Proteomic Analysis of the Murine Liver Response to Oral Exposure to Aflatoxin B1 and Ochratoxin A: The Protective Role to Bioactive Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Quantification of Proteins
2.2. Gene Ontology of Differentially Expressed Proteins
2.3. Metabolic Pathways Analysis
3. Conclusions
4. Material and Methods
4.1. Reagents
4.2. In Vivo Experimental Design
4.3. Protein Extraction, Reduction, Alkylation, and Digestion
4.4. Identification and Quantification of Proteins Through LC-MS/MS-Q-TOF
4.5. Statistical Analysis and Bioinformatics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arce-López, B.; Coton, M.; Coton, E.; Hymery, N. Occurrence of the Two Major Regulated Mycotoxins, Ochratoxin A and Fumonisin B1, in Cereal and Cereal-Based Products in Europe and Toxicological Effects: A Review. Environ. Toxicol. Pharmacol. 2024, 109, 104489. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical Agents and Related Occupations. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 9–562. [Google Scholar]
- Suman, M. Last Decade Studies on Mycotoxins’ Fate during Food Processing: An Overview. Curr. Opin. Food Sci. 2021, 41, 70–80. [Google Scholar] [CrossRef]
- Persico, M.; Sessa, R.; Cesaro, E.; Dini, I.; Costanzo, P.; Ritieni, A.; Fattorusso, C.; Grosso, M. A Multidisciplinary Approach Disclosing Unexplored Aflatoxin B1 Roles in Severe Impairment of Vitamin D Mechanisms of Action. Cell Biol. Toxicol. 2023, 39, 1275–1295. [Google Scholar] [CrossRef]
- Gupta, R.C.; Doss, R.B.; Lall, R.; Srivastava, A.; Sinha, A. Aflatoxins, Ochratoxins, and Citrinin. In Reproductive and Developmental Toxicology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 983–1002. ISBN 978-0-323-89773-0. [Google Scholar]
- Deng, J.; Zhao, L.; Zhang, N.-Y.; Karrow, N.A.; Krumm, C.S.; Qi, D.-S.; Sun, L.-H. Aflatoxin B1 Metabolism: Regulation by Phase I and II Metabolizing Enzymes and Chemoprotective Agents. Mutat. Res. /Rev. Mutat. Res. 2018, 778, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Heussner, A.; Bingle, L. Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins 2015, 7, 4253–4282. [Google Scholar] [CrossRef] [PubMed]
- Escrivá, L.; Manyes, L.; Vila-Donat, P.; Font, G.; Meca, G.; Lozano, M. Bioaccessibility and Bioavailability of Bioactive Compounds from Yellow Mustard Flour and Milk Whey Fermented with Lactic Acid Bacteria. Food Funct. 2021, 12, 11250–11261. [Google Scholar] [CrossRef]
- Peng, K.; Koubaa, M.; Bals, O.; Vorobiev, E. Recent Insights in the Impact of Emerging Technologies on Lactic Acid Bacteria: A Review. Food Res. Int. 2020, 137, 109544. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Giri, L.; Suyal, R.; Jugran, A.K.; Zucca, P.; Rescigno, A.; Peddio, S.; Bobiş, O.; et al. Antioxidant Potential of Family Cucurbitaceae with Special Emphasis on Cucurbita Genus: A Key to Alleviate Oxidative Stress-mediated Disorders. Phytother. Res. 2021, 35, 3533–3557. [Google Scholar] [CrossRef] [PubMed]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, Environment-Friendly and Sustainable Techniques for Extraction of Food Bioactive Compounds and Waste Valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- León-López, A.; Pérez-Marroquín, X.A.; Campos-Lozada, G.; Campos-Montiel, R.G.; Aguirre-Álvarez, G. Characterization of Whey-Based Fermented Beverages Supplemented with Hydrolyzed Collagen: Antioxidant Activity and Bioavailability. Foods 2020, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.S.; Santos, M.L.; Abreu, J.P.; Rocha, R.S.; Esmerino, E.A.; Freitas, M.Q.; Mársico, E.T.; Campelo, P.H.; Pimentel, T.C.; Cristina Silva, M.; et al. Probiotic Fermented Whey-Milk Beverages: Effect of Different Probiotic Strains on the Physicochemical Characteristics, Biological Activity, and Bioactive Peptides. Food Res. Int. 2023, 164, 112396. [Google Scholar] [CrossRef]
- Kume, H.; Okazaki, K.; Yamaji, T.; Sasaki, H. A Newly Designed Enteral Formula Containing Whey Peptides and Fermented Milk Product Protects Mice against Concanavalin A-Induced Hepatitis by Suppressing Overproduction of Inflammatory Cytokines. Clin. Nutr. 2012, 31, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.W.; Pan, D.D.; Wu, Z.; Sun, Y.Y.; Guo, Y.X.; Zeng, X.Q. Antialcoholic Liver Activity of Whey Fermented by Lactobacillus Casei Isolated from Koumiss. J. Dairy Sci. 2014, 97, 4062–4071. [Google Scholar] [CrossRef] [PubMed]
- Radic, I.; Mijovic, M.; Tatalovic, N.; Mitic, M.; Lukic, V.; Joksimovic, B.; Petrovic, Z.; Ristic, S.; Velickovic, S.; Nestorovic, V.; et al. Protective Effects of Whey on Rat Liver Damage Induced by Chronic Alcohol Intake. Hum. Exp. Toxicol. 2019, 38, 632–645. [Google Scholar] [CrossRef] [PubMed]
- Moawad, R.M.; Osman, A.H.; Hassanein, K.M.; Elkot, W.F.; Asar, A.M.; Alhag, S.K.; Al-Shuraym, L.A.; Alghamdi, O.A.; Al-Farga, A.; Zaidalkilani, A.T.; et al. Assessment of Sweet Whey Fortified with Bifidobacteria and Selenium on Reduction of Pesticide Liver Toxicity in Albino Rats. Ital. J. Food Sci. 2024, 36, 275–287. [Google Scholar] [CrossRef]
- Van Summeren, A.; Renes, J.; Van Delft, J.H.M.; Kleinjans, J.C.S.; Mariman, E.C.M. Proteomics in the Search for Mechanisms and Biomarkers of Drug-Induced Hepatotoxicity. Toxicology In Vitro 2012, 26, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Yan, N.; Kwan, K.K.L.; Pan, Y.; Liu, J.; Xiao, Y.; Wu, L.; Lam, H. Comparative Proteomic Analysis Reveals the Different Hepatotoxic Mechanisms of Human Hepatocytes Exposed to Silver Nanoparticles. J. Hazard. Mater. 2023, 445, 130599. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, J.; Chen, R.; Deng, Y. Variable Protein Homeostasis in Housekeeping and Non-Housekeeping Pathways under Mycotoxins Stress. Sci. Rep. 2019, 9, 7819. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Yang, T.; Yan, L.; Feng, J.; Huang, B.; Jiang, Y. PRDX1 Is a Tumor Suppressor for Nasopharyngeal Carcinoma by Inhibiting PI3K/AKT/TRAF1 Signaling. OncoTargets Ther. 2020, 13, 9123–9133. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Chi, X.; Zhu, X.; Xu, Z.; Zou, Y.; Peng, Y.; Luan, S.; Dong, J.; Dai, Y.; Yin, L. Proteomic Analysis of Laser Captured Tubular Tissues Reveals Complement Activation and Mitochondrial Dysfunction in Autoimmune Related Kidney Diseases. Sci. Rep. 2024, 14, 19311. [Google Scholar] [CrossRef] [PubMed]
- Galasso, M.; Gambino, S.; Romanelli, M.G.; Donadelli, M.; Scupoli, M.T. Browsing the Oldest Antioxidant Enzyme: Catalase and Its Multiple Regulation in Cancer. Free Radic. Biol. Med. 2021, 172, 264–272. [Google Scholar] [CrossRef]
- Asaduzzaman Khan, M.; Tania, M.; Zhang, D.; Chen, H. Antioxidant Enzymes and Cancer. Chin. J. Cancer Res. 2010, 22, 87–92. [Google Scholar] [CrossRef]
- Temple, R. Guidance for Industry. Drug Saf. 2009. [Google Scholar]
- Cavin, C.; Mace, K.; Offord, E.A.; Schilter, B. Protective Effects of Coffee Diterpenes against Aflatoxin B1-Induced Genotoxicity: Mechanisms in Rat and Human Cells. Food Chem. Toxicol. 2001, 39, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, T.V.; Yang, B.; Tian, X.; Yang, S.; Gao, Y.; Ma, J.; Wang, G.; Si, P.; Li, R.; Xing, F. Simultaneous Degradation of Aflatoxin B1 and Zearalenone by Porin and Peroxiredoxin Enzymes Cloned from Acinetobacter Nosocomialis Y1. J. Hazard. Mater. 2023, 459, 132105. [Google Scholar] [CrossRef]
- Chariyakornkul, A.; Punvittayagul, C.; Taya, S.; Wongpoomchai, R. Inhibitory Effect of Purple Rice Husk Extract on AFB1-Induced Micronucleus Formation in Rat Liver through Modulation of Xenobiotic Metabolizing Enzymes. BMC Complement. Altern. Med. 2019, 19, 237. [Google Scholar] [CrossRef]
- González-Arias, C.A.; Crespo-Sempere, A.; Marín, S.; Sanchis, V.; Ramos, A.J. Modulation of the Xenobiotic Transformation System and Inflammatory Response by Ochratoxin A Exposure Using a Co-Culture System of Caco-2 and HepG2 Cells. Food Chem. Toxicol. 2015, 86, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Gautier, J.-C.; Richoz, J.; Welti, D.H.; Markovic, J.; Gremaud, E.; Guengerich, F.P.; Turesky, R.J. Metabolism of Ochratoxin A: Absence of Formation of Genotoxic Derivatives by Human and Rat Enzymes. Chem. Res. Toxicol. 2001, 14, 34–45. [Google Scholar] [CrossRef]
- Wu, J.-C.; Lai, C.-S.; Tsai, M.-L.; Ho, C.-T.; Wang, Y.-J.; Pan, M.-H. Chemopreventive Effect of Natural Dietary Compounds on Xenobiotic-Induced Toxicity. J. Food Drug Anal. 2017, 25, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Jayachandran, M.; Xu, B. A Critical Review on Hepatoprotective Effects of Bioactive Food Components. Crit. Rev. Food Sci. Nutr. 2018, 58, 1165–1229. [Google Scholar] [CrossRef] [PubMed]
- Frangiamone, M.; Lázaro, Á.; Cimbalo, A.; Font, G.; Manyes, L. In Vitro and in Vivo Assessment of AFB1 and OTA Toxic Effects and the Beneficial Role of Bioactive Compounds. A Systematic Review. Food Chem. 2024, 447, 138909. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-N.; Wu, C.-Q.; Wang, J.-Q.; Zheng, N. Metabolomic Analysis Reveals the Mechanisms of Hepatotoxicity Induced by Aflatoxin M1 and Ochratoxin A. Toxins 2022, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Treyer, A.; Müsch, A. Hepatocyte Polarity. In Comprehensive Physiology; Prakash, Y.S., Ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 243–287. ISBN 978-0-470-65071-4. [Google Scholar]
- Liao, Y.; Chen, Q.; Liu, L.; Huang, H.; Sun, J.; Bai, X.; Jin, C.; Li, H.; Sun, F.; Xiao, X.; et al. Amino Acid Is a Major Carbon Source for Hepatic Lipogenesis. Cell Metab. 2024, 36, 2437–2448.e8. [Google Scholar] [CrossRef]
- Newman, A.C.; Maddocks, O.D.K. One-Carbon Metabolism in Cancer. Br. J. Cancer 2017, 116, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Ferenci, P.; Fried, M.; Labrecque, D.; Bruix, J.; Sherman, M.; Omata, M.; Heathcote, J.; Piratsivuth, T.; Kew, M.; Otegbayo, J.A.; et al. Hepatocellular Carcinoma (HCC): A Global Perspective. J. Clin. Gastroenterol. 2010, 44, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Bera, R.; Chiou, C.; Yu, M.; Chen, T.; Chen, C.; Wang, T.; Chiang, W.; Chai, S.; Wei, Y.; et al. Actin Cytoskeleton Remodeling Drives Epithelial-mesenchymal Transition for Hepatoma Invasion and Metastasis in Mice. Hepatology 2018, 67, 2226–2243. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, X.-P.; Wang, L.-Y.; Gao, S.; Zhao, J.; Fan, Y.-C.; Wang, K. Glutathione S-Transferase P1 Correlated with Oxidative Stress in Hepatocellular Carcinoma. Int. J. Med. Sci. 2013, 10, 683–690. [Google Scholar] [CrossRef]
- Aleksunes, L.M. Up-Regulation of NAD(P)H Quinone Oxidoreductase 1 during Human Liver Injury. World J. Gastroenterol. 2006, 12, 1937. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yuan, Y.; Che, Z.; Tan, X.; Wu, B.; Wang, C.; Xu, C.; Xiao, J. The Hepatoprotective and Hepatotoxic Roles of Sex and Sex-Related Hormones. Front. Immunol. 2022, 13, 939631. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Caserta, S.; Genovese, S.; Pioggia, G.; Gangemi, S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants 2023, 12, 1255. [Google Scholar] [CrossRef] [PubMed]
- Vila-Donat, P.; Sánchez, D.; Cimbalo, A.; Mañes, J.; Manyes, L. Effect of Bioactive Ingredients on Urinary Excretion of Aflatoxin B1 and Ochratoxin A in Rats, as Measured by Liquid Chromatography with Fluorescence Detection. Toxins 2024, 16, 363. [Google Scholar] [CrossRef] [PubMed]
- Cimbalo, A.; Frangiamone, M.; Juan, C.; Font, G.; Lozano, M.; Manyes, L. Proteomics Evaluation of Enniatins Acute Toxicity in Rat Liver. Food Chem. Toxicol. 2021, 151, 112130. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, J.C. Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. 2007–2015. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 18 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trombetti, S.; Cimbalo, A.; Grosso, M.; Vila-Donat, P.; Mañes, J.; Manyes, L. Proteomic Analysis of the Murine Liver Response to Oral Exposure to Aflatoxin B1 and Ochratoxin A: The Protective Role to Bioactive Compounds. Toxins 2025, 17, 29. https://doi.org/10.3390/toxins17010029
Trombetti S, Cimbalo A, Grosso M, Vila-Donat P, Mañes J, Manyes L. Proteomic Analysis of the Murine Liver Response to Oral Exposure to Aflatoxin B1 and Ochratoxin A: The Protective Role to Bioactive Compounds. Toxins. 2025; 17(1):29. https://doi.org/10.3390/toxins17010029
Chicago/Turabian StyleTrombetti, Silvia, Alessandra Cimbalo, Michela Grosso, Pilar Vila-Donat, Jordi Mañes, and Lara Manyes. 2025. "Proteomic Analysis of the Murine Liver Response to Oral Exposure to Aflatoxin B1 and Ochratoxin A: The Protective Role to Bioactive Compounds" Toxins 17, no. 1: 29. https://doi.org/10.3390/toxins17010029
APA StyleTrombetti, S., Cimbalo, A., Grosso, M., Vila-Donat, P., Mañes, J., & Manyes, L. (2025). Proteomic Analysis of the Murine Liver Response to Oral Exposure to Aflatoxin B1 and Ochratoxin A: The Protective Role to Bioactive Compounds. Toxins, 17(1), 29. https://doi.org/10.3390/toxins17010029