Peptide Toxins from Marine Conus Snails with Activity on Potassium Channels and/or Currents
Abstract
:1. Introduction
2. Conotoxins
2.1. O-Conotoxins
2.2. A-Conotoxins
2.3. M-Conotoxins
2.4. J-Conotoxins
2.5. I2-Conotoxins
3. Conopeptides
3.1. Contryphan-Vn
3.2. Mo1659
3.3. CPY Peptides
3.4. Conorfarmide-Sr3
4. Conkunitzin
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olivera, B.M. Conus venom peptides: Reflections from the biology of clades and species. Annu. Rev. Ecol. Syst. 2002, 33, 25–47. [Google Scholar] [CrossRef]
- Endean, R.; Rudkin, C. Further studies of the venoms of Conidae. Toxicon 1965, 2, 225–249. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.J.; Gray, W.R.; Olivera, B.M. Purification and properties of a myotoxin from Conus geographus venom. Arch. Biochem. Biophys. 1978, 190, 539–548. [Google Scholar] [CrossRef]
- Halai, R.; Craik, D.J. Conotoxins: Natural product drug leads. Nat. Prod. Rep. 2009, 26, 526–536. [Google Scholar] [CrossRef]
- Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kass, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, synthesis, and structure–activity relationships of conotoxins. Chem. Rev. 2014, 114, 5815–5847. [Google Scholar] [CrossRef]
- Bayrhuber, M.; Vijayan, V.; Ferber, M.; Graf, R.; Korukottu, J.; Imperial, J.; Garrett, J.E.; Olivera, B.M.; Terlau, H.; Zweckstetter, M.; et al. Conkunitzin-S1 is the first member of a new Kunitz-type neurotoxin family. Structural and functional characterization. J. Biol. Chem. 2005, 280, 23766–23770. [Google Scholar] [CrossRef]
- Zhao, Y.; Antunes, A. Biomedical potential of the neglected molluscivorous and vermivorous Conus Species. Mar. Drugs. 2022, 20, 105. [Google Scholar] [CrossRef]
- Lewis, R.; Dutertre, S.; Vetter, I.; Christie, M. Conus venom peptide pharmacology. Pharmacol. Rev. 2012, 64, 259–298. [Google Scholar] [CrossRef]
- Finol-Urdaneta, R.K.; Belovanovic, A.; Micic-Vicovac, M.; Kinsella, G.K.; McArthur, J.R.; Al-Sabi, A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar. Drugs. 2020, 18, 173. [Google Scholar] [CrossRef]
- Tosti, E.; Boni, R.; Gallo, A. Pathophysiological Responses to Conotoxin Modulation of Voltage-Gated Ion Currents. Mar. Drugs 2022, 20, 282. [Google Scholar] [CrossRef]
- McCoy, M.T.; Jayanthi, S.; Cadet, J.L. Potassium channels and their potential roles in substance use disorders. Int. J. Mol. Sci. 2021, 22, 1249. [Google Scholar] [CrossRef] [PubMed]
- Burg, S.; Attali, B. Targeting of potassium channels in cardiac arrhythmias. TIPS 2021, 42, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.-X. Handbook of Experimental Pharmacology; Gamper, N., Wang, N., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 51–81. [Google Scholar]
- King, G.F.; Gentz, M.C.; Escoubas, P.; Nicholson, G.M. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 2008, 52, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.R.; Zhu, R.; Zhu, L.; Qiu, T.; Cao, A.; Kang, T. Potassium channels: Structures, diseases, and modulators. Chem. Biol. Drug Des. 2014, 83, 1–26. [Google Scholar] [CrossRef]
- Ganser, K.; Klumpp, L.; Bischof, H.; Lukowski, R.; Eckert, F.; Huber, S.M. Pharmacology of Potassium Channels; Gamper, N., Wang, N., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 253–275. [Google Scholar]
- Jimenez, E.C. Pharmacological classes of Conus peptides targeted to calcium, sodium and potassium channels. Protein Peptide Lett. 2023, 30, 913–929. [Google Scholar] [CrossRef]
- Terlau, H.; Shon, K.J.; Grilley, M.; Stocker, M.; Stühmer, W.; Olivera, B.M. Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 1996, 381, 148–151. [Google Scholar] [CrossRef]
- Shon, K.-J.; Stocker, M.; Terlau, H.; Stühmer, W.; Jaconsen, R.; Walker, C.; Watkins, M.; Hillyard, D.R.; Gray, W.E.; Olivera, B.M. κ-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J. Biol. Chem. 1998, 273, 33–38. [Google Scholar] [CrossRef]
- Dauplais, M.; Lecoq, J.; Song, J.; Cotton, J.; Jamin, N.; Gilquin, B.; Roumestand, C.; Vita, C.; de Medeiros, C.L.; Rowan, E.G.; et al. On the convergent evolution of animal Toxins. J. Biol. Chem. 1997, 272, 4302–4309. [Google Scholar] [CrossRef]
- Savarin, P.; Guenneugues, M.; Gilquin, B.; Lamthanh, H.; Gasparin, S.; Zinn-Justin, S.; Ménez, A. Three-dimensional structure of κ-Conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails. Biochemistry 1998, 37, 5407–5416. [Google Scholar] [CrossRef]
- Jacobsen, R.B.; Koch, E.D.; Lange-Malecki, B.; Stocker, M.; Verhey, J.; Wagoner, R.M.V.; Vyazovkina, A.; Olivera, B.M.; Terlau, H. Single amino acid substitutions in κ-conotoxin PVIIA disrupt interaction with the Shaker K+ channel. J. Biol. Chem. 2000, 275, 24639–24644. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Cui, M.; Fu, W.; Yu, K.; Chen, K.; Luo, X.; Shen, J.; Jiang, H. Simulating the Interactions of toxins with K+ channels. Curr. Pharm. Des. 2004, 10, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Dong, F.; Zhou, H.-X. Electrostatic recognition and induced fit in the κ-PVIIA toxin binding to Shaker potassium channel. J. Am. Chem. Soc. 2005, 127, 6836–6849. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.; Kuyucak, S. Why the Drosophila shaker K+ channel is not a good model for ligand binding to voltage-gated Kv1 channels. Biochemistry 2013, 52, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, L.; López-Vera, E.; Aguilar, M.B.; Rodriguez-Ruiz, X.C.; Ortíz-Arellano, M.A. κO-SrVIA Conopeptide, a Novel Inhibitor Peptide for Two Members of the Human EAG Potassium Channel Family. Int. J. Mol. Sci. 2023, 24, 11513. [Google Scholar] [CrossRef]
- Craig, G.A.; Zafaralla, G.; Cruz, L.J.; Santos, A.D.; Hillyard, D.R.; Dykert, J.; Rivier, J.E.; Gray, W.R.; Imperial, J.; Delacruz, R.-G.; et al. An O-glycosylated neuroexcitatory Conus peptide. Biochemistry 1998, 37, 16019–16025. [Google Scholar] [CrossRef]
- Kelley, W.P.; Schulz, J.R.; Jakubowski, J.A.; Gilly, W.F.; Sweedler, J.V. Two Toxins from Conus striatus that Individually Induce Tetanic Paralysis. Biochemistry 2006, 45, 14212–14222. [Google Scholar] [CrossRef]
- Santos, A.D.; McIntosh, J.M.; Hillyard, D.R.; Cruz, L.J.; Olivera, B.M. The A-superfamily of conotoxins: Structural and functional divergence. J. Biol. Chem. 2004, 279, 17596–17606. [Google Scholar] [CrossRef]
- Teichert, R.W.; Jacobsen, R.; Terlau, H.; Yoshikami, D.; Olivera, B.M. Discovery and characterization of the short κA-conotoxins: A novel subfamily of excitatory conotoxins. Toxicon 2007, 49, 318–328. [Google Scholar] [CrossRef]
- Ferber, M.; Sporning, A.; Jeserich, G.; DelaCruz, R.; Watkins, M.; Olivera, B.M.; Terlau, H. A novel Conus peptide ligand for K+ channels. J. Biol. Chem. 2003, 278, 2177–2183. [Google Scholar] [CrossRef]
- Al-Sabi, A.; Lennartz, D.; Ferber, M.; Gulyas, J.; Rivier, J.E.F.; Olivera, B.M.; Carlomagno, T.; Terlau, H. κM-conotoxin RIIIK, structural and functional novelty in a K+ channel antagonist. Biochemistry 2004, 43, 8625–8635. [Google Scholar] [CrossRef]
- Ferber, M.; Al-Sabi, A.; Stocker, M.; Olivera, B.M.; Terlau, H. Identification of a mammalian target of κM-conotoxin RIIIK. Toxicon 2004, 43, 915–921. [Google Scholar] [CrossRef]
- Chen, P.; Dendorfer, A.; Finol-Urdaneta, R.K.; Terlau, H.; Olivera, B.M. Biochemical Characterization of κM-RIIIJ, a Kv1.2 Channel Blocker: Evaluation of Cardioprotective Effects of kM-Conotoxins. J. Biol. Chem. 2010, 285, 14882–14889. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, S.; Finol-Urdaneta, R.K.; Köpfer, D.; Markushina, A.; Song, J.; French, R.J.; Kopec, W.; de Groot, B.L.; Giacobassi, M.J.; Leavitt, L.S.; et al. Conotoxin κM-RIIIJ, a tool targeting asymmetric heteromeric Kv1 channels. Proc. Natl. Acad. Sci. USA 2019, 116, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-C.; Zhou, M.; Peng, C.; Shao, X.-X.; Guo, Z.-Y.; Chi, C.-W. Novel conopeptides in a form of disulfide-crosslinked dimer. Peptides 2010, 31, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chang, S.; Yang, K.; Shi, J.; McFarland, K.; Yang, X.; Moller, A.; Wang, C.; Zou, X.; Chi, C.; et al. Conopeptide Vt3.1 preferentially inhibits BK potassium channels containing β4 subunits via electrostatic interactions. J. Biol. Chem. 2014, 289, 4735–4742. [Google Scholar] [CrossRef]
- Leipold, E.; Ullrich, F.; Thiele, M.; Tietze, A.A.; Terlau, H.; Imhof, D.; Heinemann, S.H. Subtype-specific block of voltage-gated K+ channels by μ-conopeptides. Biochem. Biophys. Res. Commun. 2017, 482, 1135–1140. [Google Scholar] [CrossRef]
- Yang, M.; Li, Y.; Liu, L.; Zhou, M. A novel proline-rich M-superfamily conotoxin that can simultaneously affect sodium, potassium and calcium currents. J. Venom. Anim. Toxins 2021, 27, e20200164. [Google Scholar] [CrossRef]
- Imperial, J.S.; Bansal, P.S.; Alewood, P.F.; Daly, N.L.; Craik, D.J.; Sporning, A.; Terlau, H.; López-Vera, E.; Bandyopadhyay, P.K.; Olivera, B.M. A novel conotoxin inhibitor of Kv1.6 channel and nAChR subtypes defines a new superfamily of conotoxins. Biochemistry 2006, 45, 8331–8340. [Google Scholar] [CrossRef]
- Kauferstein, S.; Huys, I.; Lamthanh, H.; Stöcklin, R.; Sotto, F.; Menez, A.; Tytgat, J.; Mebs, D. A novel conotoxin inhibiting vertebrate voltage-sensitive potassium channels. Toxicon 2003, 42, 43–52. [Google Scholar] [CrossRef]
- Fan, C.; Chen, X.-K.; Zhang, C.; Wang, L.-X.; Duan, K.L.; He, L.-L.; Cao, Y.; Liu, S.-Y.; Zhang, M.-N.; Ulens, C.; et al. A novel conotoxin from Conus betulinus, κ-BtX, unique in cysteine pattern and in function as a specific BK channel modulator. J. Biol. Chem. 2003, 278, 12624–12633. [Google Scholar] [CrossRef]
- Aguilar, M.B.; López-Vera, E.; de la Cotera, E.P.; Falcón, A.; Olivera, B.M.; Maillo, M. I-conotoxins in vermivorous species of the West Atlantic: Peptide sr11a from Conus spurius. Peptides 2007, 28, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.B.; Pérez-Reyes, L.; López, E.; de la Cotera, E.P.; Falcón, A.; Ayala, C.; Galván, M.; Salvador, C.; Escobar, L.I. Peptide sr11a from Conus spurius is a novel peptide blocker for Kv1 potassium channels. Peptides 2010, 31, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Massilia, G.R.; Schininà, M.E.; Ascenzi, P.; Polticelli, F. Contryphan-Vn: A novel peptide from the venom of the Mediterranean snail Conus ventricosus. Biochem. Biophy. Res. Commun. 2001, 288, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Eliseo, T.; Cicero, D.O.; Romeo, C.; Schininà, M.E.; Massilia, G.R.; Poltocelli, F.; Ascennzi, P.; Paci, M. Solution structure of the cyclic peptide contryphan-Vn, a Ca2+-dependent K+ channel modulator. Biopolymers 2004, 74, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Massilia, G.R.; Eliseo, F.; Grolleau, B.; Lapied, J.; Barbier, R.; Bournaud, J.; Molgó, D.O.; Cicero, M.; Paci, M.; Schininà, E.; et al. Contryphan-Vn: A modulator of Ca2+-dependent K+ channels. Biochem. Biophy. Res. Commun. 2003, 303, 238–246. [Google Scholar] [CrossRef]
- Sudarslal, S.; Singaravadivelan, G.; Ramasamy, P.; Ananda, K.; Sarma, S.P.; Sikdar, S.K.; Krishnan, K.S.; Balaram, P. A novel 13 residue acyclic peptide from the marine snail, Conus monile, targets potassium channels. Biochem. Biophy. Res. Commun. 2004, 317, 682–688. [Google Scholar] [CrossRef]
- Kumar, G.S.; Ramasamy, P.; Sikdar, S.K.; Sarma, S.P. Overexpression, purification, and pharmacological activity of a biosynthetically derived conopeptide. Biochem. Biophy. Res. Commun. 2005, 335, 965–972. [Google Scholar] [CrossRef]
- Imperial, J.; Chen, P.; Sporning, A.; Terlau, H.; Daly, N.L.; Craik, D.J.; Alewood, P.F.; Olivera, B.M. Tyrosine-rich conopeptides affect voltage-gated K+ channels. J. Biol. Chem. 2008, 283, 23026–23032. [Google Scholar] [CrossRef]
- Maillo, M.; Aguilar, M.B.; López-Vera, E.; Craig, A.G.; Bulaj, G.; Olivera, B.M.; de la Cotera, E.P.H. Conorfamide, a Conus venom peptide belonging to the RFamide family of neuropeptides. Toxicon 2002, 40, 401–407. [Google Scholar] [CrossRef]
- López-Vera, E.; Aguilar, M.B.; Heimer de la Cotera, E.P. FMRFamide and related peptides in the phylum mollusca. Peptides 2008, 29, 310–317. [Google Scholar] [CrossRef]
- Campos, L.; Carrillo, E.; Aguilar, M.B.; Gajewiak, J.; Gómez-Lagunas, F.; López-Vera, E. Conorfamide-Sr3, a structurally novel specific inhibitor of the Shaker K+ channel. Toxicon 2017, 138, 53–58. [Google Scholar] [CrossRef] [PubMed]
- López-Vera, E.; Martínez-Hernández, L.; Aguilar, M.B.; Carrillo, E.; Gajewiak, J. Studies of conorfamide-Sr3 on human voltage-gated Kv1 potassium channel subtypes. Mar. Drugs 2020, 18, 425. [Google Scholar] [CrossRef] [PubMed]
- Dy, C.Y.; Buczek, P.; Imperial, J.S.; Bulaj, G.; Horvath, M.P. Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 980–990. [Google Scholar] [CrossRef] [PubMed]
- Finol-Urdaneta, R.; Remedi, M.S.; Raasch, W.; Becker, S.; Clark, R.B.; Strüver, N.; Pavlov, E.; Nichols, C.G.; French, R.J.; Terlau, H. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol. Med. 2012, 4, 424–434. [Google Scholar] [CrossRef]
- Saikia, C.; Dym, O.; Altman-Gueta, H.; Gordon, D.; Reuveny, E.; Karbat, I. A Molecular Lid Mechanism of K+ Channel Blocker Action Revealed by a Cone Peptide. J. Mol. Biol. 2021, 433, 166957. [Google Scholar] [CrossRef]
- Kaas, Q.; Westermann, J.C.; Halai, R.; Wang, C.K.; Craik, D.J. ConoServer, a database for conopeptide sequences and structures. Bioinformatics 2008, 24, 445–446. [Google Scholar] [CrossRef]
- Sanguinetti, M.C.; Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 2006, 440, 463–469. [Google Scholar] [CrossRef]
- Olson, T.M.; Alekseev, A.E.; Liu, X.K.; Park, S.; Zingman, L.V.; Bienengraeber, M.; Sattiraju, S.; Ballew, J.D.; Jahangir, A.; Terzic, A. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum. Mol. Genet. 2006, 15, 2185–2191. [Google Scholar] [CrossRef]
- Simons, C.; Rash, L.D.; Crawford, J.; Cristofori-Armstrong, L.; Ma, B.; Miler, D.; Ru, K.; Baillie, G.J.; Alanay, Y.; Jacquinet, A.; et al. Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nat. Genet. 2015, 47, 73–79. [Google Scholar] [CrossRef]
- Beraud, E.; Viola, A.; Regaya, I.; Confort-Gouny, S.; Siaud, P.; Ibarrola, D.; Fur, Y.-L.; Barbaria, J.; Pellissier, J.-F.; Sabatier, J.-M.; et al. Block of neural Kv1.1 potassium channels for neuroinflammatory disease therapy. Ann. Neurol. 2006, 60, 586–596. [Google Scholar] [CrossRef]
- Wulff, H.; Castle, N.; Pardo, L. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 2009, 8, 982–1001. [Google Scholar] [CrossRef] [PubMed]
- Judge, S.I.V.; Bever, C.T. Potassium channel blockers in multiple sclerosis: Neuronal Kv channels and effects of symptomatic treatment. Pharmacol. Therapeuti. 2006, 111, 224–259. [Google Scholar] [CrossRef] [PubMed]
- Swartz, K.J.; MacKinnon, R. Hanatoxin Modifies the Gating of a Voltage-Dependent K+ Channel through Multiple Binding Sites. Neuron 1997, 18, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Miljanich, P.G. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 2004, 11, 3029–3040. [Google Scholar] [CrossRef] [PubMed]
- Hannon, H.; Atchison, W. Omega-Conotoxins as experimental tools and therapeutics in pain management. Mar. Drugs 2013, 11, 680–699. [Google Scholar] [CrossRef]
- Terlau, H.; Olivera, B.M. Conus Venoms: A Rich Source of Novel Ion Channel-Targeted Peptides. Physiol. Rev. 2004, 84, 41–68. [Google Scholar] [CrossRef]
- Robinson, S.; Norton, R. Conotoxin Gene Superfamilies. Mar. Drugs 2014, 12, 6058–6101. [Google Scholar] [CrossRef]
- Naranjo, D.; Díaz-Franulic, I. Binding of κ-Conotoxin-PVIIA to Open and Closed Shaker K-Channels Are Differentially Affected by the Ionic Strength. Mar. Drugs 2020, 18, 533. [Google Scholar] [CrossRef]
- Zhang, S.J.; Yang, X.-M.; Liu, G.S.; Cohen, M.V.; Pemberton, K.; Downey, J.M. CGX-1051, A Peptide from Conus snail venom, attenuates infarction in rabbit hearts when administered at re perfusion. J. Cardiovasc. Pharmacol. 2003, 42, 764–771. [Google Scholar] [CrossRef]
- Lubbers, N.L.; Campbell, T.J.; Polakowski, J.S.; Bulaj, G.; Layer, R.T.; Moore, J.; Gross, G.J.; Cox, B.F. Postischemic administration of CGX-1051, a peptide from cone snail venom, reduces infarct size in both rat and dog models of myocardial ischemia and reperfusion. J. Cardiovas. Pharmacol. 2005, 46, 141–146. [Google Scholar] [CrossRef]
- Giacobassi, M.J.; Leavitt, L.S.; Raghuraman, S.; Alluri, R.; Chase, K.; Finol-Urdaneta, R.K.; Terlau, H.; Teichert, R.W.; Olivera, B.M. An integrative approach to the facile functional classification of dorsal root ganglion neuronal subclasses. Proc. Natl. Acad. Sci. USA 2020, 117, 5494–5501. [Google Scholar] [CrossRef] [PubMed]
- Martel, P.; Leo, D.; Fulton, S.; Bérard, M.; Trudeau, L.-E. Role of Kv1 potassium channels in regulating dopamine release and presynaptic D2 receptor function. PLoS ONE 2011, 6, e20402. [Google Scholar] [CrossRef] [PubMed]
- Karbat, I.; Altman-Gueta, H.; Fine, S.; Szanto, T.; Hamer-Rogotner, S.; Dym, O.; Frolow, F.; Gordon, D.; Panyi, G.; Gurevitz, M.; et al. Pore-modulating toxins exploit inherent slow inactivation to block K+ channels. PNAS. 2019, 116, 18700–18709. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, N.; Grunnet, M.; Olesen, S.-P. Cardiac potassium channel subtypes: New roles in repolarization and arrhythmia. Physiol. Rev. 2014, 94, 609–653. [Google Scholar] [CrossRef]
- Hemmerlein, B.; Weseloh, R.M.; de Quiroz, F.M.; Knötgen, H.; Sánchez, A.; Rubio, M.E.; Martin, S.; Schliephackem, T.; Jenke, M.; Radzun, H.-J.; et al. Overexpression of Eag1 potassium channels in clinical tumours. Mol. Cancer. 2006, 5, 41. [Google Scholar] [CrossRef]
Species | Toxin | Sequence |
---|---|---|
C. purpurascens (P) | κO-PVIIA a | CRIONQKCFQHLDDCCSRKCNRFNKCV-NH2 |
κO-PIVE b,c | DCCGVKLEMCHPCLCDNSCKNYGK-NH2 | |
κO-PIVF c,d | DCCGVKLEMCHPCLCDNSCKKSGK-NH2 | |
C. spurius (V) | κI2-SrXIA a | CRTEGMSCγγNQQCCWRSCCRGECEAPCRFGP-NH2 |
CNF-Sr3 a | ATSGPMGWLPVFYRF-NH2 | |
κO-SrVIA a | GCGVDGQFCGLPGLGLVCCRGACFLVCIYIP | |
C. radiatus (P) | κM-RIIIK a | LOSCCSLNLRLCOVOACKRNOCCT-NH2 |
κM-RIIIJ a | LOOCCTOOKKHCOAOACKYKOCCKS | |
C. vitulinus (V) | Vt3.1 a | GPYRRYGNCYCPI-NH2 GPYRRYGNCYCPI-NH2 |
C. planorbis (V) | α/κJ-PlXIVA a | FPRPRICNLACRAGIGHKYPFCHCR-NH2 |
κ-CPY-Pl1 a | ARFLHPFQYYTLYRYLTRFLHRYPIYYIRY | |
C. virgo (V) | κI2-ViTx a | SRCFPPGIYCTPYLPCCWGICCGTCRNVCHLRI |
C. betulinus (V) | κI2-BtX a,b | CRAγGTYCγNDSQCCLNγCCWGGCGHOCRHP-NH2 |
C. ferrugineus (V) | κCPY-Fe1 a | GTYLYPFSYYRLWRYFTRFLHKQPYYYVHI |
C. striatus (P) | κA-SIVA a,c | ZKSLVP(gSr)VITTCCGYDOGTMCOOCRCTNSC-NH2 |
κA-SIVB d | ZKELVP(gSr)VITTCCGYDOGTMCOOCRCTNSCOTKOKKO-NH2 | |
Conk-S1 a | KDRPSLCDLPADSGSGTKAEKRIYYNSARKQCLRFDYTGQGGNENNFRRTYDCQRTCLYT | |
C. consors (P) | Conk-C3 a | DRPSYCNLPADSGSGTKSEQRIYYNSARKQCLTFTYNGKGGNENNFIHTYDCRRTCQYPA |
C. monile (V) | Mo1659 b | FHGGSWYRFPWGY-NH2 |
C. varius (V) | M-Vr3 b | QGCCPPGVCQMAACNPPPCCP |
C. ventricosus (V) | Contryphan-Vn b | GDCPWKPWC-NH2 |
C. magus (P) | κA-MIVA c | AOγLVV(gTr)A(gTr)TNCCGYNOMTICOOCMCTYSCOOKRKO-NH2 |
C. stercusmuscarum (P) | κA-SmIVA d | ZTWLVP(gSr)(gTr)ITTCCGYDOGTMCOTCMCDNTCKOKOKKS-NH2 |
C. stercusmuscarum (P) | κA-SmIVB d | ZPWLVP(gSr)(gTr)ITTCCGYDOGSMCOOCMCDNNTCKOKOKKS-NH2 |
Toxin | Target Potassium Channel(s) (*IC50, °Kd, ^EC50) | References |
---|---|---|
κO-PVIIA | *Shaker (60 nM) | [18] |
κO-SrVIA | *hKv1.6 (3.6 µM); *hKv10.1 (1.88 µM); *hKv11.1 (2.44 µM) | [26] |
κM-RIIIK | *Shaker (1.21 µM); *TSha1 (73 nM); *hKv1.2 (352 nM); *rKv1.2 (335 nM) | [32,33,34] |
κM-RIIIJ | *hKv1.2 (33 nM); *hKv1.3 (10µM); *hKv1.5(70µM); *hKv1.6 (8 µM); *rKv1.1 (4 µM) | [35] |
ĸA-SIVA | *Shaker (≈50% current decrease at 2.5 μM) | [27] |
Vt3.1 | *rat α-mslo1 + hβ4 (8.5 µM) | [38] |
α/κJ-PlXIVA | *Kv1.6 (1.59 µM) | [40] |
κI2-ViTx | °rKv1.1 (1.59 µM); °hKv1.3 (2.09 µM) | [41] |
κI2-BtX | ^KCa (0.7 nM) | [42] |
κI2-SrXIA | *rKv1.2 (66% current decrease at 640 nM); *hKv1.6 (58% current decrease at 640 nM) | [44] |
κ-CPY-Pl1 | *Kv1.6 (170 nM); *Kv1.2 (2 µM) | [50] |
Κ-CPY-Fe1 | *Kv1.6 (8.8 µM) | [50] |
CNF-Sr3 | °Shaker (2.7 µM); *hKv1.6 (2.7 µM); *hKv1.3 (24 µM) | [53,54] |
Conk-S1 | *Shaker-∆6–46 (502 nM); *mKv1.7(439 nM) | [6,56] |
Conk-C3 | *Shaker (50% current decrease at 500 nM) | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Hernández, L.; López-Vera, E.; Aguilar, M.B. Peptide Toxins from Marine Conus Snails with Activity on Potassium Channels and/or Currents. Toxins 2024, 16, 504. https://doi.org/10.3390/toxins16120504
Martínez-Hernández L, López-Vera E, Aguilar MB. Peptide Toxins from Marine Conus Snails with Activity on Potassium Channels and/or Currents. Toxins. 2024; 16(12):504. https://doi.org/10.3390/toxins16120504
Chicago/Turabian StyleMartínez-Hernández, Luis, Estuardo López-Vera, and Manuel B. Aguilar. 2024. "Peptide Toxins from Marine Conus Snails with Activity on Potassium Channels and/or Currents" Toxins 16, no. 12: 504. https://doi.org/10.3390/toxins16120504
APA StyleMartínez-Hernández, L., López-Vera, E., & Aguilar, M. B. (2024). Peptide Toxins from Marine Conus Snails with Activity on Potassium Channels and/or Currents. Toxins, 16(12), 504. https://doi.org/10.3390/toxins16120504