Determination of 16 Hydroxyanthracene Derivatives in Food Supplements Using LC-MS/MS: Method Development and Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of LC-MS/MS Conditions
2.2. Optimization of Sample Preparation
2.3. Method Validation
HAD | Concentration Level (mg kg−1) | Recovery (%) | RSDr (%) | RSDRW (%) | Acceptance Criteria for RSDRW (%) [36] | Expanded MU (%) |
---|---|---|---|---|---|---|
Aloin A (ALA) | 0.05 | 101.1 | 7.1 | 13.4 | 25 | 37.2 |
0.15 | 108.5 | 4.9 | 6.3 | 22 | 24.8 | |
0.25 | 99.5 | 2.6 | 7.3 | 22 | 20.1 | |
Aloin B (ALB) | 0.1 | 104.5 | 6.5 | 15.1 | 25 | 43.4 |
0.3 | 112.1 | 5.0 | 5.0 | 22 | 28.2 | |
0.5 | 102.9 | 2.3 | 4.5 | 22 | 13.8 | |
Aloe-emodin (ALE) | 0.2 | 98.6 | 7.2 | 14.3 | 22 | 39.2 |
0.6 | 103.7 | 4.5 | 6.0 | 22 | 18.3 | |
1.0 | 96.3 | 2.2 | 5.5 | 22 | 16.7 | |
Chrysophanol (CHR) | 0.1 | 80.1 | 7.5 | 11.1 | 25 | 48.5 |
0.3 | 88.9 | 7.3 | 7.8 | 22 | 30.0 | |
0.5 | 81.5 | 1.2 | 5.1 | 22 | 39.1 | |
Danthron (DAN) | 0.2 | 87.5 | 11.6 | 16.3 | 22 | 49.2 |
0.6 | 96.9 | 5.9 | 9.0 | 22 | 25.1 | |
1.0 | 92.7 | 4.0 | 7.8 | 22 | 25.3 | |
Emodin (EMO) | 0.025 | 83.8 | 8.3 | 14.1 | 25 | 48.4 |
0.075 | 94.0 | 8.0 | 15.3 | 25 | 42.5 | |
0.125 | 87.5 | 3.4 | 13.5 | 22 | 42.9 | |
Frangulin A (FRA) | 0.1 | 84.0 | 9.1 | 14.3 | 25 | 48.6 |
0.3 | 103.7 | 4.9 | 5.4 | 22 | 16.9 | |
0.5 | 95.3 | 2.5 | 4.4 | 22 | 15.0 | |
Frangulin B (FRB) | 0.1 | 81.1 | 8.8 | 11.2 | 25 | 47.1 |
0.3 | 99.8 | 4.9 | 6.8 | 22 | 18.7 | |
0.5 | 92.0 | 2.7 | 5.5 | 22 | 21.6 | |
Glucofrangulin A (GFA) | 0.1 | 105.9 | 1.6 | 13.3 | 25 | 39.3 |
0.3 | 106.3 | 1.5 | 5.4 | 22 | 19.7 | |
0.5 | 101.3 | 1.3 | 4.3 | 22 | 12.2 | |
Glucofrangulin B (GFB) | 1.0 | 108.7 | 1.9 | 14.3 | 22 | 44.5 |
3.0 | 119.3 | 1.1 | 5.4 | 16 | 41.9 | |
5.0 | 116.3 | 0.8 | 4.4 | 16 | 35.0 | |
Physcion (PHY) 1 | 0.1 | 49.2 | 3.0 | 8.3 | 25 | 17.5 |
0.3 | 50.9 | 1.6 | 13.4 | 22 | 28.2 | |
0.5 | 52.0 | 2.4 | 15.4 | 22 | 32.5 | |
Rhein (RHE) | 0.1 | 103.9 | 6.1 | 6.4 | 25 | 19.7 |
0.3 | 107.4 | 4.2 | 8.3 | 22 | 27.8 | |
0.5 | 100.7 | 2.3 | 7.0 | 22 | 19.4 | |
Sennoside A (SENA) | 1.0 | 87.9 | 0.6 | 13.4 | 22 | 42.4 |
3.0 | 96.0 | 1.2 | 5.9 | 16 | 17.8 | |
5.0 | 93.4 | 0.9 | 3.6 | 16 | 16.1 | |
Sennoside A1 (SENA1) | 0.75 | 95.9 | 1.5 | 6.0 | 22 | 18.1 |
2.25 | 93.4 | 0.6 | 7.4 | 16 | 23.7 | |
3.75 | 91.0 | 0.5 | 7.2 | 16 | 26.3 | |
Sennoside B (SENB) | 0.75 | 93.5 | 2.1 | 6.1 | 22 | 20.8 |
2.25 | 93.9 | 1.2 | 4.7 | 16 | 17.5 | |
3.75 | 92.5 | 0.7 | 5.0 | 16 | 20.0 | |
Sennoside C (SENC) | 0.5 | 100.5 | 1.7 | 13.8 | 22 | 38.0 |
1.5 | 107.2 | 1.0 | 9.0 | 16 | 29.3 | |
2.5 | 103.1 | 0.8 | 8.4 | 16 | 24.3 |
2.4. Method Application
3. Conclusions
4. Materials and Methods
4.1. Reagents and Standards
4.2. Samples
4.3. Sample Preparation
4.4. LC-MS/MS Conditions
4.5. Validation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation global study. Gastroenterology 2021, 160, 99–114. [Google Scholar] [CrossRef] [PubMed]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on the substantiation of a health claim related to hydroxyanthracene derivatives and improvement of bowel function pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2013, 11, 3412. [Google Scholar] [CrossRef]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Filipic, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Scientific Opinion on the safety of hydroxyanthracene derivatives for use in food. EFSA J. 2018, 16, 5090. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Health and Food Safety. Commission Regulation (EU) 2021/468 of 18 March 2021 amending Annex III to Regulation (EC) No 1925/2006 of the European Parliament and of the Council as regards botanical species containing hydroxyanthracene derivatives. OJ 2021, 96, 6–8. [Google Scholar]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Knutsen, H.K.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Scientific Opinion on additional scientific data related to the safety of preparations of Rheum palmatum L., Rheum officinale Baill. and their hybrids, Rhamnus purshiana DC., Rhamnus frangula L. and Cassia senna L., submitted pursuant to Article 8(4) of Regulation (EC) No 1925/2006. EFSA J. 2024, 22, e8766. [Google Scholar] [CrossRef] [PubMed]
- EURL-MP-Report_002, Inventory Analytical Methods Hydroxyanthracene Derivatives. 2020. Available online: https://www.wur.nl/en/show/1.-eurl-mp-report_002-inventory-analytical-methods-hydroxyanthracene-derivatives.htm (accessed on 9 September 2024).
- Kline, D.; Ritruthai, V.; Babajanian, S.; Gao, Q.; Ingle, P.; Chang, P.; Swanson, G. Quantitative analysis of aloins and aloin-emodin in Aloe vera raw materials and finished products using high-performance liquid chromatography: Single-laboratory validation, First Action 2016.09. J. AOAC Int. 2017, 100, 661–670. [Google Scholar] [CrossRef]
- Yılmaz, P.K.; Kolak, U. Development and validation of a SPE–HPLC method for quantification of rhein, emodin, chrysophanol and physcion in Rhamnus petiolaris Boiss. & Balansa. J. Chromatogr. Sci. 2023, 62, 872–877. [Google Scholar] [CrossRef]
- Al-Hamoud, G.A.; Alam, P.; Fantoukh, O.I.; Hawwal, M.F.; Akhtar, A. HPLC-UV analysis of chrysophanol in Senna occidentalis extract obtained by using the RSM-optimized ultrasonic extraction process. Processes 2023, 11, 1410. [Google Scholar] [CrossRef]
- Mandrioli, R.; Mercolini, L.; Ferranti, A.; Fanali, S.; Raggi, M.A. Determination of aloe emodin in Aloe vera extracts and commercial formulations by HPLC with tandem UV absorption and fluorescence detection. Food Chem. 2011, 126, 387–393. [Google Scholar] [CrossRef]
- Loschi, F.; Faggian, M.; Sut, S.; Ferrarese, I.; Maccari, E.; Peron, G.; Dall’Acqua, S. Development of an LC–DAD–MS-based method for the analysis of hydroxyanthracene derivatives in food supplements and plant materials. Molecules 2022, 27, 1932. [Google Scholar] [CrossRef]
- Xue, Y.; Liang, J. Screening of bioactive compounds in Rhizoma polygoni cuspidati with hepatocyte membranes by HPLC and LC–MS. J. Sep. Sci. 2014, 37, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, X.; Gui, J.; Wan, Y.; Chen, J.; Tan, T.; Liu, F.; Guo, L. Ultrasonic solvent extraction followed by dispersive solid phase extraction (d-SPE) cleanup for the simultaneous determination of five anthraquinones in Polygonum multiflorum by UHPLC-PDA. Foods 2022, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Chen, Z.; Shang, B.; Chen, Q. Identification and quantification of four anthraquinones in rhubarb and its preparations by Gas Chromatography–Mass Spectrometry. J. Chromatogr. Sci. 2018, 56, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Nesměrák, K.; Kudláček, K.; Čambal, P.; Štícha, M.; Kozlík, P.; Červený, V. Authentication of senna extract from the eighteenth century and study of its composition by HPLC–MS. Monatsh Chem. 2020, 151, 1241–1248. [Google Scholar] [CrossRef]
- Shi, Y.; Zhong, Y.; Sun, A.; Gao, B.; Sun, C.; Xiong, J. Validation of a rapid and simple high-performance liquid chromatography electrospray ionization-mass spectrometry method for simultaneous analysis of 15 key chemicals in slimming foods and herbal products. J. Chromatogr. Sci. 2018, 56, 912–919. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, X.; Li, W.; Cai, B. Simultaneous quantitation of five bioactive ingredients in raw and processed Fallopia multiflora by employing UHPLC-Q-TOF-MS. J. Chromatogr. Sci. 2019, 57, 618–624. [Google Scholar] [CrossRef]
- Di Minno, A.; Morone, M.V.; Ullah, H.; Sommella, E.; Buccato, D.G.; De Lellis, L.F.; Campiglia, P.; De Filippis, A.; Galdiero, M.; Daglia, M. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantification of hydroxyanthracene derivatives in Aloe vera (L.) Burm. f. gel commercial beverages and preliminary safety evaluation through in vitro genotoxicity studies. Food Safe Health 2024, 2, 489–496. [Google Scholar] [CrossRef]
- Girreser, U.; Ugolini, T.; Çiçek, S.S. Quality control of Aloe vera (Aloe barbadensis) and Aloe ferox using band-selective quantitative heteronuclear single quantum correlation spectroscopy (bs-qHSQC). Talanta 2019, 205, 120109. [Google Scholar] [CrossRef]
- Çiçek, S.S.; Cardenas, C.M.; Girreser, U. Determination of total sennosides and sennosides A, B, and A1 in senna leaflets, pods, and tablets by two-dimensional qNMR. Molecules 2022, 27, 7349. [Google Scholar] [CrossRef]
- Fierens, C.; Corthout, J. Anthranoid-containing medicines and food supplements on the Belgian market: A comparative study. J. Pharm. Belg. 2014, 96, 40–49. [Google Scholar]
- Fung, H.Y.; Lang, Y.; Ho, J.-M.; Wong, T.-L.; Ma, D.-L.; Leung, C.-H.; Han, Q.-B. Comprehensive quantitative analysis of 32 chemical ingredients of a Chinese patented drug Sanhuang tablet. Molecules 2017, 22, 111. [Google Scholar] [CrossRef] [PubMed]
- Namdar, D.; Mulder, P.P.J.; Ben-Simchon, E.; Hacham, Y.; Basheer, L.; Cohen, O.; Sternberg, M.; Shelef, O. New analytical approach to quinolizidine alkaloids and their assumed biosynthesis pathways in lupin seeds. Toxins 2024, 16, 163. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cañás, I.; González-Jartín, J.M.; Alfonso, A.; Alvariño, R.; Vieytes, M.R.; Botana, L.M. Application of a multi-toxin detect method to analyze mycotoxins occurrence in plant-based beverages. Food Chem. 2024, 434, 137427. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, I.; Wolfram, E.; Meier, B. New UHPLC—Method to determine Aloin A and B in Aloe capensis. Planta Med. 2013, 79, PK34. [Google Scholar] [CrossRef]
- Rosenthal, I.; Wolfram, E.; Peter, S.; Meier, B. Validated method for the analysis of frangulins A and B and glucofrangulins A and B using HPLC and UHPLC. J. Nat. Prod. 2014, 77, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Hemwimol, S.; Pavasant, P.; Shotipruk, A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason. Sonochem 2006, 13, 543–548. [Google Scholar] [CrossRef]
- Glavnik, V.; Vovk, I. Extraction of anthraquinones from Japanese knotweed rhizomes and their analyses by high performance thin-layer chromatography and mass spectrometry. Plants 2020, 9, 1753. [Google Scholar] [CrossRef]
- Aichner, D.; Ganzera, M. Analysis of anthraquinones in rhubarb (Rheum. palmatum and Rheum. officinale) by supercritical fluid chromatography. Talanta 2015, 144, 1239–1244. [Google Scholar] [CrossRef]
- Brown, P.N.; Yu, R.; Kuan, C.H.; Finley, J.; Mudge, E.M.; Dentali, S. Determination of aloin A and aloin B in Aloe vera raw materials and finished products by high-performance liquid chromatography: Single-laboratory validation. J. AOAC Int. 2014, 97, 1323–1328. [Google Scholar] [CrossRef]
- Tang, W.; Wan, M.; Zhu, Z.; Chen, G.; Huang, X. Simultaneous determination of eight major bioactive compounds in Dachengqi Tang (DT) by high-performance liquid chromatography. Chin. Med. 2008, 3, 5. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Chang, F.-R.; Liou, J.-R.; Lo, I.-W.; Chung, T.-C.; Lee, L.-Y.; Chi, C.-C.; Du, Y.-C.; Wong, M.-H.; Juo, S.-H.H.; et al. Rapid HPLC quantification approach for detection of active constituents in modern combinatorial formula, San-Huang-Xie-Xin-Tang (SHXXT). Front. Pharmacol. 2016, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wan, Y.; Liu, F.; Chen, J.; Tan, T.; Guo, L. Simultaneous determination of seven anthraquinones in Cassiae semen by natural deep eutectic solvent extraction. Phytochem. Anal. 2022, 33, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, Y.; Wu, H.; Sun, Z.; Tan, S.; Wang, W.; Gong, L.; Xia, X.; Li, S. Development of a method for simultaneous determination of two stilbenes and four anthraquinones from Polygonum cuspidatum by RP-HPLC. J. AOAC Int. 2019, 102, 69–74. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Standing Committee on Plants, Animals, Food and Feed Section General Food Law, 5 October 2020, Summary Report: Sante.ddg2.g.5(2020)7913268. Available online: https://food.ec.europa.eu/document/download/081fe590-a0b8-432b-84ba-3c7e6efcb3f9_en?filename=reg-com_gfl_20201005_sum.pdf (accessed on 9 September 2024).
- European Commission, Directorate-General for Health and Food Safety. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC. OJ 2021, 180, 84–109. [Google Scholar]
- Galli, C.L.; Cinelli, S.; Ciliutti, P.; Melzi, G.; Marinovich, M. Lack of in vivo genotoxic effect of dried whole Aloe ferox juice. Toxicol. Rep. 2021, 8, 1471–1474. [Google Scholar] [CrossRef]
- Galli, C.L.; Cinelli, S.; Ciliutti, P.; Melzi, G.; Marinovich, M. Aloe-emodin, a hydroxyanthracene derivative, is not genotoxic in an in vivo comet test. Regul. Toxicol. Pharmacol. 2021, 124, 104967. [Google Scholar] [CrossRef]
HAD | Retention Time (min) | Ionization Mode | Precursor Ion (m/z) | Cone Voltage (V) | Product Ion (m/z) | Collision Energy (eV) |
---|---|---|---|---|---|---|
Aloin A (ALA) | 5.53 | ESI(+) | 419.2 [M+H]+ | 15 | 239.0 1 | 10 |
211.0 | 25 | |||||
Aloin B (ALB) | 5.30 | ESI(+) | 419.2 [M+H]+ | 20 | 239.0 1 | 10 |
211.0 | 25 | |||||
Aloe-emodin (ALE) | 7.11 | ESI(+) | 271.0 [M+H]+ | 15 | 225.0 1 | 25 |
197.0 | 30 | |||||
Chrysophanol (CHR) | 9.11 | ESI(+) | 255.0 [M+H]+ | 50 | 152.0 1 | 35 |
181.0 | 25 | |||||
Danthron (DAN) | 8.29 | ESI(+) | 241.0 [M+H]+ | 30 | 213.1 1 | 25 |
167.1 | 25 | |||||
Emodin (EMO) | 8.67 | ESI(−) | 269.2 [M−H]− | 30 | 225.1 1 | 30 |
241.1 | 30 | |||||
Frangulin A (FRA) | 8.44 | ESI(+) | 417.0 [M+H]+ | 15 | 271.0 1 | 15 |
197.0 | 40 | |||||
Frangulin B (FRB) | 8.12 | ESI(+) | 403.0 [M+H]+ | 20 | 271.0 1 | 20 |
197.0 | 45 | |||||
Glucofrangulin A (GFA) | 6.05 | ESI(−) | 623.3 [M+HCOOH−H]− | 30 | 269.0 1 | 60 |
431.0 | 30 | |||||
Glucofrangulin B (GFB) | 5.81 | ESI(−) | 609.1 [M+HCOOH−H]− | 30 | 431.0 1 | 20 |
269.0 | 30 | |||||
Physcion (PHY) | 9.60 | ESI(+) | 285.1 [M+H]+ | 30 | 168.0 1 | 35 |
139.2 | 55 | |||||
Rhein (RHE) | 7.71 | ESI(−) | 283.0 [M−H]− | 30 | 183.1 1 | 30 |
211.1 | 30 | |||||
Sennoside A (SENA) | 4.76 | ESI(−) | 861.3 [M−H]− | 30 | 224.2 1 | 50 |
386.3 | 50 | |||||
Sennoside A1 (SENA1) | 4.57 | ESI(−) | 861.3 [M−H]− | 30 | 224.2 1 | 50 |
386.3 | 50 | |||||
Sennoside B (SENB) | 4.24 | ESI(−) | 861.3 [M−H]− | 30 | 224.2 1 | 50 |
386.3 | 50 | |||||
Sennoside C (SENC) | 4.54 | ESI(−) | 847.0 [M−H]− | 30 | 224.2 1 | 50 |
386.3 | 50 | |||||
Aloe-emodin-d4 (ALE-D4) | 7.09 | ESI(+) | 275.1 [M+H]+ | 15 | 229.1 1 | 20 |
245.1 | 20 | |||||
Danthron-d4 (DAN-D4) | 8.27 | ESI(+) | 245.1 [M+H]+ | 20 | 143.0 1 | 35 |
161.1 | 30 | |||||
Emodin-d4 (EMO-D4) | 8.65 | ESI(−) | 273.1 [M−H]− | 30 | 229.0 1 | 30 |
245.1 | 30 | |||||
Physcion-d3 (PHY-D3) | 9.58 | ESI(+) | 288.1 [M+H]+ | 20 | 168.0 1 | 40 |
242.0 | 30 |
HAD | LOQ (mg kg−1) | LOQ (mg L−1) | Matrix Effect (%) | Linear Range (mg kg−1) | Coefficient of Determination R2 | Regression Model | Internal Standard Used |
---|---|---|---|---|---|---|---|
Aloin A (ALA) | 0.05 | 0.002 | 40 | 0.05–0.5 | 0.9923 | Linear | ALE-D4 |
Aloin B (ALB) | 0.1 | 0.004 | 32 | 0.1–1.0 | 0.9925 | Linear | ALE-D4 |
Aloe-emodin (ALE) | 0.2 | 0.008 | 60 | 0.2–2.0 | 0.9922 | Linear | ALE-D4 |
Chrysophanol (CHR) | 0.1 | 0.004 | 82 | 0.1–1.0 | 0.9920 | Linear | ALE-D4 |
Danthron (DAN) | 0.2 | 0.008 | 114 | 0.2–2.0 | 0.9931 | Linear | DAN-D4 |
Emodin (EMO) | 0.025 | 0.001 | 85 | 0.025–0.25 | 0.9942 | Linear | EMO-D4 |
Frangulin A (FRA) | 0.1 | 0.004 | 70 | 0.1–1.0 | 0.9920 | Linear | ALE-D4 |
Frangulin B (FRB) | 0.1 | 0.004 | 72 | 0.1–1.0 | 0.9921 | Linear | ALE-D4 |
Glucofrangulin A (GFA) | 0.1 | 0.004 | 33 | 0.1–1.0 | 0.9969 | Linear | None |
Glucofrangulin B (GFB) | 1.0 | 0.042 | 42 | 1–10 | 0.9962 | Linear | None |
Physcion (PHY) | 0.1 | 0.004 | 58 | 0.1–1.0 | 0.9951 | Linear | None |
Rhein (RHE) | 0.1 | 0.004 | 87 | 0.1–1.0 | 0.9958 | Linear | EMO-D4 |
Sennoside A (SENA) | 1.0 | 0.042 | 47 | 1–10 | 0.9939 | Linear | None |
Sennoside A1 (SENA1) | 0.75 | 0.031 | 51 | 0.75–7.5 | 0.9930 | Linear | None |
Sennoside B (SENB) | 0.75 | 0.031 | 47 | 0.75–7.5 | 0.9920 | Linear | None |
Sennoside C (SENC) | 0.5 | 0.021 | 42 | 0.5–5.0 | 0.9905 | Linear | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malysheva, S.V.; Guillaume, B.; Vanhee, C.; Masquelier, J. Determination of 16 Hydroxyanthracene Derivatives in Food Supplements Using LC-MS/MS: Method Development and Application. Toxins 2024, 16, 505. https://doi.org/10.3390/toxins16120505
Malysheva SV, Guillaume B, Vanhee C, Masquelier J. Determination of 16 Hydroxyanthracene Derivatives in Food Supplements Using LC-MS/MS: Method Development and Application. Toxins. 2024; 16(12):505. https://doi.org/10.3390/toxins16120505
Chicago/Turabian StyleMalysheva, Svetlana V., Benoît Guillaume, Céline Vanhee, and Julien Masquelier. 2024. "Determination of 16 Hydroxyanthracene Derivatives in Food Supplements Using LC-MS/MS: Method Development and Application" Toxins 16, no. 12: 505. https://doi.org/10.3390/toxins16120505
APA StyleMalysheva, S. V., Guillaume, B., Vanhee, C., & Masquelier, J. (2024). Determination of 16 Hydroxyanthracene Derivatives in Food Supplements Using LC-MS/MS: Method Development and Application. Toxins, 16(12), 505. https://doi.org/10.3390/toxins16120505