Next Issue
Volume 17, February
Previous Issue
Volume 16, December
 
 

Toxins, Volume 17, Issue 1 (January 2025) – 45 articles

Cover Story (view full-size image):  
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
26 pages, 1815 KiB  
Article
The First Large Identification of 3ANX and NX Producing Isolates of Fusarium graminearum in Manitoba, Western Canada
by Maria Antonia Henriquez, Srinivas Sura, Sean Walkowiak, David Kaminski, Anne Kirk, Mark W. Sumarah, Parthasarathy Santhanam, Nina Kepeshchuk, Jules Carlson, E. RoTimi Ojo, Pam de Rocquigny and Holly Derksen
Toxins 2025, 17(1), 45; https://doi.org/10.3390/toxins17010045 - 17 Jan 2025
Viewed by 691
Abstract
Fusarium head blight, caused by Fusarium graminearum, continues to be one of the most important and devastating fungal diseases on cereal grains including wheat, barley, and oat crops. F. graminearum produces toxic secondary metabolites that include trichothecene type A and type B [...] Read more.
Fusarium head blight, caused by Fusarium graminearum, continues to be one of the most important and devastating fungal diseases on cereal grains including wheat, barley, and oat crops. F. graminearum produces toxic secondary metabolites that include trichothecene type A and type B mycotoxins. There are many variants of these toxins that are produced, and in the early 2010s, a novel type A trichothecene mycotoxin known as 3ANX (7-α hydroxy,15-deacetylcalonectrin) and its deacetylated product NX (7-α hydroxy, 3,15-dideacetylcalonectrin) were identified in Minnesota, USA. In the current study, a total of 31,500 wheat spikes over a period of 6 years (2015–2020) within Manitoba, Canada, were screened for the F. graminearum pathogen, which accounted for 72.8% (2015), 98.3% (2016), 71.9% (2017), 74.4% (2018), 92.6% (2019), and 66.1% (2020) of isolations. A total of 303 F. graminearum isolates, confirmed through sequencing of the ribosomal intergenic spacer, were further investigated for variation in the gene Tri1, which was previously associated with the production of the NX toxin, as well as the accumulation of mycotoxins. A subset of these isolates, consisting of 73 isolates, which tested positive or negative for the NX-Tri1-F/R assay in this study, were cultured in vitro using rice media. Mycotoxins were quantified in these samples using mass spectrometry. Using the same rice culture, genomic DNA was isolated, and the Tri1 coding sequence along with its flanking regions (upstream and downstream of the Tri1 gene) was amplified and sequenced. Deoxynivalenol (DON) accumulated in 96% of the cultures from these isolates, while 3-acetyl deoxynivalenol (3ADON) and 3ANX mycotoxins accumulated in 66% and 63%, respectively. Nivalenol, 15-acetyl deoxynivalenol, and NX mycotoxins were detected in 62%, 36%, and 19% of samples, respectively. A significant correlation was observed between 3ADON and 3ANX (r2 = 0.87), as well as between DON and 3ANX (r2 = 0.89). This study highlights the first large identification of 3ANX- and NX-producing isolates of F. graminearum in Western Canada. In addition, it is the first identification of 15ADON chemotypes producing 3ANX in Western Canada and the first identification of 3ANX and NX-producing isolates in Manitoba, collected from wheat samples. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

19 pages, 13103 KiB  
Article
Updated Nematocyst Types in Tentacle of Venomous Box Jellyfish, Chironex indrasaksajiae (Sucharitakul, 2017) and Chiropsoides buitendijki (Horst, 1907) (Cnidaria, Cubozoa) in Thai Waters
by Thippawan Yasanga, Klintean Wunnapuk, Rochana Phuackchantuck, Lakkana Thaikruea, Thunyaporn Achalawitkun, Purinat Rungraung and Sineenart Santidherakul
Toxins 2025, 17(1), 44; https://doi.org/10.3390/toxins17010044 - 17 Jan 2025
Viewed by 581
Abstract
The multiple-tentacle box jellyfish, Chironex indrasaksajiae (Sucharitakul, 2017) and Chiropsoides buitendijki (Horst, 1907), are venomous species found in Thai waters. They are responsible for numerous envenomations through their stinging organelles, nematocysts. These specialized microscopic structures discharge venom, yet detailed knowledge of their types [...] Read more.
The multiple-tentacle box jellyfish, Chironex indrasaksajiae (Sucharitakul, 2017) and Chiropsoides buitendijki (Horst, 1907), are venomous species found in Thai waters. They are responsible for numerous envenomations through their stinging organelles, nematocysts. These specialized microscopic structures discharge venom, yet detailed knowledge of their types and morphology in these species remains limited. This study updates the characterization of nematocyst types and features in C. indrasaksajiae and C. buitendijki using light and scanning electron microscopy for detailed examination. Four distinct nematocyst types were identified: banana-shaped microbasic p-mastigophores, oval-shaped microbasic p-rhopaloids, sub-spherical microbasic p-rhopaloids, and rod-shaped isorhizas. In C. indrasaksajiae, banana-shaped microbasic p-mastigophores exhibited significant intraspecific variability, ranging from 30.26 µm to 102.56 µm in length and 6.42 µm to 17.01 µm in width. Conversely, C. buitendijki showed a narrower size range, 72.17 µm to 98.37 µm in length and 10.73 µm to 16.48 µm in width, based on multiple individuals. The size ranges for the other nematocyst types were consistent across both species. This study enhances the understanding of nematocyst morphology in these box jellyfish, providing a foundation for further research on venom delivery mechanisms and improved management of jellyfish envenomations in Thai waters. Full article
Show Figures

Figure 1

31 pages, 758 KiB  
Review
Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals
by Hyunjun Choi, Yesid Garavito-Duarte, Alexa R. Gormley and Sung Woo Kim
Toxins 2025, 17(1), 43; https://doi.org/10.3390/toxins17010043 - 17 Jan 2025
Viewed by 728
Abstract
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin [...] Read more.
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals. The negative impact of AFB1 on the % change in average daily gain (ΔADG) of chickens and pigs was estimated based on meta-analysis: ΔADG (%)chicken = −0.13 × AFB1 intake per body weight (ng/g·d) and ΔADG (%)pig = −0.74 × AFB1 intake per body weight (µg/kg·d), indicating that increasing AFB1 contamination linearly reduces the growth of animals. To mitigate the harmful impacts of AFB1, various dietary strategies have been effective. Mycotoxin-detoxifying agents include mycotoxin-adsorbing agents, such as clay and yeast cell wall compounds, binding to AFB1 and mycotoxin-biotransforming agents, such as specific strains of Bacillus subtilis and mycotoxin-degrading enzyme, degrading AFB1 into non-toxic metabolites such as aflatoxin D1. Multiple mycotoxin-detoxifying agents are often combined and used together to improve the intestinal health and growth of chickens and pigs fed AFB1-contaminated feeds. In summary, AFB1 negatively impacts intestinal microbiota, induces immune responses and oxidative stress, disrupts intestinal morphology, and impairs nutrient digestion in the small intestine, leading to reduced growth performance. Supplementing multi-component mycotoxin-detoxifying agents in feeds could effectively adsorb and degrade AFB1 co-contaminated with other mycotoxins prior to its absorption in the small intestine, preventing its negative impacts on the intestinal health and growth performance of chickens and pigs. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (Volume III))
Show Figures

Figure 1

18 pages, 2085 KiB  
Article
Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake
by Helen Agasild, Margarita Esmeralda Gonzales Ferraz, Madli Saat, Priit Zingel, Kai Piirsoo, Kätlin Blank, Veljo Kisand, Tiina Nõges and Kristel Panksep
Toxins 2025, 17(1), 42; https://doi.org/10.3390/toxins17010042 - 16 Jan 2025
Viewed by 608
Abstract
Grazing by zooplankton can regulate bloom-forming cyanobacteria but can also transfer toxin-producing cells, as well as toxic metabolites, to the food web. While laboratory investigations have provided extensive knowledge on zooplankton and toxic cyanobacteria interactions, information on zooplankton feeding on toxin-producing cyanobacteria in [...] Read more.
Grazing by zooplankton can regulate bloom-forming cyanobacteria but can also transfer toxin-producing cells, as well as toxic metabolites, to the food web. While laboratory investigations have provided extensive knowledge on zooplankton and toxic cyanobacteria interactions, information on zooplankton feeding on toxin-producing cyanobacteria in natural water bodies remains scarce. In this study, we quantified Microcystis-specific mcyE synthase genes from the gut contents of various cladoceran and copepod taxa to assess the in situ crustacean community and taxon-specific ingestion of potentially toxic Microcystis in Lake Peipsi, a large eutrophic lake in Estonia, Northern Europe. Microcystis cells with mcyE genes were found in all crustaceans examined. However, some species, such as the cyclopoid copepod Mesocyclops leuckarti, were more efficient in ingesting potentially toxic Microcystis than other co-occurring cladocerans (Daphnia spp., Bosmina spp., Chydorus sphaericus) and copepods (Eudiaptomus gracilis). The amount of toxigenic Microcystis cells grazed by crustacean population changed temporarily, and copepods were the predominant consumers of toxigenic Microcystis during several months of the 5-month study period. Crustacean ingestion of toxigenic Microcystis was not related to Microcystis biomass or mcyE gene copy numbers in the environment but was instead related to the abundance of major crustacean grazers. Our findings emphasize the close interaction between crustacean zooplankton and toxigenic Microcystis, indicating that some species may play a more significant role in linking toxic cells within the food web than others. Full article
Show Figures

Figure 1

17 pages, 5733 KiB  
Article
Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China
by Xueli Yang, Bolin Liu, Lei Zhang, Xiaodan Wang, Jian Xie and Jiang Liang
Toxins 2025, 17(1), 41; https://doi.org/10.3390/toxins17010041 - 16 Jan 2025
Viewed by 490
Abstract
This study aimed to explore the contamination of aflatoxins by investigating the spatial distribution of aflatoxin B1 (AFB1) in cow feedstuff and aflatoxin M1 (AFM1) in raw milk, and the potential health risks of AFM1 in milk and dairy products. Feedstuff and raw [...] Read more.
This study aimed to explore the contamination of aflatoxins by investigating the spatial distribution of aflatoxin B1 (AFB1) in cow feedstuff and aflatoxin M1 (AFM1) in raw milk, and the potential health risks of AFM1 in milk and dairy products. Feedstuff and raw milk were collected from 160 pastures in three climate zones of China from October to November 2020. The results indicated the level of AFB1 and AFM1 ranged from 51.1 to 74.1 ng/kg and 3.0 to 7.0 ng/kg, respectively. Spatial analysis indicated the contamination was mostly concentrated in the temperate monsoon climate zone. On average, the estimated dietary exposure to AFM1 from milk and dairy products for Chinese consumers ranged from 0.0138 to 0.0281 ng/kg bw/day, with the MOE values below 10,000, and liver cancer risk of 0.00004–0.00009 cases/100,000 persons/year. For different groups, the average exposure to AFM1 was highest in the temperate monsoon climate zone and for toddlers. Full article
Show Figures

Graphical abstract

20 pages, 2771 KiB  
Article
Delphi Consensus on the Management of Spanish Patients with Post-Stroke Hemiplegic Shoulder Pain Treated with Botulinum Toxin A: Result Study
by Carlos Cordero-García, Irene de Torres, Jacobo Formigo-Couceiro, Lluis Guirao, Mª Dolores Romero-Torres, Sergio Otero-Villaverde, Alberto Herrera, Cristina Santa and Antonio Mena-Rodriguez
Toxins 2025, 17(1), 40; https://doi.org/10.3390/toxins17010040 - 16 Jan 2025
Viewed by 879
Abstract
The study aimed to identify expert opinions and obtain recommendations on the management of post-stroke hemiplegic shoulder pain (HSP) and treatment with botulinum toxin A (BoNT-A). A multicenter Delphi study was conducted using an online survey designed by a committee of experts with [...] Read more.
The study aimed to identify expert opinions and obtain recommendations on the management of post-stroke hemiplegic shoulder pain (HSP) and treatment with botulinum toxin A (BoNT-A). A multicenter Delphi study was conducted using an online survey designed by a committee of experts with at least 10 years of experience in post-stroke HSP management with BoNT-A in Spain. Forty-seven panelists (specialists with at least 5 years of experience in post-stroke HSP management with BoNT-A) rated their level of agreement in two rounds based on acceptance by ≥66.7% of them. In round 1, 245 statements on three dimensions were evaluated (diagnosis, treatment, and follow-up of the HSP patients treated with BoNT-A). A total of 159 statements (70.9%) were finally accepted after round 2. Experts recommended BoNT-A as soon as spasticity affects daily activities. They considered ultrasound as the preferred guided technique. Experts recommended regular assessments using validated scales and patient-reported outcomes to evaluate treatment goals and safety. In case of lack of response, experts suggested increasing the dose or number of treated muscles or considering alternative treatments. These consensus-based recommendations offer clinicians an approach to the management of post-stroke HSP with BoNT-A, supporting informed decision making. Full article
Show Figures

Figure 1

18 pages, 1651 KiB  
Article
Fusarium Head Blight in Argentina, a Profile of Produced Mycotoxins and a Biocontrol Strategy in Barley During Micro-Malting Process
by María Silvina Alaniz-Zanon, Marianela Bossa, Lorenzo Antonio Rosales Cavaglieri, Juan Manuel Palazzini, Michael Sulyok, Sofía Noemí Chulze and María Laura Chiotta
Toxins 2025, 17(1), 39; https://doi.org/10.3390/toxins17010039 - 15 Jan 2025
Viewed by 780
Abstract
Barley (Hordeum vulgare L.) is the second winter crop in Argentina. In the national market, grains are mainly destined to produce malt for beer manufacture. Fusarium species are common, causing Fusarium Head Blight (FHB) in barley, which generates yield and quality losses, [...] Read more.
Barley (Hordeum vulgare L.) is the second winter crop in Argentina. In the national market, grains are mainly destined to produce malt for beer manufacture. Fusarium species are common, causing Fusarium Head Blight (FHB) in barley, which generates yield and quality losses, as well as mycotoxin occurrence. The aims of this study were to determine (a) the incidence of the main species causing FHB in different locations of the barley-growing region of Argentina, (b) their ability to produce mycotoxins, and (c) the levels of deoxynivalenol (DON) and nivalenol (NIV) natural occurrence in grains at the harvest stage. Additionally, a strain of Bacillus velezensis was studied as a biocontrol agent in order to control F. graminearum sensu stricto and mycotoxin accumulation during the malting process, with the final objective being to reduce DON contamination in the beer manufacture chain. Fusarium graminearum ss was the most prevalent species causing FHB, with Fusarium poae being less distributed. Both species produced several mycotoxins, including NX-2 and NX-3, which is the first report of their production by strains isolated from barley in Argentina. Deoxynivalenol contamination was found in 95% of barley grains during the 2016 harvest season (mean: 0.4 mg/kg), while NIV contamination was present in 29% of samples (mean: 0.49 mg/kg). In the 2017 harvest season, 53.6% of grains were contaminated with DON (mean: 0.42 mg/kg), and 21% with NIV (mean: 0.8 mg/kg). Quantification of F. graminearum ss by real-time PCR during the micro-malting process showed that application of the biocontrol agent before the germination stage was the most effective treatment, with a 45% reduction in fungal DNA levels. Reduction in DON contamination (69.3–100%) in artificially infected grains with F. graminearum ss, was also observed. The present work contributes to the knowledge of FHB in Argentina and to the development of a strategy to control this disease and mycotoxin contamination in barley, promoting at the same time food security. Full article
Show Figures

Figure 1

13 pages, 3637 KiB  
Article
A Study of Combined Onabotulinumtoxin A and Hyaluronic Acid Filler for the Treatment of Enlarged Facial Pores
by Vasanop Vachiramon, Sonphet Chirasuthat, Suphagan Boonpethkaew, Nawara Sakpuwadol, Tanat Yongpisarn and Natthachat Jurairattanaporn
Toxins 2025, 17(1), 38; https://doi.org/10.3390/toxins17010038 - 15 Jan 2025
Viewed by 776
Abstract
Introduction: Enlarged facial pores are a common cosmetic concern caused by excessive sebum production, visible hair shafts, and a reduction in skin elasticity, leading to a decrease in skin quality and overall appearance. Various treatment modalities have been explored to address this issue. [...] Read more.
Introduction: Enlarged facial pores are a common cosmetic concern caused by excessive sebum production, visible hair shafts, and a reduction in skin elasticity, leading to a decrease in skin quality and overall appearance. Various treatment modalities have been explored to address this issue. This study focuses on the efficacy and safety of combining Onabotulinumtoxin A (OnaBoNT-A) and hyaluronic acid filler (HA filler) to target enlarged facial pores in Asians. Materials and Methods: This study aimed to compare the efficacy and safety of OnaBoNT-A monotherapy in combination with HA filler for the treatment of enlarged facial pores. This study was a prospective, randomized, single-blinded, split-face, controlled trial that enrolled 32 subjects with visibly enlarged pores on both cheeks. One side of the face received intradermal injections of OnaBoNT-A, while the other side received OnaBoNT-A in combination with intradermal hyaluronic acid filler injection. The outcomes were measured by pore volume, visual assessment, pain score, improvement score, and side effects at various time intervals up to 24 weeks. Results: This study investigated the effects of onaBoNT-A monotherapy or in combination with HA filler on facial pore size and skin roughness. The results showed that both sides exhibited a reduction in pore volume and skin roughness over time, but the side treated with onaBoNT-A monotherapy had a slightly better improvement than the combination side at the 6-month follow-up. Subjects with histories of facial oiliness were more likely to respond to onaBoNT-A monotherapy, while those without histories of facial oiliness were more likely to respond to the side treated with combined treatment. The most common adverse events were erythema, bruising, and edema, which were more frequent on the combination side. Additionally, 18 subjects (56.25%) experienced a palpable lump on the combination side, which resolved in most cases within a few months. Conclusion: BoNT-A and HA dermal filler had a role in reducing pore size. Nonetheless, individuals with enlarged pores who exhibited beneficial effects to botulinum toxin injection typically had a background of facial oiliness. Adverse incidents like dermal edema and palpable nodules were observed, underscoring the significance of meticulous patient selection and accurate injection technique. Full article
Show Figures

Figure 1

15 pages, 1275 KiB  
Article
Evaluating Methods for Aflatoxin B1 Monitoring in Selected Food Crops Within Decentralized Agricultural Systems
by Haadia Tanveer, Hannah Glesener, Blake Su, Brooke Bolsinger, Rosa Krajmalnik-Brown and Lee E. Voth-Gaeddert
Toxins 2025, 17(1), 37; https://doi.org/10.3390/toxins17010037 - 14 Jan 2025
Viewed by 804
Abstract
Aflatoxin B1 (AFB1) contamination of food crops pose severe public health risks, particularly in decentralized agricultural systems common in low-resource settings. Effective monitoring tools are critical for mitigating exposure, but their adoption is limited by barriers such as cost, infrastructure, and technical expertise. [...] Read more.
Aflatoxin B1 (AFB1) contamination of food crops pose severe public health risks, particularly in decentralized agricultural systems common in low-resource settings. Effective monitoring tools are critical for mitigating exposure, but their adoption is limited by barriers such as cost, infrastructure, and technical expertise. The objectives of this study were: (1) to evaluate common AFB1 detection methods, including enzyme-linked immunosorbent assays (ELISA) and lateral-flow assays (LFA), validated via high-performance liquid chromatography (HPLC), focusing on their suitability for possible applications in decentralized, low-resource settings; and (2) to conduct a barriers-to-use assessment for commonly available AFB1 detection methods and their applicability in low-resource settings. Among four ELISA kits, the AgraQuant Aflatoxin B1 2/50 ELISA Kit demonstrated the highest accuracy and precision, reliably quantifying AFB1 in maize and tortillas across 5–150 ppb with minimal cross-reactivity. For LFA, a smartphone-based algorithm achieved a high presence/absence accuracy rate of 84% but struggled with concentration prediction. The barriers-to-use analysis highlighted the practicality of low-cost tools like moisture readers for field screening but underscored their qualitative limitations. Advanced methods like HPLC and LC-MS offer greater precision but remain impractical due to their high costs and infrastructure requirements, suggesting a potential role for adapted ELISA or LFA methods as confirmatory approaches. These findings support the development of multi-tiered frameworks integrating affordable field tools with regional or centralized confirmatory testing. Addressing systemic barriers through capacity building, partnerships, and improved logistics will enhance AFB1 monitoring in decentralized systems, protecting public health in vulnerable communities. Full article
Show Figures

Figure 1

22 pages, 3875 KiB  
Review
Venoms and Extracellular Vesicles: A New Frontier in Venom Biology
by Auwal A. Bala, Naoual Oukkache, Elda E. Sanchez, Montamas Suntravat and Jacob A. Galan
Toxins 2025, 17(1), 36; https://doi.org/10.3390/toxins17010036 - 14 Jan 2025
Viewed by 906
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as [...] Read more.
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

16 pages, 905 KiB  
Article
Risk Assessment of Harmful Algal Blooms in Salmon Farming: Scotland as a Case Study
by Fatima Gianella, Michael T. Burrows and Keith Davidson
Toxins 2025, 17(1), 35; https://doi.org/10.3390/toxins17010035 - 13 Jan 2025
Viewed by 732
Abstract
This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual [...] Read more.
This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events. Vulnerability was calculated from records of the number of employees (2020), as an estimate of aquaculture-based employment. The dinoflagellate Karenia mikimotoi was identified as the HAB species with the highest frequency of reported bloom events in Scotland, with variable spatial and temporal reports, but environmental and climatological variables regulating these events are currently unknown. The Shetland Islands region exhibited the highest combined HAB risk, with the highest scores in all three components. Vulnerability was particularly important to overall risk within an island setting, where a larger proportion of the population was dependent on aquaculture. The analysis demonstrated the potential to evaluate the economic and social consequences of HAB events on the aquaculture industry. As fish-killing HABs and fish health impacts are likely under-reported, more transparent reporting of events and related fish health and physiological consequences is recommended for a more quantitative application of this approach. Full article
Show Figures

Figure 1

20 pages, 1431 KiB  
Article
Mapping Variability of Mycotoxins in Individual Oat Kernels from Batch Samples: Implications for Sampling and Food Safety
by Irene Teixido-Orries, Francisco Molino, Bianca Castro-Criado, Monika Jodkowska, Angel Medina, Sonia Marín and Carol Verheecke-Vaessen
Toxins 2025, 17(1), 34; https://doi.org/10.3390/toxins17010034 - 11 Jan 2025
Viewed by 734
Abstract
Oats are susceptible to contamination by Fusarium mycotoxins, including deoxynivalenol (DON), zearalenone (ZEN), and T-2/HT-2 toxins, posing food safety risks. This study analyses the variation in levels of 14 mycotoxins in 200 individual oat kernels from two DON-contaminated batch samples (mean = 3498 [...] Read more.
Oats are susceptible to contamination by Fusarium mycotoxins, including deoxynivalenol (DON), zearalenone (ZEN), and T-2/HT-2 toxins, posing food safety risks. This study analyses the variation in levels of 14 mycotoxins in 200 individual oat kernels from two DON-contaminated batch samples (mean = 3498 µg/kg) using LC-MS/MS. The samples also contained deoxynivalenol-3-glucoside (DON-3G), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and ZEN. Contamination levels varied notably among individual kernels, with DON detected in 70% of them, followed by DON-3G (24.5%) and 3-ADON (20.5%). Importantly, 8% of kernels exceeded the EU legal limit for DON (1750 µg/kg), and some occasionally surpassed limits for ZEN and T-2/HT-2. Correlation analyses revealed strong associations between DON and its derivatives but weaker correlations with other toxins. Mycotoxin ratios varied widely, indicating that although they often co-occur, their concentrations differ between kernels. Contamination did not significantly impact kernel weight, though a slight trend toward lower weights in contaminated kernels was noted. Additionally, sampling statistics showed that as the percentage of selected kernels increased, the probability of batch sample rejection for DON contamination rose significantly. The study highlights the heterogeneity of mycotoxin contamination in oat batches, emphasising the importance of accurate detection and regulatory compliance to ensure safer oat-based products. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

17 pages, 5927 KiB  
Article
Pulsed Electric Field Induces Significant Changes in the Metabolome of Fusarium Species and Decreases Their Viability and Toxigenicity
by Adam Behner, Jana Palicova, Anna-Hirt Tobolkova, Nela Prusova and Milena Stranska
Toxins 2025, 17(1), 33; https://doi.org/10.3390/toxins17010033 - 11 Jan 2025
Viewed by 877
Abstract
Fusarium fungi are widespread pathogens of food crops, primarily associated with the formation of mycotoxins. Therefore, effective mitigation strategies for these toxicogenic microorganisms are required. In this study, the potential of pulsed electric field (PEF) as an advanced technology of increasing use in [...] Read more.
Fusarium fungi are widespread pathogens of food crops, primarily associated with the formation of mycotoxins. Therefore, effective mitigation strategies for these toxicogenic microorganisms are required. In this study, the potential of pulsed electric field (PEF) as an advanced technology of increasing use in the food processing industry was investigated to minimize the viability of Fusarium pathogens and to characterize the PEF-induced changes at the metabolomic level. Spores of four Fusarium species (Fusarium culmorum, Fusarium graminearum, Fusarium poae, and Fusarium sporotrichioides) were treated with PEF and cultured on potato dextrose agar (PDA) plates. The viability of the Fusarium species was assessed by counting the colony-forming units, and changes in the mycotoxin content and metabolomic fingerprints were evaluated by using UHPLC-HRMS/MS instrumental analysis. For metabolomic data processing and compound identification, the MS-DIAL (v. 4.80)–MS-CleanR–MS-Finder (v. 3.52) software platform was used. As we found out, both fungal viability and the ability to produce mycotoxins significantly decreased after the PEF treatment for all of the species tested. The metabolomes of the treated and untreated fungi showed statistically significant differences, and PEF-associated biomarkers from the classes oxidized fatty acid derivatives, cyclic hexapeptides, macrolides, pyranocoumarins, carbazoles, and guanidines were identified. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

13 pages, 1661 KiB  
Article
Encapsulated LyeTx III Peptide: Cytotoxic Agent Isolated from Lycosa erythrognatha Spider Venom
by Daniel Moreira dos Santos, Livia Ramos Santiago, Nayara Araújo dos Santos, Wanderson Romão, Jarbas Magalhães Resende, Maria Elena de Lima, Márcia Helena Borges and Rosy Iara Maciel de Azambuja Ribeiro
Toxins 2025, 17(1), 32; https://doi.org/10.3390/toxins17010032 - 10 Jan 2025
Viewed by 687
Abstract
The discovery of novel cytotoxic drugs is of paramount importance in contemporary medical research, particularly in the search for treatments with fewer side effects and higher specificity. Antimicrobial peptides are an interesting class of molecules for this endeavor. In this context, the LyeTx [...] Read more.
The discovery of novel cytotoxic drugs is of paramount importance in contemporary medical research, particularly in the search for treatments with fewer side effects and higher specificity. Antimicrobial peptides are an interesting class of molecules for this endeavor. In this context, the LyeTx III, a new peptide extracted from the venom of the Lycosa erythrognatha spider, stands out. The peptide exhibits typical antimicrobial traits: a positive net charge and amphipathic α -helix structure in lipid-like environments. Its unique sequence (GKAMKAIAKFLGR-NH2), identified via mass spectrometry and Edman degradation, shows limited similarity to existing peptides. Significantly, when liposome-encapsulated, LyeTx III demonstrates selective activity against tumor cells in culture. Our MTT results showed that the cytotoxicity of the peptide increased against HN13 cells when administered as liposomes, with their viability in HN13 cells alone being 98%, compared to 38% in liposome-encapsulated form. This finding underscores that the LyeTx III peptide may be a good candidate for the development of new drugs against cancer. Its activity when encapsulated is promising, as it can increase its half-life in the body and can also be targeted to specific tumors. Full article
Show Figures

Figure 1

12 pages, 290 KiB  
Review
The Esthetic Use of Botulinum Toxins in Cancer Patients: Providing a Foundation for Future Indications
by Marco Papagni, Monica Renga, Selene Mogavero, Paolo Veronesi and Maurizio Cavallini
Toxins 2025, 17(1), 31; https://doi.org/10.3390/toxins17010031 - 10 Jan 2025
Viewed by 778
Abstract
Advances in oncological treatments have improved the survival rates of cancer patients but have often resulted in significant physical changes that negatively impact their self-esteem and psychological well-being. Cancer patients frequently ask esthetic practitioners to perform procedures to address such changes. However, practitioners [...] Read more.
Advances in oncological treatments have improved the survival rates of cancer patients but have often resulted in significant physical changes that negatively impact their self-esteem and psychological well-being. Cancer patients frequently ask esthetic practitioners to perform procedures to address such changes. However, practitioners often hesitate to satisfy such requests due to lacking guidelines or recommendations. The use of botulinum toxins (BoNTs) for esthetic purposes has shown significant promise in improving the quality of life for cancer patients. This review explores the broad application of BoNTs in many medical branches, focusing on oncology. A substantial amount of literature shows that BoNTs are safe and effective as a type of adjunctive therapy compared to classical cancer treatments. We provide our expert opinion that the use of BoNTs for esthetic purposes is safe for cancer patients and even recommended for those whose mood is influenced by the worsening of their physical appearance. Careful patient selection and interdisciplinary collaboration are essential to the safe integration of BoNTs into cancer care. Full article
(This article belongs to the Section Bacterial Toxins)
44 pages, 3456 KiB  
Review
Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species
by David L. Eaton, David E. Williams and Roger A. Coulombe
Toxins 2025, 17(1), 30; https://doi.org/10.3390/toxins17010030 - 9 Jan 2025
Viewed by 673
Abstract
It has been known since the early days of the discovery of aflatoxin B1 (AFB1) that there were large species differences in susceptibility to AFB1. It was also evident early on that AFB1 itself was not toxic but required bioactivation to a reactive [...] Read more.
It has been known since the early days of the discovery of aflatoxin B1 (AFB1) that there were large species differences in susceptibility to AFB1. It was also evident early on that AFB1 itself was not toxic but required bioactivation to a reactive form. Over the past 60 years there have been thousands of studies to delineate the role of ~10 specific biotransformation pathways of AFB1, both phase I (oxidation, reduction) and phase II (hydrolysis, conjugation, secondary oxidations, and reductions of phase I metabolites). This review provides a historical context and substantive analysis of each of these pathways as contributors to species differences in AFB1 hepatoxicity and carcinogenicity. Since the discovery of AFB1 as the toxic contaminant in groundnut meal that led to Turkey X diseases in 1960, there have been over 15,000 publications related to aflatoxins, of which nearly 8000 have addressed the significance of biotransformation (metabolism, in the older literature) of AFB1. While it is impossible to give justice to all of these studies, this review provides a historical perspective on the major discoveries related to species differences in the biotransformation of AFB1 and sets the stage for discussion of other papers in this Special Issue of the important role that AFB1 metabolites have played as biomarkers of exposure and effect in thousands of human studies on the toxic effects of aflatoxins. Dr. John Groopman has played a leading role in every step of the way—from initial laboratory studies on specific AFB1 metabolites to the application of molecular biomarkers in epidemiological studies associating dietary AFB1 exposure with liver cancer, and the design and conduct of chemoprevention clinical trials to reduce cancer risk from unavoidable aflatoxin exposures by alteration of specific AFB1 biotransformation pathways. This article is written in honor of Dr. Groopman’s many contributions in this area. Full article
Show Figures

Graphical abstract

18 pages, 4143 KiB  
Article
Proteomic Analysis of the Murine Liver Response to Oral Exposure to Aflatoxin B1 and Ochratoxin A: The Protective Role to Bioactive Compounds
by Silvia Trombetti, Alessandra Cimbalo, Michela Grosso, Pilar Vila-Donat, Jordi Mañes and Lara Manyes
Toxins 2025, 17(1), 29; https://doi.org/10.3390/toxins17010029 - 9 Jan 2025
Viewed by 575
Abstract
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are considered the most important mycotoxins in terms of food safety. The aim of this study was to evaluate the hepatotoxicity of AFB1 and OTA exposure in Wistar rats and to assess the beneficial effect of [...] Read more.
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are considered the most important mycotoxins in terms of food safety. The aim of this study was to evaluate the hepatotoxicity of AFB1 and OTA exposure in Wistar rats and to assess the beneficial effect of fermented whey (FW) and pumpkin (P) as functional ingredients through a proteomic approach. For the experimental procedures, rats were fed AFB1 and OTA individually or in combination, with the addition of FW or a FW-P mixture during 28 days. For proteomics analysis, peptides were separated using a LC-MS/MS-QTOF system and differentially expressed proteins (DEPs) were statistically filtered (p < 0.05) distinguishing males from females. Gene ontology visualization allowed the identification of proteins involved in important biological processes such as the response to xenobiotic stimuli and liver development. Likewise, KEGG pathway analysis reported the metabolic routes as the most affected, followed by carbon metabolism and biosynthesis of amino acids. Overall, the results highlighted a strong downregulation of DEPs in the presence of AFB1 and OTA individually but not with the mixture of both, suggesting a synergistic effect. However, FW and P have helped in the mitigation of processes triggered by mycotoxins. Full article
Show Figures

Figure 1

10 pages, 1053 KiB  
Article
Isolation and Structural Identification of New Diol Esters of Okadaic Acid and Dinophysistoxin-1 from the Cultured Prorocentrum lima
by Yeong Kwang Ji, Semin Moon, Sangbum Lee, Yun Na Kim, Eun Ju Jeong and Jung-Rae Rho
Toxins 2025, 17(1), 28; https://doi.org/10.3390/toxins17010028 - 7 Jan 2025
Viewed by 595
Abstract
Prorocentrum, a dinoflagellate responsible for producing diarrhetic shellfish poisoning (DSP) toxins, poses significant threats to marine ecosystems, aquaculture industries, and human health. DSP toxins, including okadaic acid (OA), dinophysis toxin (DTX), and their diverse derivatives, continue to be identified and characterized. In [...] Read more.
Prorocentrum, a dinoflagellate responsible for producing diarrhetic shellfish poisoning (DSP) toxins, poses significant threats to marine ecosystems, aquaculture industries, and human health. DSP toxins, including okadaic acid (OA), dinophysis toxin (DTX), and their diverse derivatives, continue to be identified and characterized. In this study, we report the isolation of four new diol esters of OA/DTX-1 from large-scale cultures of Prorocentrum lima. Their chemical structures were elucidated through comprehensive NMR and MS analyses, along with structural comparisons with the well-known OA. Notably, compound 1 featured an additional ester group within the diol unit, while compound 2 was revealed to be a C11 diol ester. The cytotoxicity of these newly isolated derivatives was evaluated against three cell lines: Neuro2a (mouse), HCT116 (human), and HepG2 (human). All diol esters exhibited cytotoxic effects, with compound 3 displaying toxicity comparable to OA. These results expand our understanding of DSP toxin diversity and provide valuable insight into the structural variations and biological activity of diol esters of OA/DTX-1. Full article
Show Figures

Figure 1

16 pages, 1441 KiB  
Article
Does Clostridium Perfringens Epsilon Toxin Mimic an Auto-Antigen Involved in Multiple Sclerosis?
by Marie-Lise Gougeon, Valérie Seffer, Cezarela Hoxha, Elisabeth Maillart and Michel R. Popoff
Toxins 2025, 17(1), 27; https://doi.org/10.3390/toxins17010027 - 7 Jan 2025
Viewed by 717
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated neurological disorder, characterized by progressive demyelination and neuronal cell loss in the central nervous system. Many possible causes of MS have been proposed, including genetic factors, environmental triggers, and infectious agents. Recently, Clostridium perfringens epsilon toxin [...] Read more.
Multiple sclerosis (MS) is a chronic immune-mediated neurological disorder, characterized by progressive demyelination and neuronal cell loss in the central nervous system. Many possible causes of MS have been proposed, including genetic factors, environmental triggers, and infectious agents. Recently, Clostridium perfringens epsilon toxin (ETX) has been incriminated in MS, based initially on the isolation of the bacteria from a MS patient, combined with an immunoreactivity to ETX. To investigate a putative causative role of ETX in MS, we analyzed the pattern of antibodies reacting to the toxin using a sensitive qualitative assay. This prospective observational study included one hundred patients with relapsing remitting multiple sclerosis (RRMS), all untreated, and ninety matched healthy controls. By assessing the isotypic pattern and serum concentration of ETX-reacting antibodies, our study shows a predominant IgM response over IgG and IgA antibody responses both in MS patients and controls, and significantly higher levels of IgM reacting to ETX in MS patients compared to the control group. A longitudinal follow-up of ETX-specific antibody response in a subgroup of MS patients did not show any correlation with disease evolution. Overall, these unexpected findings are not compatible with a specific recognition of ETX by serum antibodies from MS patients. They rather argue for a cross immunological reactivity with an antigen, possibly an autoantigen, mimicking ETX. Thus, our data argue against the hypothesis of a causal relationship between C. perfringens ETX and MS. Full article
Show Figures

Figure 1

19 pages, 3481 KiB  
Article
Holocellulose from a Winemaking By-Product to Develop a Biopolymeric System for Bacterial Immobilization: Adsorption of Ochratoxin A in Wine Model Solutions (Box–Behnken Design)
by Verónica Carrasco-Sánchez, V. Felipe Laurie, Marcelo Muñoz-Vera and Ricardo Ignacio Castro
Toxins 2025, 17(1), 26; https://doi.org/10.3390/toxins17010026 - 6 Jan 2025
Viewed by 665
Abstract
Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract [...] Read more.
Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract holocellulose. Then Lactobacillus plantarum (LP) was immobilized in the interstitial spaces of holocellulose and then coated with natural polymers (chitosan, Ch; and alginate, Al) to create the Holo-LP/Ch/Al complex. A physicochemical analysis of the system revealed strong bacterial immobilization and stability. The efficiency of the complex in adsorbing ochratoxin A (OTA) from wine model solutions was assessed using a Box–Behnken design under various pH, time, and concentration conditions. The results showed that at pH 3.0, 75.39 min, and a complex concentration of 43.82 mg mL−1, the best OTA removal (53.68%) took place. Because of its physicochemical interactions, the complex showed improved OTA adsorption in acidic environments. This study demonstrates the potential of biopolymeric systems based on holocellulose for reducing mycotoxin contamination in beverages and stabilizing bacterial cells. These results offer a viable way to increase food safety and value winemaking by-products. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

12 pages, 13715 KiB  
Article
Levels and Profile of Tetrodotoxins in Spawning Cephalothrix mokievskii (Palaeonemertea, Nemertea): Assessing the Potential Toxic Pressure on Marine Ecosystems
by Grigorii V. Malykin, Peter V. Velansky and Timur Yu. Magarlamov
Toxins 2025, 17(1), 25; https://doi.org/10.3390/toxins17010025 - 6 Jan 2025
Viewed by 550
Abstract
The ribbon worms of the closely related species Cephalothrix simula, Cephalothrix cf. simula, and Cephalothrix mokievskii, representing the C. simula species complex, possess high concentrations of tetrodotoxin (TTX) and its analogues in all developmental stages from eggs to adults. It [...] Read more.
The ribbon worms of the closely related species Cephalothrix simula, Cephalothrix cf. simula, and Cephalothrix mokievskii, representing the C. simula species complex, possess high concentrations of tetrodotoxin (TTX) and its analogues in all developmental stages from eggs to adults. It has recently been suggested that the eggs and larvae of these animals can be a source of tetrodotoxins (TTXs) for other aquatic organisms. In the current study, TTXs in mature and post-spawning individuals and in the eggs of C. mokievskii were identified using high-performance liquid chromatography–tandem mass spectrometry. For the first time, the quantity and profile of TTXs that these nemerteans released into the environment during spawning were estimated. We showed that the spawning C. mokievskii females released significant amounts of TTX and 5,6,11-trideoxyTTX with their eggs; these levels were sufficient for the potential toxification of marine bioresources. The issues surrounding the monitoring of TTXs in commercial marine animals, and collecting at the sites of the spawning of nemerteans from the C. simula species complex, are discussed. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

21 pages, 2044 KiB  
Review
Neurotoxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection
by Aleksandra Kuć-Szymanek, Daria Kubik-Machura, Klaudia Kościelecka, Tomasz Męcik-Kronenberg and Lidia Radko
Toxins 2025, 17(1), 24; https://doi.org/10.3390/toxins17010024 - 6 Jan 2025
Viewed by 894
Abstract
Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common Fusarium mycotoxins with neurological diseases. Articles from 2001 to [...] Read more.
Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common Fusarium mycotoxins with neurological diseases. Articles from 2001 to 2024 were analyzed. The mechanisms underlying the neurotoxicity of the described mycotoxins were presented. They are mainly related to the increase in oxidative stress in neuronal cells, which leads to higher levels of pro-inflammatory cytokines as IL-1β, IL-6 and TNF-α, enzymatic activity as GST, GPx, CAT and SOD and neurotransmitter dysfunction (5-HT, serotonin, dopamine and GABA). At the end of the article, based on the literature data, we attempted to present ways to mitigate mycotoxin neurotoxicity using mainly natural substances of plant origin. The data in this review focus on the Fusarium mycotoxins most frequently found in food and will be useful as comparative information for future studies. It is important to conduct further studies to mitigate the neurotoxic effects of Fusarium mycotoxins in order to reduce the development of diseases of the nervous system. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Graphical abstract

13 pages, 9161 KiB  
Article
Improvement in XIa Selectivity of Snake Venom Peptide Analogue BF9-N17K Using P2′ Amino Acid Replacements
by Li Ding, Zhiping Zhai, Tianxiang Qin, Yuexi Lin, Zhicheng Shuang, Fang Sun, Chenhu Qin, Hongyi Luo, Wen Zhu, Xiangdong Ye, Zongyun Chen and Xudong Luo
Toxins 2025, 17(1), 23; https://doi.org/10.3390/toxins17010023 - 5 Jan 2025
Viewed by 536
Abstract
Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. [...] Read more.
Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2′ amino acid classification scanning strategy. The anticoagulation assay showed that the four P2′ single-point mutants still had apparent inhibitory anticoagulation activity that selectively inhibited the human intrinsic coagulation pathway and had no influence on the extrinsic coagulation pathway or common coagulation pathway, which indicated that the single-point mutants had minimal effects on the anticoagulation activity of BF9-N17K. Interestingly, the enzyme inhibitor assay experiments showed that the XIa and plasmin inhibitory activities were significantly changed by the P2′ amino acid replacements. The XIa inhibitory activity of BF9-N17K-L19D was apparently enhanced, with an IC50 of 19.28 ± 2.53 nM, and its plasmin inhibitory was significantly weakened, with an IC50 of 459.33 ± 337.40 nM. BF9-N17K-L19K was the opposite to BF9-N17K-L19D, which had enhanced plasmin inhibitory activity and reduced XIa inhibitory activity. For BF9-N17K-L19A and BF9-N17K-L19S, no apparent changes were found in the serine protease inhibitory activity, and they had similar XIa and plasmin inhibitory activities to the template peptide BF9-N17K. These results suggested that the characteristics of the charge of the P2′ site might be associated with the drug selectivity between the anticoagulant target XIa and hemostatic target plasmin. In addition, according to the molecular diversity and sequence conservation, a common motif GR/PCR/KA/SXIP-XYGGC is proposed in the XIa-inhibitory Kunitz-type peptides, which might provide a new clue for further peptide engineering. In conclusion, through P2′ amino acid classification scanning with the snake venom Kunitz-type peptide scaffold, a new potent and selective XIa inhibitor, BF9-N17K-L19D, was discovered, which provides a new XIa-targeting lead drug template for the treatment of thrombotic-related diseases. Full article
(This article belongs to the Special Issue Animals Venom in Drug Discovery: A Valuable Therapeutic Tool)
Show Figures

Figure 1

17 pages, 1223 KiB  
Article
Physical and Sensory Long-Term Disabilities from Bothrops Snakebite Envenomings in Manaus, Western Brazilian Amazon
by Eduardo M. G. Fernández, Débora N. Oliveira, Alexandre V. Silva-Neto, Rafaela N. Dávila, Ligia Lengler, Marco A. Sartim, Altair S. Farias, Luiz C. L. Ferreira, Érica da Silva Carvalho, Fan H. Wen, Felipe Murta, Fernando Almeida-Val, Manuela B. Pucca, Jacqueline A. G. Sachett and Wuelton M. Monteiro
Toxins 2025, 17(1), 22; https://doi.org/10.3390/toxins17010022 - 3 Jan 2025
Viewed by 745
Abstract
Snakebites caused by Bothrops snakes are the most prevalent in the Amazon region, causing local and systemic complications. Local complications are mostly represented by necrosis, secondary bacterial infection and compartment syndrome. There are reports of long-term disabilities, but their burden is poorly investigated. [...] Read more.
Snakebites caused by Bothrops snakes are the most prevalent in the Amazon region, causing local and systemic complications. Local complications are mostly represented by necrosis, secondary bacterial infection and compartment syndrome. There are reports of long-term disabilities, but their burden is poorly investigated. This study aims to describe and estimate the frequency of physical and sensory long-term disabilities from Bothrops snakebites in the Manaus Region, in the western Brazilian Amazon region. Participants were >18-years individuals that accepted to return to the hospital 3–12 months (average follow-up time of 195 days) after the discharge for neuromusculoskeletal, chronic pain and sensory assessments. Assessment of disability was also performed using the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0). Factors associated with summary disability using WHODAS 2.0 were identified. Fifty participants were enrolled. A frequency of 20% of the participants reported difficulty in moving the affected limb (20%), and 23.7% reported difficulty in walking. Limitations of daily activities were reported by 26% of the patients. Decreased strength of the affected limb was observed in 22% of the patients. Decreased range of joint motion was seen in 20% of the patients. Chronic pain was reported in 48% of the patients. Tactile sensibility was decreased in 30%, thermal sensibility in 14%, painful sensibility (hypoalgesia) in 12%, kinetic-postural sensibility (hypokinesthesia) in 4% and vibratory sensibility was decreased or abolished in 16% of the participants. Cognition and mobility domains were those with the highest frequencies of participants with any degree of disability, each with 57%. The summary WHODAS 2.0 disability rate was 59%. Age > 59 years (p = 0.02)] was associated with protection against disability. Difficulty in moving the limb (p = 0.05), pain at the affected limb (p < 0.01), limitations of daily activities (p < 0.01) and decreased thermal sensibility (p = 0.05) were significantly associated with disability. The present study consists of the first follow-up investigation involving Bothrops snakebite patients related to long-term disabilities. These findings represent important data on Bothrops snakebites causing clinically significant long-term neuromusculoskeletal and sensory disabilities, resulting in reduced quality of life of the patients. Full article
(This article belongs to the Special Issue Snake Venom: Toxicology and Associated Countermeasures)
Show Figures

Figure 1

17 pages, 9556 KiB  
Article
Characterization of the Phosphotransferase from Bacillus subtilis 1101 That Is Responsible for the Biotransformation of Zearalenone
by Yuzhuo Wu, Qiuyu Zhou, Junqiang Hu, Yunfan Shan, Jinyue Liu, Gang Wang, Yin-Won Lee, Jianrong Shi and Jianhong Xu
Toxins 2025, 17(1), 21; https://doi.org/10.3390/toxins17010021 - 3 Jan 2025
Viewed by 623
Abstract
Bacillus microorganisms play an important role in the zearalenone (ZEA) biotransformation process in natural environments. The phosphotransferase pathway in Bacillus is both widespread and relatively well conserved. However, the reaction kinetics of these phosphotransferases remain poorly understood, and their catalytic activities are suboptimal. [...] Read more.
Bacillus microorganisms play an important role in the zearalenone (ZEA) biotransformation process in natural environments. The phosphotransferase pathway in Bacillus is both widespread and relatively well conserved. However, the reaction kinetics of these phosphotransferases remain poorly understood, and their catalytic activities are suboptimal. In this study, a ZEA phosphotransferase, ZPH1101, was identified from Bacillus subtilis 1101 using genome sequencing. The product transformed by ZPH1101 was identified as phosphorylated ZEA (ZEA-P) through LC-TOF-MS/MS analysis. The experiments conducted on MCF-7 cells demonstrated that ZEA-P exhibited a lower level of estrogenic toxicity than ZEA. The optimal reaction conditions for ZPH1101 were determined to be 45 °C and pH 8.0. The maximum velocity (Vmax), Michaelis constant (Km), and catalytic constant (kcat) were calculated through fitting to be 16.40 μM·s−1·mg−1, 18.18 μM, and 54.69 s−1, respectively. Furthermore, adding 1 mmol/L Fe2+ or Fe3+ to the reaction system increased the efficiency of ZPH1101 in converting ZEA by 100% relative to the system containing solely 1 mmol/L ATP and 1 mmol/L Mg2+, suggesting that low concentrations of Fe2+ or Fe3+ can improve the ZPH1101-mediated transformation of ZEA. This study contributes to the enzymatic removal of ZEA and broadens the spectrum of strain and enzyme options available to researchers for ZEA detoxification efforts. Full article
Show Figures

Graphical abstract

30 pages, 4295 KiB  
Article
Characterisation of Staphylococcus aureus Strains and Their Prophages That Carry Horse-Specific Leukocidin Genes lukP/Q
by Stefan Monecke, Sindy Burgold-Voigt, Andrea T. Feßler, Martina Krapf, Igor Loncaric, Elisabeth M. Liebler-Tenorio, Sascha D. Braun, Celia Diezel, Elke Müller, Martin Reinicke, Annett Reissig, Adriana Cabal Rosel, Werner Ruppitsch, Helmut Hotzel, Dennis Hanke, Christiane Cuny, Wolfgang Witte, Stefan Schwarz and Ralf Ehricht
Toxins 2025, 17(1), 20; https://doi.org/10.3390/toxins17010020 - 3 Jan 2025
Viewed by 784
Abstract
Leukocidins of Staphylococcus (S.) aureus are bicomponent toxins that form polymeric pores in host leukocyte membranes, leading to cell death and/or triggering apoptosis. Some of these toxin genes are located on prophages and are associated with specific hosts. The genes lukP/Q [...] Read more.
Leukocidins of Staphylococcus (S.) aureus are bicomponent toxins that form polymeric pores in host leukocyte membranes, leading to cell death and/or triggering apoptosis. Some of these toxin genes are located on prophages and are associated with specific hosts. The genes lukP/Q have been described from equine S. aureus isolates. We examined the genomes, including the lukP/Q prophages, of S. aureus strains belonging to clonal complexes CC1, CC350, CC816, and CC8115. In addition to sequencing, phages were characterised by mitomycin C induction and transmission electron microscopy (TEM). All lukP/Q prophages integrated into the lip2=geh gene, and all included also the gene scn-eq encoding an equine staphylococcal complement inhibitor. The lukP/Q prophages clustered, based on gene content and allelic variants, into three groups. One was found in CC1 and CC97 sequences; one was present mainly in CC350 but also in other lineages (CC1, CC97, CC133, CC398); and a third one was exclusively observed in CC816 and CC8115. Prophages of the latter group additionally included a rare enterotoxin A allele (sea320E). Moreover, a prophage from a CC522 goat isolate was found to harbour lukP. Its lukF component could be regarded as chimaera comprising parts of lukQ and of lukF-P83. A putative kinase gene of 1095 basepairs was found to be associated with equine strains of S. aureus. It was also localised on prophages. However, these prophages were different from the ones that carried lukP/Q, and three different integration sites of kinase-carrying phages were identified. These observations confirmed the presence of prophage-located important virulence-associated genes in equine S. aureus and that certain prophages might determine the host specificity of the staphylococcal strains they reside in. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

15 pages, 2240 KiB  
Article
First Look at the Venoms of Two Sinomicrurus Snakes: Differences in Yield, Proteomic Profiles, and Immunorecognition by Commercial Antivenoms
by Xiang-Yu Li, Ya-Qi Zhang, Xin-Ru Qian, Hong-Yan Zhao, Hong-Liang Lu and Jian-Fang Gao
Toxins 2025, 17(1), 19; https://doi.org/10.3390/toxins17010019 - 2 Jan 2025
Viewed by 633
Abstract
Chinese coral snakes (Sinomicrurus) are highly neglected regarding their venom profiles and harm to humans, which impedes our ability to deeply understand their biological properties and explore their medicinal potential. In this study, we performed a comparative analysis to reveal the [...] Read more.
Chinese coral snakes (Sinomicrurus) are highly neglected regarding their venom profiles and harm to humans, which impedes our ability to deeply understand their biological properties and explore their medicinal potential. In this study, we performed a comparative analysis to reveal the venom profiles of two Chinese coral snakes in terms of their venom yields, proteomic profiles, and immunorecognition by commercial antivenoms. The results showed that Sinomicrurus kelloggi expels more venom (lyophilized venom mass) than Sinomicrurus maccelellandi but possesses a similar solid venom content. These interspecific differences in venom yield were influenced by the snout–vent length. The venoms of these two species varied in their electrophoretic profiles, as well as in the presence or absence and relative abundance of protein families. They exhibited a 3-FTx-predominant phenotype, where the S. maccelellandi venom was dominated by 3-FTx (32.43%), SVMP (23.63%), PLA2 (19.88%), and SVSP (12.61%), while the S. kelloggi venom was dominated by 3-FTx (65.81%), LAAO (11.35%), and AMP (10.09%). While both the commercial Naja atra and Bungarus multicinctus antivenoms could immunorecognize these two Chinese coral snake venoms, the N. atra antivenom possessed a higher neutralization capability than the B. multicinctus antivenom for both species of coral snakes. Our findings show significant interspecific variations in the venom profiles of these Sinomicrurus snakes for the first time. We suggest screening or preparing specific antivenoms with high efficiency for the clinical treatment of envenomation caused by these snakes. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

10 pages, 2020 KiB  
Article
Influence of Apis mellifera syriaca Bee Venom on Nociception and Inflammatory Cytokine Profiles in Experimental Hyperalgesia
by Mohamad Ayoub, Salma Fayjaloun, Rabih Roufayel, Dany El Obeid, Ziad Fajloun, Mohamad Rima and Marc Karam
Toxins 2025, 17(1), 18; https://doi.org/10.3390/toxins17010018 - 1 Jan 2025
Viewed by 868
Abstract
Hyperalgesia is a condition marked by an abnormal increase in pain sensitivity, often occurring in response to tissue injury, inflammation, or prolonged exposure to certain medications. Inflammatory mediators, such as cytokines IL-1β, IL-6, and TNF-α, play a central role in this process, amplifying [...] Read more.
Hyperalgesia is a condition marked by an abnormal increase in pain sensitivity, often occurring in response to tissue injury, inflammation, or prolonged exposure to certain medications. Inflammatory mediators, such as cytokines IL-1β, IL-6, and TNF-α, play a central role in this process, amplifying pain perception. Developing effective treatments that address the underlying mechanisms of hyperalgesia is an active field of research. Apis mellifera syriaca venom demonstrated potential immunomodulatory activity associated with cytokine release in vivo. Therefore, the aim of this study is to evaluate the effect of Apis mellifera syriaca bee venom (AmsBV) on pain sensitivity in a formalin-induced hyperalgesia mice model and to evaluate the potential role of cytokines associated with the nociception of pain. The hotplate test, used to measure pain latency, showed that hypersensitivity to pain was induced in formalin-injected male mice only, with no changes in females, suggesting a sex-based response to formalin. When applied, AmsBV reduced pain sensitivity in males, suggesting pain relief potential. At the molecular level, AmsBV was able to reduce pro-inflammatory interleukin IL-4 and cytokine IFN-γ, emphasizing its immunomodulatory potential. Interestingly, the venom restored anti-inflammatory IL-10 levels that were significantly decreased in hyperalgesia males. Together, these findings highlight the therapeutic potential for AmsBV in managing inflammation and reducing pain, particularly hyperalgesia. Full article
(This article belongs to the Special Issue Animals Venom in Drug Discovery: A Valuable Therapeutic Tool)
Show Figures

Figure 1

16 pages, 1769 KiB  
Article
The Role of Indoxyl Sulfate in Exacerbating Colorectal Cancer During Chronic Kidney Disease Progression: Insights into the Akt/β-Catenin/c-Myc and AhR/c-Myc Pathways in HCT-116 Colorectal Cancer Cells
by Yu Ichisaka, Chihiro Takei, Kazuma Naito, Manami Higa, Shozo Yano, Toshimitsu Niwa and Hidehisa Shimizu
Toxins 2025, 17(1), 17; https://doi.org/10.3390/toxins17010017 - 1 Jan 2025
Viewed by 898
Abstract
Epidemiological studies suggest an increased risk of colorectal cancer (CRC) aggravation in patients with chronic kidney disease (CKD). Our previous study demonstrated that indoxyl sulfate, a uremic toxin whose concentration increases with CKD progression, exacerbates CRC through activation of the AhR and Akt [...] Read more.
Epidemiological studies suggest an increased risk of colorectal cancer (CRC) aggravation in patients with chronic kidney disease (CKD). Our previous study demonstrated that indoxyl sulfate, a uremic toxin whose concentration increases with CKD progression, exacerbates CRC through activation of the AhR and Akt pathways. Consequently, indoxyl sulfate has been proposed to be a significant link between CKD progression and CRC aggravation. The present study aimed to investigate the roles of c-Myc and β-Catenin, which are hypothesized to be downstream factors of indoxyl sulfate-induced AhR and Akt activation, in CRC cell proliferation and EGF sensitivity in HCT-116 CRC cells. Indoxyl sulfate significantly induced CRC cell proliferation at concentrations exceeding 62.5 µM, a process suppressed by the c-Myc inhibitor 10058-F4. Indoxyl sulfate activated the Akt/β-Catenin/c-Myc pathway as evidenced by the Akt inhibitor MK2206, which decreased both β-Catenin and c-Myc protein levels, and the β-Catenin inhibitor XAV-939, which reduced c-Myc protein levels. The AhR antagonist CH223191 also inhibited c-Myc upregulation, indicating involvement of the AhR/c-Myc pathway. MK2206 partially attenuated the indoxyl sulfate-induced AhR transcriptional activity, suggesting that Akt activation influences the AhR/c-Myc pathway. MK2206, CH223191, and 10058-F4 suppressed the increase in EGFR protein levels induced by indoxyl sulfate, indicating that the Akt/β-Catenin/c-Myc and AhR/c-Myc pathways enhance the sensitivity of HCT-116 CRC cells to EGF. These findings indicate that the elevation of indoxyl sulfate levels in the blood, due to CKD progression, could worsen CRC by promoting the proliferation of CRC cells and enhancing EGF signaling. Therefore, indoxyl sulfate could potentially serve as a therapeutic target for CRC aggravation in patients with CKD. Full article
(This article belongs to the Special Issue The Role of Uremic Toxins in Comorbidities of Chronic Kidney Disease)
Show Figures

Figure 1

26 pages, 6972 KiB  
Article
Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens
by Revathi Shanmugasundaram, Laharika Kappari, Mohammad Pilewar, Matthew K. Jones, Oluyinka A. Olukosi, Anthony Pokoo-Aikins, Todd J. Applegate and Anthony E. Glenn
Toxins 2025, 17(1), 16; https://doi.org/10.3390/toxins17010016 - 1 Jan 2025
Viewed by 941
Abstract
Fusarium mycotoxins often co-occur in broiler feed, and their presence negatively impacts health even at subclinical concentrations, so there is a need to identify the concentrations of these toxins that do not adversely affect chickens health and performance. The study was conducted to [...] Read more.
Fusarium mycotoxins often co-occur in broiler feed, and their presence negatively impacts health even at subclinical concentrations, so there is a need to identify the concentrations of these toxins that do not adversely affect chickens health and performance. The study was conducted to evaluate the least toxic effects of combined mycotoxins fumonisins (FUM), deoxynivalenol (DON), and zearalenone (ZEA) on the production performance, immune response, intestinal morphology, and nutrient digestibility of broiler chickens. A total of 960 one-day-old broilers were distributed into eight dietary treatments: T1 (Control); T2: 33.0 FUM + 3.0 DON + 0.8 ZEA; T3: 14.0 FUM + 3.5 DON + 0.7 ZEA; T4: 26.0 FUM + 1.0 DON + 0.2 ZEA; T5: 7.7 FUM + 0.4 DON + 0.1 ZEA; T6: 3.6 FUM + 2.5 DON + 0.9 ZEA; T7: 0.8 FUM + 1.0 DON + 0.3 ZEA; T8: 1.0 FUM + 0.5 DON + 0.1 ZEA, all in mg/kg diet. The results showed that exposure to higher mycotoxin concentrations, T2 and T3, had significantly reduced body weight gain (BWG) by 17% on d35 (p < 0.05). The T2, T3, and T4 groups had a significant decrease in villi length in the jejunum and ileum (p < 0.05) and disruption of tight junction proteins, occludin, and claudin-4 (p < 0.05). Higher mycotoxin groups T2 to T6 had a reduction in the digestibility of amino acids methionine (p < 0.05), aspartate (p < 0.05), and serine (p < 0.05); a reduction in CD4+, CD8+ T-cell populations (p < 0.05) and an increase in T regulatory cell percentages in the spleen (p < 0.05); a decrease in splenic macrophage nitric oxide production and total IgA production (p < 0.05); and upregulated cytochrome P450-1A1 and 1A4 gene expression (p < 0.05). Birds fed the lower mycotoxin concentration groups, T7 and T8, did not have a significant effect on performance, intestinal health, and immune responses, suggesting that these concentrations pose the least negative effects in broiler chickens. These findings are essential for developing acceptable thresholds for combined mycotoxin exposure and efficient feed management strategies to improve broiler performance. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop