Differential Hepatic Expression of miRNA in Response to Aflatoxin B1 Challenge in Domestic and Wild Turkeys
Abstract
:1. Introduction
2. Results
2.1. Small RNA Sequencing
2.2. Identification and Expression of Conserved and Novel miRNAs
2.3. Identification of Differentially Expressed miRNAs (DEMs)
2.4. MicroRNA Target Predictions
3. Discussion
3.1. Differential Effects of AFB1 Challenge
3.2. Genetic Background and Hepatic miRNA Expression
4. Materials and Methods
4.1. RNA Isolation and Sequencing
4.2. Illumina Sequencing Data Handling
4.3. miRNA Prediction
4.4. miRNA Expression Profiling
4.5. miRNA Target Prediction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, P.J.; Buckner, R.; Kelly, J.; Coulombe, R.A. Biochemical basis for the extreme sensitivity of turkeys to aflatoxin B1. Toxicol. Appl. Pharmacol. 2000, 165, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Bunderson, B.R.; Kim, J.E.; Croasdell, A.; Mendoza, K.M.; Reed, K.M.; Coulombe, R.A. Heterologous expression and functional characterization of avian mu-class glutathione S-transferases. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2013, 158, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Bunderson, B.R.; Croasdell, A.; Reed, K.M.; Coulombe, R.A. Alpha-class glutathione S-transferases in wild turkeys (Meleagris gallopavo): Characterization and role in resistance to the carcinogenic mycotoxin Aflatoxin B1. PLoS ONE 2013, 8, e60662. [Google Scholar] [CrossRef]
- Kim, J.E.; Bunderson, B.R.; Croasdell, A.; Coulombe, R.A. Functional characterization of alpha-class glutathione s-transferases from the turkey (Meleagris gallopavo). Toxicol. Sci. 2011, 124, 45–53. [Google Scholar] [CrossRef]
- Rawal, S.; Kim, J.E.; Coulombe, R.A. Aflatoxin B1 in poultry: Toxicology, metabolism and prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Rawal, S.; Coulombe, R.A. Metabolism of aflatoxin B1 in turkey liver microsomes: The relative roles of cytochromes P450 1A5 and 3A37. Toxicol. Appl. Pharmacol. 2011, 254, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Monson, M.S.; Settlage, R.E.; McMahon, K.W.; Mendoza, K.M.; Rawal, S.; El-Nezami, H.S.; Coulombe, R.A.; Reed, K.M. Response of the hepatic transcriptome to aflatoxin B1 in domestic turkey (Meleagris gallopavo). PLoS ONE 2014, 9, e100930. [Google Scholar] [CrossRef]
- Monson, M.S.; Settlage, R.E.; Mendoza, K.M.; Rawal, S.; El-Nezami, H.S.; Coulombe, R.A.; Reed, K.M. Modulation of the spleen transcriptome in domestic turkey (Meleagris gallopavo) in response to aflatoxin B1 and probiotics. Immunogenetics 2015, 67, 163–178. [Google Scholar]
- Monson, M.S.; Cardona, C.J.; Coulombe, R.A.; Reed, K.M. Hepatic transcriptome responses of domestic and wild turkey embryos to aflatoxin B1. Toxins 2016, 8, 16. [Google Scholar] [CrossRef]
- Reed, K.M.; Mendoza, K.M.; Abrahante, J.E.; Coulombe, R.A. Comparative response of the hepatic transcriptomes of domesticated and wild turkey to aflatoxin B1. Toxins 2018, 10, 42. [Google Scholar] [CrossRef]
- Reed, K.M.; Mendoza, K.M.; Coulombe, R.A., Jr. Differential transcriptome responses to aflatoxin B1 in the cecal tonsil of susceptible and resistant turkeys. Toxins 2019, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Mendoza, K.M.; Coulombe, R.A. Altered gene response to aflatoxin B1 the spleens of susceptible and resistant turkeys. Toxins 2019, 11, 242. [Google Scholar] [CrossRef] [PubMed]
- Pai, A.A.; Pritchard, J.K.; Gilad, Y. The genetic and mechanistic basis for variation in gene regulation. PLoS Genet. 2015, 11, e1004857. [Google Scholar] [CrossRef] [PubMed]
- Moran, Y.; Agron, M.; Praher, D.; Technau, U. The evolutionary origin of plant and animal microRNAs. Nat. Ecol. Evol. 2017, 1, 27. [Google Scholar] [CrossRef]
- Simkin, A.; Geissler, R.; McIntyre, A.B.R.; Grimson, A. Evolutionary dynamics of microRNA target sites across vertebrate evolution. PLoS Genet. 2020, 16, e1008285. [Google Scholar]
- Kloosterman, W.P.; Plasterk, R.H. The diverse functions of microRNAs in animal development and disease. Dev. Cell. 2006, 11, 441–450. [Google Scholar] [CrossRef]
- Sengar, G.S.; Deb, R.; Singh, U.; Raja, T.V.; Kant, R.; Sajjanar, B.; Alex, R.; Alyethodi, R.R.; Kumar, A.; Kumar, S.; et al. Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus x Bos indicus) crossbred dairy cattle. Cell Stress Chaperones 2018, 23, 155–170. [Google Scholar] [CrossRef]
- Lang, L.; Xu, B.; Li, S.Z.; Guo, W.; Yuan, J.; Zang, S.; Chen, Y.; Yang, H.-M.; Lian, S. Rno-miR-425-5p targets the DLST and SLC16A1 genes to reduce liver damage caused by excessive energy mobilization under cold stress. J. Anim. Physiol. Anim. Nutr. Berl. 2019, 103, 1251–1262. [Google Scholar]
- Miguel, V.; Lamas, S.; Espinosa-Diez, C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health. Redox Biol. 2020, 37, 101580. [Google Scholar]
- Raza, S.H.A.; Abdelnour, S.A.; Dhshan, A.I.M.; Hassanin, A.A.; Noreldin, A.E.; Albadrani, G.M.; Abdel-Daim, M.M.; Cheng, G.; Zan, L. Potential role of specific microRNAs in the regulation of thermal stress response in livestock. J. Therm. Biol. 2021, 96, 102859. [Google Scholar] [CrossRef]
- Ason, B.; Darnell, D.K.; Wittbrodt, B.; Berezikov, E.; Kloosterman, W.P.; Wittbrodt, J.; Antin, P.B.; Plasterk, R.H. Differences in vertebrate microRNA expression. Proc. Natl. Acad. Sci. USA 2006, 103, 14385–14389. [Google Scholar] [CrossRef]
- Reed, K.M.; Mendoza, K.M.; Kono, T.; Powell, A.A.; Strasburg, G.M.; Velleman, S.G. Expression of miRNAs in turkey muscle satellite cells and differential response to thermal challenge. Front. Physiol. 2023, 14, 1293264. [Google Scholar] [CrossRef] [PubMed]
- Schueller, F.; Roy, S.; Vucur, M.; Trautwein, C.; Luedde, T.; Roderburg, C. The role of miRNAs in the pathophysiology of liver diseases and toxicity. Int. J. Mol. Sci. 2018, 19, 261. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, M.; Szelag-Pieniek, S.; Post, M.; Kurzawski, M.; Prieto, J.; Argemi, J.; Drozdzik, M.; Kaderali, L. Identifying differentially expressed microRNAs, target genes, and key pathways deregulated in patients with liver diseases. Int. J. Mol. Sci. 2020, 21, 7368. [Google Scholar] [CrossRef]
- Klein, P.J.; Van Vleet, T.R.; Hall, J.O.; Coulombe, R.A. Dietary butylated hydroxytoluene protects against aflatoxicosis in Turkeys. Toxicol. Appl. Pharmacol. 2002, 182, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.S.; Coulombe, R.A. Molecular cloning and expression of a novel cytochrome p450 from turkey liver with aflatoxin B1 oxidizing activity. Chem. Res. Toxicol. 2006, 19, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Mendoza, K.M.; Coulombe, R.A. Structure and genetic mapping of the Cytochrome P450 gene (CYP1A5) in the turkey (Meleagris gallopavo). Cytogenet. Genome Res. 2007, 116, 104–109. [Google Scholar] [CrossRef]
- Rawal, S.; Mendoza, K.M.; Reed, K.M.; Coulombe, R.A. Structure, genetic mapping, and function of the cytochrome P450 3A37 gene in the turkey (Meleagris gallopavo). Cytogenet. Genome Res. 2009, 125, 67–73. [Google Scholar] [CrossRef]
- Rawal, S.; Yip, S.S.; Coulombe, R.A. Cloning, expression and functional characterization of cytochrome P450 3A37 from turkey liver with high aflatoxin B1 epoxidation activity. Chem. Res. Toxicol. 2010, 23, 1322–1329. [Google Scholar] [CrossRef]
- Coulombe, R.A. Biological action of mycotoxins. J. Dairy. Sci. 1993, 76, 880–891. [Google Scholar] [CrossRef]
- Monson, M.S.; Coulombe, R.A.; Reed, K.M. Aflatoxicosis: Lessons from toxicity and responses to Aflatoxin B1 in poultry. Agriculture 2015, 5, 742–777. [Google Scholar] [CrossRef]
- Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Rajewsky, N. Deep conservation of microRNA-target relationships and 3’UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, X.; Lin, L.; Hou, J.; Li, N.; Wang, C.; Wang, P.; Zhang, Q.; Zhang, P.; Zhou, W.; et al. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J. Biol. Chem. 2011, 286, 36677–36685. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, H.; Liu, H.; Lv, S.; Wang, B.; Wang, R.; Liu, H.; Ding, M.; Yang, Y.; Li, L.; et al. MiRNA-99a directly regulates AGO2 through translational repression in hepatocellular carcinoma. Oncogenesis 2014, 3, e97. [Google Scholar] [CrossRef]
- Markovic, J.; Sharma, A.D.; Balakrishnan, A. MicroRNA-221: A fine tuner and potential biomarker of chronic liver injury. Cells 2020, 9, 1767. [Google Scholar] [CrossRef]
- Di Martino, M.T.; Arbitrio, M.; Caracciolo, D.; Cordua, A.; Cuomo, O.; Grillone, K.; Riillo, C.; Caridà, G.; Scionti, F.; Labanca, C.; et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. Mol. Ther. Nucleic Acids 2022, 27, 1191–1224. [Google Scholar] [CrossRef]
- Pineau, P.; Volinia, S.; McJunkin, K.; Marchio, A.; Battiston, C.; Terris, B.; Mazzaferro, V.; Lowe, S.W.; Croce, C.M.; Dejean, A. miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Quan, Y.; Zhan, M.; Liao, H.; Li, Y.; Lu, L. miR-125b-5p inhibits cell proliferation, migration, and invasion in hepatocellular carcinoma via targeting TXNRD1. Cancer Cell Int. 2019, 19, 203. [Google Scholar] [CrossRef]
- Yang, D.; Dai, Z.; Yang, T.; Balakrishnan, A.; Yuan, Q.; Vondran, F.W.R.; Manns, M.P.; Ott, M.; Cantz, T.; Sharma, A.D. MicroRNA-125b-5p regulates hepatocyte proliferation during the termination phase of liver regeneration. Hepatol. Commun. 2020, 4, 1851–1863. [Google Scholar] [CrossRef]
- Yao, J.; Liang, L.; Huang, S.; Ding, J.; Tan, N.; Zhao, Y.; Yan, M.; Ge, C.; Zhang, Z.; Chen, T.; et al. MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology 2010, 51, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Zhang, H.F.; Wang, L.; Ma, Y.P.; Gao, F.; Zhang, S.J.; Wang, L.C. High expression of microRNA-130b correlates with poor prognosis of patients with hepatocellular carcinoma. Diagn. Pathol. 2014, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.; Zheng, X.; Dou, C.; Li, C.; Yang, W.; Yao, Y.; Liu, Q. MicroRNA-130b promotes cell aggressiveness by inhibiting peroxisome proliferator-activated receptor gamma in human hepatocellular carcinoma. Int. J. Mol. Sci. 2014, 15, 20486–20499. [Google Scholar] [CrossRef]
- Zhang, J.; Jazii, F.R.; Haghighi, M.M.; Alvares, D.; Liu, L.; Khosraviani, N.; Adeli, K. miR-130b is a potent stimulator of hepatic very-low-density lipoprotein assembly and secretion via marked induction of microsomal triglyceride transfer protein. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E262–E275. [Google Scholar] [CrossRef]
- Bae, H.J.; Noh, J.H.; Kim, J.K.; Eun, J.W.; Jung, K.H.; Kim, M.G.; Chang, Y.G.; Shen, Q.; Kim, S.J.; Park, W.S.; et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene 2014, 33, 2557–2567. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, I.; Piao, S.; Nagar, H.; Choi, S.J.; Kim, Y.R.; Irani, K.; Jeon, B.H.; Kim, C.S. miR204 potentially promotes non-alcoholic fatty liver disease by inhibition of cpt1a in mouse hepatocytes. Commun. Biol. 2022, 5, 1002. [Google Scholar] [CrossRef]
- Gao, K.; Liu, M.; Tang, H.; Ma, Z.; Pan, H.; Zhang, X.; Inam, M.; Shan, X.; Gao, Y.; Wang, G. Downregulation of miR-1388 regulates the expression of antiviral genes via tumor necrosis factor receptor (TNFR)-associated factor 3 targeting following poly(I:C) stimulation in Silver Carp (Hypophthalmichthys molitrix). Biomolecules 2024, 14, 694. [Google Scholar] [CrossRef]
- Han, S.; Zhang, T.; Kusumanchi, P.; Huda, N.; Jiang, Y.; Liangpunsakul, S.; Yang, Z. Role of microRNA-7 in liver diseases: A comprehensive review of the mechanisms and therapeutic applications. J. Investig. Med. 2020, 68, 1208–1216. [Google Scholar] [CrossRef]
- Singaravelu, R.; Quan, C.; Powdrill, M.H.; Shaw, T.A.; Srinivasan, P.; Lyn, R.K.; Alonzi, R.C.; Jones, D.M.; Filip, R.; Russell, R.S.; et al. MicroRNA-7 mediates cross-talk between metabolic signaling pathways in the liver. Sci. Rep. 2018, 8, 61. [Google Scholar] [CrossRef]
- Morales-Martínez, M.; Vega, M.I. Role of microRNA-7 (MiR-7) in cancer physiopathology. Int. J. Mol. Sci. 2022, 23, 9091. [Google Scholar] [CrossRef]
- Yu, D.; Green, B.; Marrone, A.; Guo, Y.; Kadlubar, S.; Lin, D.; Fuscoe, J.; Pogribny, I.; Ning, B. Suppression of CYP2C9 by microRNA hsa-miR-128-3p in human liver cells and association with hepatocellular carcinoma. Sci. Rep. 2015, 5, 8534. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Huang, X.P.; Zhu, J.Y.; Chen, Z.G.; Li, X.J.; Zhang, X.H.; Huang, S.; He, J.B.; Lian, F.; Zhao, Y.N.; et al. miR-128-3p suppresses hepatocellular carcinoma proliferation by regulating PIK3R1 and is correlated with the prognosis of HCC patients. Oncol. Rep. 2015, 33, 2889–2898. [Google Scholar] [PubMed]
- Wang, W.; Zhao, L.-J.; Tan, Y.-X.; Ren, H.; Qi, Z.-T. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 2012, 33, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Y.; Yao, J.G.; Huang, H.D.; Wang, C.; Ma, Y.; Xia, Q.; Long, X.D. MicroRNA-429 modulates hepatocellular carcinoma prognosis and tumorigenesis. Gastroenterol. Res. Pract. 2013, 2013, 804128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chang, C.; Gao, H.; Wang, Q.; Zhang, F.; Xu, C. MiR-429 regulates rat liver regeneration and hepatocyte proliferation by targeting JUN/MYC/BCL2/CCND1 signaling pathway. Cell Signal. 2018, 50, 80–89. [Google Scholar] [CrossRef]
- Liang, F.; Xu, X.; Tu, Y. Resveratrol inhibited hepatocyte apoptosis and alleviated liver fibrosis through miR-190a-5p /HGF axis. Bioorg. Med. Chem. 2022, 57, 116593. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, S.; Yu, H.; Wu, J.; Wang, Y.; Li, H.; Huang, H.; Zhang, H. miR-190 promotes HCC proliferation and metastasis by targeting PHLPP1. Exp. Cell Res. 2018, 371, 185–195. [Google Scholar] [CrossRef]
- Wang, S.; Liang, C.; Ai, H.; Yang, M.; Yi, J.; Liu, L.; Song, Z.; Bao, Y.; Li, Y.; Sun, L.; et al. Hepatic miR-181b-5p contributes to glycogen synthesis through targeting EGR1. Dig. Dis. Sci. 2019, 64, 1548–1559. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, C.; Xu, Z.; Xia, P.; Dong, P.; Chen, B.; Yu, F. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway. Mol. Cell Biochem. 2015, 398, 1–9. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Saini, H.K.; Van Dongen, S.; Enright, A.J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008, 36, D154–D158. [Google Scholar] [CrossRef]
- Grossi, I.; Arici, B.; Portolani, N.; De Petro, G.; Salvi, A. Clinical and biological significance of miR-23b and miR-193a in human hepatocellular carcinoma. Oncotarget 2017, 8, 6955–6969. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, C.; Ding, K.; Zhang, W.; Hou, J. MiR-24-3p as a prognostic indicator for multiple cancers: From a meta-analysis view. Biosci. Rep. 2020, 40, BSR20202938. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Huang, Z.; Wei, Y.; Xue, L.; Wang, Y.; Liao, J.; Liang, J.; Chen, X.; Chu, L.; Zhang, B. Hsa-microRNA-27b-3p inhibits hepatocellular carcinoma progression by inactivating transforming growth factor-activated kinase-binding protein 3/nuclear factor kappa B signaling. Cell Mol. Biol. Lett. 2022, 27, 79. [Google Scholar] [CrossRef] [PubMed]
- Ng, R.; Wu, H.; Xiao, H.; Chen, X.; Willenbring, H.; Steer, C.J.; Song, G. Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology 2014, 60, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, X.; Ren, H.; Huang, X.; Shen, T.; Tang, W.; Dou, L.; Li, J. miR-23a/b-3p promotes hepatic lipid accumulation by regulating Srebp-1c and Fas. J. Mol. Endocrinol. 2021, 68, 35–49. [Google Scholar] [CrossRef]
- Sakai, E.; Imaizumi, T.; Suzuki, R.; Taracena-Gándara, M.; Fujimoto, T.; Sakurai, F.; Mizuguchi, H. miR-27b targets MAIP1 to mediate lipid accumulation in cultured human and mouse hepatic cells. Commun. Biol. 2023, 6, 669. [Google Scholar] [CrossRef]
- Chen, N.; Luo, J.; Hou, Y.; Ji, Y.; Xie, M.; Song, G.; Yu, D. miR-29c-3p promotes alcohol dehydrogenase gene cluster expression by activating an ADH6 enhancer. Biochem. Pharmacol. 2022, 203, 115182. [Google Scholar] [CrossRef]
- Roderburg, C.; Urban, G.W.; Bettermann, K.; Vucur, M.; Zimmermann, H.; Schmidt, S.; Janssen, J.; Koppe, C.; Knolle, P.; Castoldi, M.; et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011, 53, 209–218. [Google Scholar] [CrossRef]
- Wang, J.; Chu, E.S.; Chen, H.Y.; Man, K.; Go, M.Y.; Huang, X.R.; Lan, H.Y.; Sung, J.J.; Yu, J. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget 2015, 6, 7325–7338. [Google Scholar] [CrossRef]
- Rawal, S.; Bauer, M.M.; Mendoza, K.M.; El-Nezami, H.; Hall, J.R.; Kim, J.E.; Stevens, J.R.; Reed, K.M.; Coulombe, R.A. Aflatoxicosis chemoprevention by probiotic Lactobacillius and lack of effect on the major histocompatibility complex. Res. Vet. Sci. 2014, 97, 274–281. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucl. Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Tange, O. GNU Parallel 2018; 2018; p. 112. Available online: https://zenodo.org/records/1146014 (accessed on 21 October 2024).
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 21 October 2024).
- Chen, Y.; Lun, A.T.L.; Smyth, G.K. From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [v2]. F1000Research 2016, 5, 1438. [Google Scholar] [CrossRef]
- Hoffman, G.E.; Schadt, E.E. variancePartition: Interpreting drivers of variation in complex gene expression studies. BMC Bioinform. 2016, 17, 483. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013, 41, D377–D386. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.P.; Mi, H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
Group | Replicate | Total Reads | % GC | Mean Read Quality |
---|---|---|---|---|
EW-Control | EW9L | 14,151,896 | 55 | 36.8 |
EW10L | 17,696,678 | 55 | 36.9 | |
EW12L | 14,450,425 | 54 | 37.0 | |
EW13L | 5,439,559 | 55 | 36.9 | |
EW-AFB1 | EW1L | 14,406,168 | 54 | 36.9 |
EW2L | 12,879,470 | 54 | 36.9 | |
EW3L | 8,418,981 | 55 | 37.0 | |
EW4L | 6,979,042 | 53 | 37.1 | |
NT-Control | N11L | 8,598,754 | 54 | 37.0 |
N12L | 6,605,326 | 54 | 37.0 | |
N13L | 10,318,300 | 54 | 37.0 | |
N14L | 12,049,804 | 54 | 37.0 | |
NT-AFB1 | N1L | 6,796,414 | 54 | 37.0 |
N2L | 9,351,794 | 54 | 37.0 | |
N3L | 9,381,403 | 54 | 36.9 | |
N4L | 10,029,675 | 54 | 37.0 | |
Mean | 10,472,105.6 | 54.2 | 37.00 |
Comparison | Turkey miRNA | Similar Seed Match | Log2FC | FDR |
---|---|---|---|---|
NT vs. EW (Control) | mga-miR-N210 | NA | 1.6067 | 0.0302 |
mga-miR-138 | gga-miR-138-5p | 1.1568 | 0.0106 | |
mga-miR-138 | gga-miR-138-5p | 1.1254 | 0.0106 | |
mga-miR-190a | gga-miR-190a-5p | 1.0744 | 0.0123 | |
mga-miR-429 | mga-miR-429 | 0.7412 | 0.0353 | |
mga-miR-181b | gga-miR-181a-5p | 0.7256 | 0.0353 | |
mga-miR-1559 | gga-miR-1559-5p | 0.7221 | 0.0353 | |
mga-miR-128 | gga-miR-128-3p | 0.4804 | 0.0353 | |
mga-miR-24 | gga-miR-24-3p | −0.7883 | 0.0123 | |
mga-miR-23b | gga-miR-23b-3p | −0.9695 | 0.0106 | |
mga-miR-29b | gga-miR-29a-3p | −1.0786 | 0.0152 | |
mga-miR-27b | gga-miR-27b-3p | −1.1868 | 0.0106 | |
mga-miR-N424 | NA | −1.5619 | 0.0152 | |
mga-miR-1768 | gga-miR-1768 | −1.5732 | 0.0406 | |
mga-miR-N224 | NA | −2.6583 | 0.0106 | |
NT (Control vs. AFB1) | mga-miR-30d | gga-miR-30d | 0.4608 | 0.0175 |
mga-miR-125b-5p | gga-miR-125b-5p | −0.4150 | 0.0407 | |
mga-miR-99a | gga-miR-99a-5p | −0.6275 | 0.0250 | |
mga-miR-221 | gga-miR-222a | −1.2598 | 0.0415 | |
mga-miR-N60 | gga-miR-3529 | −1.4936 | 0.0002 | |
EW (Control vs. AFB1) | mga-miR-N60 | gga-miR-3529 | −1.5247 | 0.0298 |
NT vs. EW (AFB1) | mga-miR-130b | gga-miR-130b-3p | 0.5476 | 0.0482 |
mga-miR-204 | gga-miR-204 | −0.7917 | 0.0482 | |
mga-miR-N195 | NA | −0.7982 | 0.0482 | |
mga-miR-29c | gga-miR-29a-3p | −0.8797 | 0.0482 | |
mga-miR-N63 | mga-miR-N63 | −1.5288 | 0.0482 | |
mga-miR-1388a | gga-miR-1388a-5p | −1.8226 | 0.0278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorud, K.; Mendoza, K.M.; Kono, T.; Coulombe, R.A.; Reed, K.M. Differential Hepatic Expression of miRNA in Response to Aflatoxin B1 Challenge in Domestic and Wild Turkeys. Toxins 2024, 16, 453. https://doi.org/10.3390/toxins16110453
Jorud K, Mendoza KM, Kono T, Coulombe RA, Reed KM. Differential Hepatic Expression of miRNA in Response to Aflatoxin B1 Challenge in Domestic and Wild Turkeys. Toxins. 2024; 16(11):453. https://doi.org/10.3390/toxins16110453
Chicago/Turabian StyleJorud, Kade, Kristelle M. Mendoza, Thomas Kono, Roger A. Coulombe, and Kent M. Reed. 2024. "Differential Hepatic Expression of miRNA in Response to Aflatoxin B1 Challenge in Domestic and Wild Turkeys" Toxins 16, no. 11: 453. https://doi.org/10.3390/toxins16110453
APA StyleJorud, K., Mendoza, K. M., Kono, T., Coulombe, R. A., & Reed, K. M. (2024). Differential Hepatic Expression of miRNA in Response to Aflatoxin B1 Challenge in Domestic and Wild Turkeys. Toxins, 16(11), 453. https://doi.org/10.3390/toxins16110453