Toxic Cyanobacterial Bloom Detection and Removal: What's New?

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Marine and Freshwater Toxins".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 1730

Special Issue Editor


E-Mail Website
Guest Editor
Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
Interests: monitoring microorganisms in water and wastewater; supervised and knowledge-guided machine learning identification; cyanobacteria and cyanotoxins; advanced oxidation; hydrogen economy based advanced treatment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue delves into innovative technologies and methodologies for detecting and mitigating harmful cyanobacterial blooms. With increasing global concern about the ecological and public health impacts of harmful cyanobacterial blooms, advanced tools are necessary to address this environmental threat. The Special Issue will highlight the integration of smart systems like IoT sensors and satellite-based remote sensing for real-time monitoring, offering precise, large-scale insights into bloom dynamics. Moreover, AI and machine learning are revolutionizing predictive models, enhancing bloom forecasting and detection efficiency.

The scope also includes emerging flow-through systems, which enable continuous water quality monitoring and rapid intervention. Additionally, attention will be given to advanced treatment solutions like advanced oxidation, and bioremediation techniques designed to eliminate cyanotoxins effectively. Contributions from researchers developing automated, high-precision systems for early detection, response, and treatment are encouraged.

This Special Issue aims to foster multidisciplinary dialogue between environmental scientists, engineers, and data scientists, seeking to bridge technology and ecology in combating harmful cyanobacterial blooms. By focusing on these novel detection and treatment options, the Special Issue offers a comprehensive perspective on the future of cyanobacterial bloom management.

Dr. Arash Zamyadi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • harmful cyanobacterial blooms
  • cyanotoxins
  • detection
  • removal
  • management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4733 KiB  
Article
Rice Straw-Derived Biochar Mitigates Microcystin-LR-Induced Hepatic Histopathological Injury and Oxidative Damage in Male Zebrafish via the Nrf2 Signaling Pathway
by Wang Lin, Fen Hu, Wansheng Zou, Suqin Wang, Pengling Shi, Li Li, Jifeng Yang and Pinhong Yang
Toxins 2024, 16(12), 549; https://doi.org/10.3390/toxins16120549 - 18 Dec 2024
Viewed by 835
Abstract
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of [...] Read more.
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish (Danio rerio) were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment. After 30 days exposure, our findings suggested that the existence of BC significantly decreased MC-LR bioavailability in liver. Furthermore, histopathological analysis revealed that BC mitigated MC-LR-induced hepatic lesions, which were characterized by mild damage, such as vacuolization, pyknotic nuclei, and swollen mitochondria. Compared to the groups exposed solely to MC-LR, decreased malondialdehyde (MDA) and increased catalase (CAT) and superoxide dismutase (SOD) were noticed in the mixture groups. Concurrently, significant changes in the mRNA expression levels of Nrf2 pathway genes (cat, sod1, gstr, keap1a, nrf2a, and gclc) further proved that BC reduces the oxidative damage induced by MC-LR. These findings demonstrate that BC decreases MC-LR bioavailability in the liver, thereby alleviating MC-LR-induced hepatotoxicity through the Nrf2 signaling pathway in zebrafish. Our results also imply that BC could serve as a potentially environmentally friendly material for mitigating the detrimental effects of MC-LR on fish. Full article
(This article belongs to the Special Issue Toxic Cyanobacterial Bloom Detection and Removal: What's New?)
Show Figures

Graphical abstract

17 pages, 1879 KiB  
Article
Degradation of Cylindrospermopsin Spiked in Natural Water (Paranoá Lake, Brasília, Brazil) by Fenton Process: A Bench–Scale Study
by Matheus Almeida Ferreira, Cristina Celia Silveira Brandão and Yovanka Pérez Ginoris
Toxins 2024, 16(12), 536; https://doi.org/10.3390/toxins16120536 - 12 Dec 2024
Viewed by 604
Abstract
The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water [...] Read more.
The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential. Hence, this study aimed to assess the application of the Fenton process for the oxidation of CYN spiked in natural water from Paranoá Lake (Brasília, Brazil). The H2O2/Fe(II) molar ratio was evaluated from 0.2 to 3.4, with an optimum molar ratio of 0.4, achieving a CYN degradation efficiency of 97.8% when using 100 µM of H2O2 and 250 µM of Fe(II). The CYN degradation efficiency, using 75 µM of H2O2 and 187.5 µM of Fe(II), decreased by increasing the initial pH (from 96.2% at pH 2 to 23.0% at pH 9) and the initial CYN concentration (from 93.7% at 0.05 µM of CYN to 85.0% at 0.2 µM of CYN). At the optimum H2O2/Fe(II) molar ratio of 0.4, the hydroxy radical scavengers tested (124.3 µM C of algogenic organic matter, 5 mg L−1 of humic acid, and 513.3 µM of methanol) did not considerably affect the CYN degradation, reaching a maximum CYN degradation reduction from 98.3% to 82.2%. Full article
(This article belongs to the Special Issue Toxic Cyanobacterial Bloom Detection and Removal: What's New?)
Show Figures

Figure 1

Back to TopTop