Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Principle of the Aptamer-Based Assay
2.2. Analytical Performance
2.3. Selectivity and Real Sample Applicability
3. Conclusions
4. Experimental
4.1. Chemicals and Instrumentation
4.2. Design of the Aptamer–cDNA Duplex
4.3. Aptamer-Based Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Dodds, W.K.; Smith, V.H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 2016, 6, 155–164. [Google Scholar] [CrossRef]
- Tanvir, R.U.; Hu, Z.; Zhang, Y.; Lu, J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environ. Pollut. 2021, 290, 118056. [Google Scholar] [CrossRef] [PubMed]
- Funari, E.; Testai, E. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 2008, 38, 97–125. [Google Scholar] [CrossRef]
- Codd, G.A.; Testai, E.; Funari, E.; Svirčev, Z. Cyanobacteria, cyanotoxins, and human health. In Water Treatment for Purification from Cyanobacteria and Cyanotoxins; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 37–68. [Google Scholar] [CrossRef]
- Hisbergues, M.; Christiansen, G.; Rouhiainen, L.; Sivonen, K.; Börner, T. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch. Microbiol. 2003, 180, 402–410. [Google Scholar] [CrossRef]
- Chen, D.Z.; Boland, M.P.; Smillie, M.A.; Klix, H.; Ptak, C.; Andersen, R.J.; Holmes, C.F. Identification of protein phosphatase inhibitors of the microcystin class in the marine environment. Toxicon 1993, 31, 1407–1414. [Google Scholar] [CrossRef]
- Melaram, R.; Newton, A.R.; Chafin, J. Microcystin contamination and toxicity: Implications for agriculture and public health. Toxins 2022, 14, 350. [Google Scholar] [CrossRef]
- Messineo, V.; Melchiorre, S.; Di Corcia, A.; Gallo, P.; Bruno, M. Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, Central Italy. Environ. Toxicol. Int. J. 2010, 25, 18–27. [Google Scholar] [CrossRef]
- Humpage, A.R.; Fontaine, F.; Froscio, S.; Burcham, P.; Falconer, I.R. Cylindrospermopsin genotoxicity and cytotoxicity: Role of cytochrome P-450 and oxidative stress. J. Toxicol. Environ. Health Part A 2005, 68, 739–753. [Google Scholar] [CrossRef]
- Christensen, V.G.; Khan, E. Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Sci. Total Environ. 2020, 736, 139515. [Google Scholar] [CrossRef] [PubMed]
- Wonnacott, S.; Gallagher, T. The chemistry and pharmacology of anatoxin-a and related homotropanes with respect to nicotinic acetylcholine receptors. Mar. Drugs 2006, 4, 228–254. [Google Scholar] [CrossRef]
- Sivonen, K. Freshwater cyanobacterial neurotoxins: Ecobiology, chemistry, and detection. Neurotoxins 2000, 15, 16. [Google Scholar]
- Wiese, M.; D’Agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef]
- Kimm-Brinson, K.L.; Ramsdell, J.S. The red tide toxin, brevetoxin, induces embryo toxicity and developmental abnormalities. Environ. Health Perspect. 2001, 109, 377–381. [Google Scholar] [CrossRef]
- Poli, M.A.; Musser, S.M.; Dickey, R.W.; Eilers, P.P.; Hall, S. Neurotoxic shellfish poisoning and brevetoxin metabolites: A case study from Florida. Toxicon 2000, 38, 981–993. [Google Scholar] [CrossRef]
- Ikehara, T.; Oshiro, N. A Protein Phosphatase 2A-Based Assay to Detect Okadaic Acids and Microcystins. J. Mar. Sci. Eng. 2024, 12, 244. [Google Scholar] [CrossRef]
- Kamat, P.K.; Rai, S.; Nath, C. Okadaic acid induced neurotoxicity: An emerging tool to study Alzheimer’s disease pathology. Neurotoxicology 2013, 37, 163–172. [Google Scholar] [CrossRef]
- Kaushik, R.; Balasubramanian, R. Methods and approaches used for detection of cyanotoxins in environmental samples: A review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1349–1383. [Google Scholar] [CrossRef]
- Kiviranta, J.; Sivonen, K.; Niemelä, S.; Huovinen, K. Detection of toxicity of cyanobacteria by Artemia salina bioassay. Environ. Toxicol. Water Qual. 1991, 6, 423–436. [Google Scholar] [CrossRef]
- Bláha, L.; Cameán, A.M.; Fessard, V.; Gutiérrez-Praena, D.; Jos, Á.; Marie, B.; Metcalf, J.S.; Pichardo, S.; Puerto, M.; Törökné, A. Bioassay use in the field of toxic cyanobacteria. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Wiley: New York, NY, USA, 2016; pp. 272–279. [Google Scholar]
- Azizullah, A.; Häder, D.-P. A comparison of commonly used and commercially available bioassays for aquatic ecosystems. In Bioassays; Elsevier: Amsterdam, The Netherlands, 2018; pp. 347–368. [Google Scholar]
- Basu, A.; Dydowiczová, A.; Čtveráčková, L.; Jaša, L.; Trosko, J.E.; Bla, L.K.; Babica, P. Assessment of hepatotoxic potential of cyanobacterial toxins using 3D in vitro model of adult human liver stem cells. Environ. Sci. Technol. 2018, 52, 10078–10088. [Google Scholar] [CrossRef] [PubMed]
- Heussner, A.H.; Winter, I.; Altaner, S.; Kamp, L.; Rubio, F.; Dietrich, D.R. Comparison of two ELISA-based methods for the detection of microcystins in blood serum. Chem.-Biol. Interact. 2014, 223, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.G. Immunoassays and biosensors for the detection of cyanobacterial toxins in water. Sensors 2013, 13, 15085–15112. [Google Scholar] [CrossRef] [PubMed]
- Jacinavicius, F.R.; Campos, T.G.V.; Passos, L.S.; Pinto, E.; Geraldes, V. A rapid LC-MS/MS method for multi-class identification and quantification of cyanotoxins. Toxicon 2023, 234, 107282. [Google Scholar] [CrossRef] [PubMed]
- Weller, D. Detection, identification and toxigenicity of cyanobacteria in New Zealand lakes using PCR-based methods. N. Z. J. Mar. Freshw. Res. 2011, 45, 651–664. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, T.; Park, J.; Park, T.G.; Ki, J.-S. Development of saxitoxin biosynthesis gene sxtB-targeted qPCR assay for the quantification of toxic dinoflagellates Alexandrium catenella (group I) and A. pacificum (group IV) occurring in the Korean coast. Harmful Algae 2024, 134, 102603. [Google Scholar] [CrossRef]
- Zhang, H.; Li, F.; Dever, B.; Li, X.-F.; Le, X.C. DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem. Rev. 2013, 113, 2812–2841. [Google Scholar] [CrossRef]
- Song, K.-M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef]
- Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [CrossRef]
- Ye, W.; Liu, T.; Zhang, W.; Zhu, M.; Liu, Z.; Kong, Y.; Liu, S. Marine toxins detection by biosensors based on aptamers. Toxins 2019, 12, 1. [Google Scholar] [CrossRef]
- Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Zourob, M. Development of a Multiplexed Electrochemical Aptasensor for the Detection of Cyanotoxins. Biosensors 2024, 14, 268. [Google Scholar] [CrossRef] [PubMed]
Toxin | Linear Regression | R2 | LOD ng/mL |
---|---|---|---|
MC-LR | I = 449.43 + 101.09 Log MC-LR concentration (nM) | 0.97 | 0.15 |
ANTX | I = 429.11 + 123.65 Log ANTX concentration (nM) | 0.99 | 0.06 |
STX | I = 60.19 + 19.83 Log STX concentration (nM) | 0.99 | 0.075 |
CYN | I = 145.56 + 29.76 Log CYN concentration (nM) | 0.99 | 0.027 |
OA | I = 172.4 + 30.88 Log OA concentration (nM) | 0.98 | 0.041 |
BTX | I = 110.44 + 25.75 Log BTX concentration (nM) | 0.99 | 0.026 |
Cyanotoxin | Spiking Concentration (nM) | Measured Concentration (nM) | Recovery Percentage (%) | RSD (%) |
---|---|---|---|---|
MC-LR | 10 | 9.87 | 98.7 | 4.25 |
25 | 25.02 | 102 | 2.21 | |
100 | 99.87 | 99.87 | 1.8 | |
CYN | 10 | 10.08 | 108 | 4.65 |
25 | 24.92 | 99.68 | 4.9 | |
100 | 99.73 | 99.73 | 1.5 | |
ANTX | 10 | 10.06 | 106 | 3.8 |
25 | 24.89 | 99.56 | 4.56 | |
100 | 98.97 | 98.97 | 3.78 | |
STX | 10 | 9.48 | 94.8 | 2.23 |
25 | 24.91 | 99.64 | 4.27 | |
100 | 99.78 | 99.78 | 1.99 | |
BVTX | 10 | 10.1 | 110 | 4.89 |
25 | 24.87 | 99.48 | 3.32 | |
100 | 99.23 | 99.23 | 4.81 | |
OA | 10 | 9.73 | 97.3 | 3.99 |
25 | 25.08 | 108 | 1.76 | |
100 | 99.96 | 99.96 | 2.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Tabban, A.; Rhouati, A.; Fataftah, A.; Cialla-May, D.; Popp, J.; Zourob, M. Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water. Toxins 2024, 16, 476. https://doi.org/10.3390/toxins16110476
Al-Tabban A, Rhouati A, Fataftah A, Cialla-May D, Popp J, Zourob M. Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water. Toxins. 2024; 16(11):476. https://doi.org/10.3390/toxins16110476
Chicago/Turabian StyleAl-Tabban, Awatef, Amina Rhouati, Amjad Fataftah, Dana Cialla-May, Jürgen Popp, and Mohammed Zourob. 2024. "Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water" Toxins 16, no. 11: 476. https://doi.org/10.3390/toxins16110476
APA StyleAl-Tabban, A., Rhouati, A., Fataftah, A., Cialla-May, D., Popp, J., & Zourob, M. (2024). Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water. Toxins, 16(11), 476. https://doi.org/10.3390/toxins16110476