Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench–Scale Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of H2O2/Fe(II) Molar Ratio on CYN Degradation
2.2. The Effect of H2O2 and Fe(II) Dosages on CYN Degradation at a Fixed H2O2/Fe(II) Molar Ratio
2.3. The Effect of Initial CYN Concentration on Fenton’s Efficiency at a Fixed H2O2/Fe(II) Molar Ratio
2.4. The Effect of Initial pH on CYN Degradation at a Fixed H2O2/Fe(II) Molar Ratio
2.5. The Effect of Humic Acid (AH) and Algogenic Organic Matter (AOM) on CYN Degradation at a Fixed H2O2/Fe(II) Molar Ratio
2.6. The Interference of Methanol on CYN Degradation
3. Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Cyanobacteria Crude Extract Preparation
4.3. Paranoá Lake Water
4.4. Experimental Setup
4.5. Analytical Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial Blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing Organisms, Occurrence, Toxicity, Mechanism of Action and Human Health Toxicological Risk Evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef] [PubMed]
- Scarlett, K.R.; Kim, S.; Lovin, L.M.; Chatterjee, S.; Scott, J.T.; Brooks, B.W. Global Scanning of Cylindrospermopsin: Critical Review and Analysis of Aquatic Occurrence, Bioaccumulation, Toxicity and Health Hazards. Sci. Total Environ. 2020, 738, 139807. [Google Scholar] [CrossRef] [PubMed]
- Humpage, A.R.; Fontaine, F.; Froscio, S.; Burcham, P.; Falconer, I.R. Cylindrospermopsin Genotoxicity and Cytotoxicity: Role of Cytochrome P-450 and Oxidative Stress. J. Toxicol. Environ. Health A 2005, 68, 739–753. [Google Scholar] [CrossRef]
- Falconer, I.R.; Hardy, S.J.; Humpage, A.R.; Froscio, S.M.; Tozer, G.J.; Hawkins, P.R. Hepatic and Renal Toxicity of the Blue-Green Alga (Cyanobacterium) Cylindrospermopsis Raciborskii in Male Swiss Albino Mice. Environ. Toxicol. 1999, 14, 143–150. [Google Scholar] [CrossRef]
- Falconer, I.R. Cyanobacterial Toxins of Drinking Water Supplies: Cylindrospermopsins and Microcystins; CRC Press: Boca Raton, FL, USA, 2004; p. 296. ISBN 0203022874. [Google Scholar]
- World Health Organization. Cyanobacterial Toxins: Cylindrospermopsins. Background Document for Development of WHO Guide-Lines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Ministério da Saúde Brasil. Portaria de Consolidação GM/MS N° 888, de 4 de Maio de 2021: Procedimentos de Controle e de Vigilância da Qualidade da Água para Consumo Humano e seu Padrão de Potabilidade; Ministério da Saúde: Brasília, Brazil, 2021.
- Antoniou, M.G.; de la Cruz, A.A.; Dionysiou, D.D. Cyanotoxins: New Generation of Water Contaminants. J. Environ. Eng. 2005, 131, 1239–1243. [Google Scholar] [CrossRef]
- Falconer, I.R.; Humpage, A.R. Cyanobacterial (Blue-green Algal) Toxins in Water Supplies: Cylindrospermopsins. Environ. Toxicol. Int. J. 2006, 21, 299–304. [Google Scholar] [CrossRef]
- Keijola, A.M.; Himberg, K.; Esala, A.L.; Sivonen, K.; Hiis-Virta, L. Removal of Cyanobacterial Toxins in Water Treatment Processes: Laboratory and Pilot-scale Experiments. Toxic. Assess. 1988, 3, 643–656. [Google Scholar] [CrossRef]
- Van Apeldoorn, M.E.; Van Egmond, H.P.; Speijers, G.J.A.; Bakker, G.J.I. Toxins of Cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60. [Google Scholar] [CrossRef]
- Abbas, T.; Kajjumba, G.W.; Ejjada, M.; Masrura, S.U.; Marti, E.J.; Khan, E.; Jones-lepp, T.L. Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review. Water 2020, 12, 2756. [Google Scholar] [CrossRef]
- Schneider, M.; Bláha, L. Advanced Oxidation Processes for the Removal of Cyanobacterial Toxins from Drinking Water. Environ. Sci. Eur. 2020, 32, 94. [Google Scholar] [CrossRef]
- Chiswell, R.K.; Shaw, G.R.; Eaglesham, G.; Smith, M.J.; Norris, R.L.; Seawright, A.A.; Moore, M.R. Stability of Cylindrospermopsin, the Toxin from the Cyanobacterium, Cylindrospermopsis Raciborskii: Effect of PH, Temperature, and Sunlight on Decomposition. Environ. Toxicol. 1999, 14, 155–161. [Google Scholar] [CrossRef]
- Ho, L.; Lambling, P.; Bustamante, H.; Duker, P.; Newcombe, G. Application of Powdered Activated Carbon for the Adsorption of Cylindrospermopsin and Microcystin Toxins from Drinking Water Supplies. Water Res. 2011, 45, 2954–2964. [Google Scholar] [CrossRef]
- Crowe, G.T.; Almuhtaram, H.; Andrews, R.C.; McKie, M.J. Granular Activated Carbon Caps—A Potential Treatment Barrier for Drinking Water Cyanotoxins. J. Water Process Eng. 2022, 49, 102977. [Google Scholar] [CrossRef]
- Newcombe, G.; Nicholson, B. Water treatment options for dissolved cyanotoxins. J. Water Supply Res. Technol.-Aqua 2004, 53, 227–239. [Google Scholar] [CrossRef]
- Gijsbertsen-Abrahamse, A.J.; Schmidt, W.; Chorus, I.; Heijman, S.G.J. Removal of Cyanotoxins by Ultrafiltration and Nanofiltration. J. Membr. Sci. 2006, 276, 252–259. [Google Scholar] [CrossRef]
- He, X.; de La Cruz, A.A.; Dionysiou, D.D. Destruction of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals and Sulfate Radicals Using UV-254 Nm Activation of Hydrogen Peroxide, Persulfate and Peroxymonosulfate. J. Photochem. Photobiol. A Chem. 2013, 251, 160–166. [Google Scholar] [CrossRef]
- He, X.; Zhang, G.; de La Cruz, A.A.; O’Shea, K.E.; Dionysiou, D.D. Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals in Homogeneous UV/H2O2 Process. Environ. Sci. Technol. 2014, 48, 4495–4504. [Google Scholar] [CrossRef]
- He, X.; de la Cruz, A.A.; O’Shea, K.E.; Dionysiou, D.D. Kinetics and Mechanisms of Cylindrospermopsin Destruction by Sulfate Radical-Based Advanced Oxidation Processes. Water Res. 2014, 63, 168–178. [Google Scholar] [CrossRef]
- Zhang, G.; He, X.; Nadagouda, M.N.; O’Shea, K.E.; Dionysiou, D.D. The Effect of Basic PH and Carbonate Ion on the Mechanism of Photocatalytic Destruction of Cylindrospermopsin. Water Res. 2015, 73, 353–361. [Google Scholar] [CrossRef]
- Wu, C.C.; Huang, W.J.; Ji, B.H. Degradation of Cyanotoxin Cylindrospermopsin by TiO2-Assisted Ozonation in Water. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Bakheet, B.; Islam, M.A.; Beardall, J.; Zhang, X.; McCarthy, D. Electrochemical Inactivation of Cylindrospermopsis Raci-borskii and Removal of the Cyanotoxin Cylindrospermopsin. J. Hazard. Mater. 2018, 344, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Rataj, R.; Kolb, J.F.; Bláha, L. Cylindrospermopsin Is Effectively Degraded in Water by Pulsed Corona-like and Dielectric Barrier Discharges. Environ. Pollut. 2020, 266, 115423. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.A.; Brandão, C.C.S.; Ginoris, Y.P. Oxidation of Cylindrosmpermopsin by Fenton Process: A Bench-Scale Study of the Effects of Dose and Ratio of H2O2 and Fe(II) and Kinetics. Toxins 2021, 13, 604. [Google Scholar] [CrossRef]
- Schneider, M.; Grossi, M.F.; Gadara, D.; Spáčil, Z.; Babica, P.; Bláha, L. Treatment of cylindrospermopsin by hydroxyl and sulfate radicals: Does degradation equal detoxification? J. Hazard. Mater. 2022, 424, 127447. [Google Scholar] [CrossRef]
- Munoz, M.; Nieto-Sandoval, J.; Cirés, S.; de Pedro, Z.M.; Quesada, A.; Casas, J.A. Degradation of Widespread Cyanotoxins with High Impact in Drinking Water (Microcystins, Cylindrospermopsin, Anatoxin-a and Saxitoxin) by CWPO. Water Res. 2019, 163, 114853. [Google Scholar] [CrossRef]
- Liu, J.; Hernández, S.E.; Swift, S.; Singhal, N. Estrogenic Activity of Cylindrospermopsin and Anatoxin-a and Their Oxi-dative Products by FeIII-B*/H2O2. Water Res. 2018, 132, 309–319. [Google Scholar] [CrossRef]
- Ortiz, D.; Munoz, M.; Garcia, J.; Cirés, S.; de Pedro, Z.M.; Quesada, A.; Casas, J.A. Photo-Fenton Oxidation of Cylindrospermopsin at Neutral PH with LEDs. Environ. Sci. Pollut. Res. 2023, 30, 21598–21607. [Google Scholar] [CrossRef]
- Bautista, P.; Mohedano, A.F.; Casas, J.A.; Zazo, J.A.; Rodriguez, J.J. An Overview of the Application of Fenton Oxidation to Industrial Wastewaters Treatment. J. Chem. Technol. Biotechnol. 2008, 83, 1323–1338. [Google Scholar] [CrossRef]
- Azbar, N.; Yonar, T.; Kestioglu, K. Comparison of Various Advanced Oxidation Processes and Chemical Treatment Methods for COD and Color Removal from a Polyester and Acetate Fiber Dyeing Effluent. Chemosphere 2004, 55, 35–43. [Google Scholar] [CrossRef]
- Cañizares, P.; Paz, R.; Sáez, C.; Rodrigo, M.A. Costs of the Electrochemical Oxidation of Wastewaters: A Comparison with Ozonation and Fenton Oxidation Processes. J. Environ. Manag. 2009, 90, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Jin, X.; Qiao, R.; Qi, X.; Zhuang, Y. Destruction of Microcystin-RR by Fenton Oxidation. J. Hazard. Mater. 2009, 167, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Tekin, H.; Bilkay, O.; Ataberk, S.S.; Balta, T.H.; Ceribasi, I.H.; Sanin, F.D.; Dilek, F.B.; Yetis, U. Use of Fenton Oxidation to Improve the Biodegradability of a Pharmaceutical Wastewater. J. Hazard. Mater. 2006, 136, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Hurowitz, J.A.; Tosca, N.J.; Dyar, M.D. Acid Production by FeSO4·nH2O Dissolution and Implications for Terrestrial and Martian Aquatic Systems. Am. Miner. 2009, 94, 409–414. [Google Scholar] [CrossRef]
- Park, J.A.; Yang, B.; Park, C.; Choi, J.W.; van Genuchten, C.M.; Lee, S.H. Oxidation of Microcystin-LR by the Fenton Process: Kinetics, Degradation Intermediates, Water Quality and Toxicity Assessment. Chem. Eng. J. 2017, 309, 339–348. [Google Scholar] [CrossRef]
- Al Momani, F.; Smith, D.W.; El-Din, M.G. Degradation of Cyanobacteria Toxin by Advanced Oxidation Processes. J. Hazard. Mater. 2008, 150, 238–249. [Google Scholar] [CrossRef]
- De Laat, J.; Gallard, H. Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism and Kinetic Modeling. Environ. Sci. Technol. 1999, 33, 2726–2732. [Google Scholar] [CrossRef]
- Rivas, F.J.; Beltrán, F.; Gimeno, O.; Carvalho, F. Fenton-like Oxidation of Landfill Leachate. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2003, 38, 371–379. [Google Scholar] [CrossRef]
- Jung, Y.S.; Lim, W.T.; Park, J.Y.; Kim, Y.H. Effect of PH on Fenton and Fenton-like Oxidation. Environ. Technol. 2009, 30, 183–190. [Google Scholar] [CrossRef]
- Overend, R.; Paraskevopoulo, G. Rates of Hydroxyl Radical Reactions. 4. Reactions with Methanol, Ethanol, 1-Propanol, and 2-Propanol at 296 K. J. Phys. Chem. 1978, 82, 1329–1333. [Google Scholar] [CrossRef]
- Hess, W.P.; Tully, F.P. Hydrogen-Atom Abstraction from Methanol by OH. J. Phys. Chem. 1989, 93, 1944–1947. [Google Scholar] [CrossRef]
- Mckay, G.; Kleinman, J.L.; Johnston, K.M.; Dong, M.M.; Rosario-Ortiz, F.L.; Mezyk, S.P. Kinetics of the Reaction between the Hydroxyl Radical and Organic Matter Standards from the International Humic Substance Society. J. Soils Sediments 2014, 14, 298–304. [Google Scholar] [CrossRef]
- Lee, D.; Kwon, M.; Ahn, Y.; Jung, Y.; Nam, S.N.; Choi, I.H.; Kang, J.W. Characteristics of Intracellular Algogenic Organic Matter and Its Reactivity with Hydroxyl Radicals. Water Res. 2018, 144, 13–25. [Google Scholar] [CrossRef]
- Onstad, G.D.; Strauch, S.; Meriluoto, J.; Codd, G.A.; von Gunten, U. Selective Oxidation of Key Functional Groups in Cy-anotoxins during Drinking Water Ozonation. Environ. Sci. Technol. 2007, 41, 4397–4404. [Google Scholar] [CrossRef]
- Song, W.; Yan, S.; Cooper, W.J.; Dionysiou, D.D.; Oshea, K.E. Hydroxyl Radical Oxidation of Cylindrospermopsin (Cyanobacterial Toxin) and Its Role in the Photochemical Transformation. Environ. Sci. Technol. 2012, 46, 12608–12615. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (OH/O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Gorham, P.R.; McLachlan, J.; Hammer, U.T.; Kim, W.K. Isolation and Culture of Toxic Strains of Anabaena Flos-Aquae (Lyngb.) de Bréb. SIL Proc. 1922–2010 1964, 15, 796–804. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017; ISBN 9781119130536. [Google Scholar]
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; LGC: London, UK, 2014; ISBN 0948926120. [Google Scholar]
H2O2 (µM) | Fe(II) (µM) | CYN Degradation Efficiency (%) | |
---|---|---|---|
Ultrapure Water (Ferreira et al. [27]) | Paranoá Lake Water (Current Study) | ||
25 | 62.5 | 81 | 66 |
50 | 125 | 91 | 91.3 |
Parameter | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Mean (SD) |
---|---|---|---|---|---|
pH | 7.4 | 7.4 | 7.5 | 7.6 | 7.5 (0.1) |
EC (µS/cm) | 91.2 | 93.7 | 91.7 | 91.4 | 92.0 (1.2) |
Temperature (°C) | 28.3 | 27.8 | 26.8 | 26.3 | 27.3 (0.9) |
Alkalinity (mg/L CaCO3) | 29 | 29 | 28 | 29 | 28.8 (0.5) |
Apparent Color | 4 | 4 | 4 | 4 | 4 (0) |
Turbidity (NTU) | 1.69 | 1.66 | 1.82 | 2.21 | 1.85 (0.25) |
UV254 | 0.027 | 0.027 | 0.030 | 0.028 | 0.028 (0.001) |
Fe(II) (µM) | ND | ND | ND | ND | ND |
Fe(III) (µM) | 1.43 | 2.50 | 3.10 | 1.89 | 2.23 (0.73) |
H2O2 (µM) | 0.09 | 0.13 | 0.06 | 0.04 | 0.08 (0.04) |
NPOC (µM C) | 112.4 | 88.3 | 84.9 | 248.9 | 133.6 (77.8) |
CYN (µM) | ND | ND | ND | ND | ND |
Set of Experiment | Objective | Experimental Conditions | |
---|---|---|---|
1 | Evaluate the effect of the H2O2/Fe(II) molar ratio on CYN degradation | H2O2: 75 µM and Fe(II): 22.1 to 375.0 µM; H2O2/Fe(II) molar ratio: 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.6, and 3.4; Initial pH: 5.0; CYN: 0.05 µM and Matrix: Paranoá Lake water. | |
2 | Assess the effect of H2O2 and Fe(II) dosages on CYN degradation | H2O2: 25 to 100 µM and Fe(II): 62.5 to 250.0 µM; Optimum H2O2/Fe(II) molar ratio from set 1; Initial pH: 5.0; CYN: 0.05 µM and Matrix: Paranoá Lake water. | |
3 | Examine the effect of initial CYN concentration on oxidation efficiency | H2O2 and Fe(II) concentrations from set 1; Optimum H2O2/Fe(II) molar ratio from set 1; Initial pH: 5.0; CYN: 0.05, 0.1 and 0.2 µM and Matrix: Paranoá Lake water. | |
4 | Evaluate the effect of initial pH on CYN degradation | H2O2 and Fe(II) concentrations from set 1; Optimum H2O2/Fe(II) molar ratio from set 1; Initial pH values: 3, 4, 5, 7, 9; CYN: 0.05 µM and Matrix: Paranoá Lake water. | |
5 | Examine the effect of humic acid (HA) and algogenic organic (AOM) matter on CYN degradation | 5.1 | H2O2: 25 to 100 µM and Fe(II): 62.5 to 250.0 µM; Optimum H2O2/Fe(II) molar ratio from set 1; Initial pH: 5.0; CYN: 0.05 µM and Matrix: ultrapure water. |
5.2 | H2O2: 25 to 100 µM and Fe(II): 62.5 to 250.0 µM; Optimum H2O2/Fe(II) molar ratio from set 1; Initial pH: 5.0; HA concentration: 5 mg/L; CYN: 0.05 µM and Matrix: ultrapure water. | ||
5.3 | H2O2: 25 to 100 µM and Fe(II): 62.5 to 250.0 µM; Optimum H2O2/Fe(II) molar ratio from set 1; Initial pH: 5.0; CYN: 0.05 µM from Raphidiopsis raciborskii crude extract and Matrix: ultrapure water. | ||
6 | Compare the degradation of CYN in methanol–free ultrapure water and ultrapure water containing methanol | 6.1 | H2O2: 25 µM and Fe(II): 7.4 to 125.0 µM; H2O2/Fe(II) molar ratio: 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.6, and 3.4; Methanol: 0 and 513.3 µM; Initial pH: 5.0; CYN: 0.05 µM and Matrix: ultrapure water. |
6.2 | H2O2: 10 to 50 µM and Fe(II): 25 to 125 µM; Optimum H2O2/Fe(II) molar ratio from set 6.1; Methanol: 0 and 513.3 µM; Initial pH: 5.0; CYN: 0.05 µM and Matrix: ultrapure water. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.A.; Brandão, C.C.S.; Ginoris, Y.P. Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench–Scale Study. Toxins 2024, 16, 536. https://doi.org/10.3390/toxins16120536
Ferreira MA, Brandão CCS, Ginoris YP. Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench–Scale Study. Toxins. 2024; 16(12):536. https://doi.org/10.3390/toxins16120536
Chicago/Turabian StyleFerreira, Matheus Almeida, Cristina Celia Silveira Brandão, and Yovanka Pérez Ginoris. 2024. "Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench–Scale Study" Toxins 16, no. 12: 536. https://doi.org/10.3390/toxins16120536
APA StyleFerreira, M. A., Brandão, C. C. S., & Ginoris, Y. P. (2024). Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench–Scale Study. Toxins, 16(12), 536. https://doi.org/10.3390/toxins16120536