induced Arthritis in Rats. Chin. Pharm. J. 2020, 55, 26–32. [Google Scholar]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Fanghänel, S.; Wadhwani, P.; Strandberg, E.; Verdurmen, W.P.; Bürck, J.; Ehni, S.; Mykhailiuk, P.K.; Afonin, S.; Gerthsen, D.; Komarov, I.V.; et al. Structure Analysis and Conformational Transitions of the Cell Penetrating Peptide Transportan 10 in the Membrane-Bound State. PLoS ONE 2014, 9, e99653. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Q.; Li, J.X.; Lu, Q.M.; Yang, H.L.; Zhang, Y.G.; Lai, R. Two Families of Antimicrobial Peptides from Wasp (Vespa Magnifica) Venom. Toxicon 2006, 47, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Garaj-Vrhovac, V.; Gajski, G. Evaluation of the cytogenetic status of human lymphocytes after exposure to a high concentration of bee venom in vitro. Arh. Hig. Rada Toksikol. 2009, 60, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qin, X.Y.; Fang, J.Y.; Sun, X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm. Sin. B 2021, 11, 1158–1174. [Google Scholar] [CrossRef]
- Yousefpoor, Y.; Amiani, A.; Divsalar, A.; Mousaviet, S.E.; Skakeri, A.; Sabzevari, J.T. Anti-rheumatic activity of topical nanoemulsion containing bee venom in rats. Eur. J. Pharm. Biopharm. 2022, 172, 168–176. [Google Scholar] [CrossRef]
Component | Mechanisms |
---|---|
Bee venom | 1. Reduces cytokine and chemokine expression and attenuates synovitis and neutrophil infiltration [75]. |
2. Downregulates inflammatory markers IL-1β, TNF-α, and IL-6, and upregulates total oxidant level (TOL) and oxidative stress index (OSI) [76]. | |
3. Inhibits IRAK1/TAK1/NF-κB signaling pathway [77]. |
Component | MW | Percent in Dry Venom (%) | Major Characteristics | Source (Uniprot ID) | Organism | |
---|---|---|---|---|---|---|
Peptides | Melittin | 2840 | 40–50 | Containing 26 amino acid residues, inhibiting tumor growth, reducing inflammation, and alleviating arthritis symptoms. | P0DPR9; P01501; Q8LW54; P01502; P01504; P68407 | Apis cerana; Apis mellifera; Apis dorsata; Apis florea; |
Apamin | 2036 | 1–3 | Containing 18 amino acid residues, reducing inflammation, and cytotoxic effect against cancer. | P01500; Q86QT2 | Apis mellifera; Apis cerana | |
MCD (mast cell degranulation) | 2588 | 1–2 | Containing 22 amino acid residues, relief of pain, and reducing inflammation. | P01499; P04567; Q6H2Z4 | Apis mellifera; Bombus pensylvanicus (American bumblebee) (Apis pensylvanica); Apis cerana | |
Secapin | 2755 | 0.5–1 | Containing 24 amino acid residues, induction of leukotriene-mediated nociceptive hypersensitivity and edema. | Q7YWB0; C0HLU0; I1VC85; A0A0K1YW63; P02852 | Apis cerana; Apis mellifer; | |
Pamine | 1–3 | Apis | ||||
Minimine | 6000 | 2–3 | Apis | |||
Procamine A and B | 600 | 1–2 | Containing 5 amino acid residues. | Apis | ||
Protease inhibitor | 9000 | <0.8 | Apis | |||
Cardiopep | 2500 | <0.7 | Apis | |||
Melittin F | 2239 | <1 | Containing 19 amino acid residues. | P0DPR9; P01501; Q8LW54; P01502; P01504; P68407 | Apis cerana; Apis mellifera; Apis dorsata; Apis florea | |
Adolapin | 1 | Containing 103 amino acid residues, anti-nociceptive effect, reducing inflammation, and antipyretic effects. | Apis | |||
Tertiapin | 2497 | <0.1 | Containing 21 amino acid residues, high-affinity inhibitor of inwardly rectifying potassium channels. | P56587 | Apis mellifera | |
Enzymes | Phospholipase A2 | 15,000–16,000 | 12–15 | Containing 128 amino acid residues, inhibiting tumor growth and proliferation, and reducing inflammation. | Apis | |
Hyaluronidase | 38,000 | 1–3 | Apis | |||
Acid phosphomonoesterase | 55,000 | 1 | Apis | |||
α-Glucosidase | 170,000 | 0.6 | Apis | |||
Lysophospholipase | 1 | Apis | ||||
Phospholipids | 700 | 1–3 | Apis | |||
Amines | Histamine | 307.14 | 0.5–2 | Apis | ||
Dopamine | 189.64 | 0.13–1 | Apis | |||
Noradrenalin | 169.18 | 0.1–0.7 | Apis | |||
Neurotransmitters | 0.1–1 | Apis | ||||
Amino | γ-Aminobutyric acid | 189.64 | 0.13–1 | Apis | ||
α-Amino acids | 169.18 | 0.1–0.7 | Apis | |||
Carbohydrates | Glucose | 180 | 2–4 | Apis | ||
Fructose | Apis | |||||
Minerals | Phosphate | 3–4 | Apis | |||
Calcium | Apis | |||||
Magnesium | Apis |
Component | Mechanisms |
---|---|
Melittin | 1. The sulfhydryl group of p50 in NF-κB is engaged in a reaction [82]. |
2. Melittin binding to the sulfhydryl group of IKKs [75]. | |
3. The effects of bee melittin on iNOS, COX-2, and cPLA2 expression [82]. | |
4. Interfering with the RANKL-RANK signaling pathway [85]. | |
5. The suppression of transcription factor activation, specifically STAT3 and NF-κB p65, along with the modulation of genes associated with mitochondrial apoptosis [83]. | |
Apamin | 1. Inhibition of cyclooxygenase-2 and phospholipase A2 [87]. |
2. Repression of the production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 [87]. | |
Phospholipase A2 | 1. Modulating the release of arachidonic acid and the generation of eicosanoids [88]. |
2. Inducing the polarization of murine Foxp3+ regulatory T cells [89]. |
Component | Mechanisms |
---|---|
Wasp venom | 1. Inhibition of JAK/STAT signaling pathway activation [70]. |
2. Downregulation of the expression of inflammatory factors (e.g., IL-1β, IL-6) [72]. | |
3. Reinforcing apoptosis via the mitochondrial Bax/Bcl-2 signaling pathway [91]. | |
4. Rebalancing redox and triggering ferroptosis in synovial fibroblasts [70,92]. |
Component | MW | Major Characteristics | Source (Uniprot ID) | Organism | |
---|---|---|---|---|---|
Biogenic amines | 5-Hydroxytryptamine | 177.0768 | 5-Hydroxytryptamine (5-HT) is an inhibitory neurotransmitter that regulates various physiological processes in the central nervous system and peripheral tissues. | Vespa | |
Peptides | Vespakinin-M | 1361.6845 | Containing 12 amino acid residues, a novel bradykinin analog containing hydroxyproline. | Q0PQX8; Q7M3T3 | Vespa magnifica; Vespa mandarinia |
Mastoparan-M | 1478.9717 | Containing 14 amino acid residues, accounting for 70–80% of crude venom. | P04205 | Vespa mandarinia; Vespa magnifica | |
Vespid chemotactic peptide-M | 1382.8684 | Containing 13 amino acid residues. | P17232 | Vespa mandarinia; Vespa magnifica |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Qu, Y.; Lei, X.; Xu, Q.; Li, S.; Shi, Z.; Xiao, H.; Zhang, C.; Yang, Z. Therapeutic Potential of Bee and Wasp Venom in Anti-Arthritic Treatment: A Review. Toxins 2024, 16, 452. https://doi.org/10.3390/toxins16110452
Sun H, Qu Y, Lei X, Xu Q, Li S, Shi Z, Xiao H, Zhang C, Yang Z. Therapeutic Potential of Bee and Wasp Venom in Anti-Arthritic Treatment: A Review. Toxins. 2024; 16(11):452. https://doi.org/10.3390/toxins16110452
Chicago/Turabian StyleSun, Hongmei, Yunxia Qu, Xiaojing Lei, Qingzhu Xu, Siming Li, Zhengmei Shi, Huai Xiao, Chenggui Zhang, and Zhibin Yang. 2024. "Therapeutic Potential of Bee and Wasp Venom in Anti-Arthritic Treatment: A Review" Toxins 16, no. 11: 452. https://doi.org/10.3390/toxins16110452
APA StyleSun, H., Qu, Y., Lei, X., Xu, Q., Li, S., Shi, Z., Xiao, H., Zhang, C., & Yang, Z. (2024). Therapeutic Potential of Bee and Wasp Venom in Anti-Arthritic Treatment: A Review. Toxins, 16(11), 452. https://doi.org/10.3390/toxins16110452