Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species
Abstract
:1. Introduction
2. Phase I Biotransformation of AFB1: Oxidation Reactions
2.1. Step #1 Oxidation of AFB1 to Aflatoxin-8,9-Epoxide
Role of Specific Isoforms of CYPs in Activating AFB1 to AFBO, by Species
- Humans
- b.
- Non-human primates
- c.
- Rats
- d.
- Mice
- e.
- Fish/salmonids
- f.
- Avians (Turkeys, Chickens, Ducks)
2.2. Step #2 Oxidative Biotransformation of AFB1 to Aflatoxin M1
Role of Specific CYP Isoforms in Activating AFB1 to AFM1, by Species
- Humans
- b.
- Non-human primates
- c.
- Rats
- d.
- Mice
- e.
- Fish/Salmonids
- f.
- Avians (Turkeys, Ducks, Chickens)
2.3. Step #3 Oxidative Biotransformation of AFB1 to Aflatoxin P1
Role of Specific Isoforms of CYPs in Activating AFB1 to AFP1, by Species
- Humans
- b.
- Non-human primates
- c.
- Rats
- d.
- Mice
- e.
- Fish/salmonids
- f.
- Avians (Turkeys, Chickens, Ducks)
2.4. Step #4 Oxidative Biotransformation of AFB1 to Aflatoxin Q1
Role of Specific Isoforms of CYPs in Activating AFB1 to AFQ1, by Species
- Humans
- b.
- Non-human primates
- c.
- Rats
- d.
- Mice
- e.
- Fish/Salmonids
- f.
- Avians (Turkeys, Ducks, Chickens)
3. Phase I Biotransformation of AFB1: Reduction Reactions
Step #5: Reduction of AFB1 to Aflatoxicol (AFL)
4. Phase II Biotransformation of AFB1: Hydrolysis, Conjugation and Reduction Reactions
4.1. Step #6 Hydrolysis of AFB1 to Aflatoxin B1-Dihydrodiol
Role of mEH in Hydrolyzing AFBO to AFB-Dihydrodiol, by Species
- Humans
- b.
- Non-human primates
- c.
- Rats
- d.
- Mice
- e.
- Fish/Salmonids
- f.
- Avians (Turkeys, Chickens, Ducks)
4.2. Step #7 Reduction of AFB1–Dihydrodiol to AFB1–Dialdehyde, AFB1–Monoalcohols, and AFB1–Dialcohol
Role of Specific Isoforms of Aldo-Ketoreductases in Reducing AFB1–Dialdehyde, by Species
- Humans
- b.
- Non-human primates
- c.
- Rats
- d.
- Mice
- e.
- Fish/Salmonids
- f.
- Avians (Turkeys, Chickens, Ducks)
4.3. Step #8 Conjugation of AFBO with Glutathione by Glutathione S-Transferases (GSTs)
Role of Specific Isoforms of GSTs in Conjugation of AFBO, by Species
- Humans
- b.
- Non-human primates
- c.
- Rats
- d.
- Mice
- e.
- Fish/Salmonids
- f.
- Avians (Turkeys, Chickens, Ducks)
4.4. Step #9 Formation of the AFB-NAC Conjugate from AFB-GSH
4.5. Step #10 Glucuronide and Sulfate Conjugation of Hydroxylated AFB1 Metabolites
5. Summary
- Humans and non-human primates
- b.
- Rats
- c.
- Mice
- d.
- Fish/salmonids
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayres, J.L.; Lee, D.J.; Wales, J.H.; Sinnhuber, R.O. Aflatoxin structure and hepatocarcinogenicity in rainbow trout (Salmo gairdneri). J. Natl. Cancer Inst. 1971, 46, 561–564. [Google Scholar]
- Lee, D.J.; Wales, J.H.; Sinnhuber, R.O. Promotion of aflatoxin-induced hepatoma growth in trout by methyl malvalate and sterculate. Cancer Res. 1971, 31, 960–963. [Google Scholar] [PubMed]
- Wogan, G.N.; Newberne, P.M. Dose-response characteristics of aflatoxin B1 carcinogenesis in the rat. Cancer Res. 1967, 27, 2370–2376. [Google Scholar] [PubMed]
- Wogan, G.N.; Paglialunga, S.; Newberne, P.M. Carcinogenic effects of low dietary levels of aflatoxin B1 in rats. Food Cosmet. Toxicol. 1974, 12, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Roebuck, B.D.; Wogan, G.N. Species comparison of in vitro metabolism of aflatoxin B1. Cancer Res. 1977, 37, 1649–1656. [Google Scholar]
- Gerdemann, A.; Cramer, B.; Degen, G.H.; Veerkamp, J.; Gunther, G.; Albrecht, W.; Behrens, M.; Esselen, M.; Ghallab, A.; Hengstler, J.G.; et al. Comparative metabolism of aflatoxin B(1) in mouse, rat and human primary hepatocytes using HPLC-MS/MS. Arch. Toxicol. 2023, 97, 3179–3196. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Yu, P.; Yang, K.; Cao, D. Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol. Mech. Methods 2022, 32, 395–419. [Google Scholar] [CrossRef] [PubMed]
- Pickova, D.; Ostry, V.; Toman, J.; Malir, F. Aflatoxins: History, significant milestones, recent data on their toxicity and ways to mitigation. Toxins 2021, 13, 399. [Google Scholar] [CrossRef] [PubMed]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- Wogan, G.N.; Kensler, T.W.; Groopman, J.D. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 249–257. [Google Scholar] [CrossRef]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 2011, 120 (Suppl. 1), S28–S48. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P.; Johnson, W.W.; Shimada, T.; Ueng, Y.F.; Yamazaki, H.; Langouet, S. Activation and detoxication of aflatoxin B1. Mutat. Res. 1998, 402, 121–128. [Google Scholar] [CrossRef]
- Eaton, D.L.; Gallagher, E.P. Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 1994, 34, 135–172. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Groopman, J.D. The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance; Academic Press: Boston, MA, USA, 1994. [Google Scholar]
- IARC. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; IARC Press: Lyon, France, 1993; Volume 56. [Google Scholar]
- Ramsdell, H.S.; Eaton, D.L. Species susceptibility to aflatoxin B1 carcinogenesis: Comparative kinetics of microsomal biotransformation. Cancer Res. 1990, 50, 615–620. [Google Scholar] [PubMed]
- Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N. Aflatoxin metabolism in humans: Detection of metabolites and nucleic acid adducts in urine by affinity chromatography. Proc. Natl. Acad. Sci. USA 1985, 82, 6492–6496. [Google Scholar] [CrossRef]
- Ueng, Y.F.; Shimada, T.; Yamazaki, H.; Guengerich, F.P. Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 1995, 8, 218–225. [Google Scholar] [CrossRef]
- Groopman, J.D.; Fowler, K.W.; Busby, W.F., Jr.; Wogan, G.N. Interaction of aflatoxin B2 with rat liver DNA and histones in vivo. Carcinogenesis 1981, 2, 1371–1373. [Google Scholar] [CrossRef]
- Gross-Steinmeyer, K.; Stapleton, P.L.; Tracy, J.H.; Bammler, T.K.; Lehman, T.; Strom, S.C.; Eaton, D.L. Influence of Matrigel-overlay on constitutive and inducible expression of nine genes encoding drug-metabolizing enzymes in primary human hepatocytes. Xenobiotica 2005, 35, 419–438. [Google Scholar] [CrossRef]
- Gross-Steinmeyer, K.; Stapleton, P.L.; Tracy, J.H.; Bammler, T.K.; Strom, S.C.; Buhler, D.R.; Eaton, D.L. Modulation of aflatoxin B1-mediated genotoxicity in primary cultures of human hepatocytes by diindolylmethane, curcumin, and xanthohumols. Toxicol. Sci. 2009, 112, 303–310. [Google Scholar] [CrossRef]
- Aoyama, T.; Yamano, S.; Guzelian, P.S.; Gelboin, H.V.; Gonzalez, F.J. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1. Proc. Natl. Acad. Sci. USA 1990, 87, 4790–4793. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, E.P.; Kunze, K.L.; Stapleton, P.L.; Eaton, D.L. The kinetics of aflatoxin B1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4. Toxicol. Appl. Pharmacol. 1996, 141, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Kamdem, L.K.; Meineke, I.; Godtel-Armbrust, U.; Brockmoller, J.; Wojnowski, L. Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B1. Chem. Res. Toxicol. 2006, 19, 577–586. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Wang, Y.; Wang, X.; Lu, H.; Zhang, X.; Xiao, X.; Li, S.; Wang, X.; Wang, S.L. Cytochrome P450 2A13 is an efficient enzyme in metabolic activation of aflatoxin G1 in human bronchial epithelial cells. Arch. Toxicol. 2013, 87, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Kitada, M.; Taneda, M.; Ohi, H.; Komori, M.; Itahashi, K.; Nagao, M.; Kamataki, T. Mutagenic activation of aflatoxin B1 by P-450 HFLa in human fetal livers. Mutat. Res. 1989, 227, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kitada, M.; Taneda, M.; Ohta, K.; Nagashima, K.; Itahashi, K.; Kamataki, T. Metabolic activation of aflatoxin B1 and 2-amino-3-methylimidazo[4,5-f]-quinoline by human adult and fetal livers. Cancer Res. 1990, 50, 2641–2645. [Google Scholar] [PubMed]
- Fanni, D.; Fanos, V.; Ambu, R.; Lai, F.; Gerosa, C.; Pampaloni, P.; Van Eyken, P.; Senes, G.; Castagnola, M.; Faa, G. Overlapping between CYP3A4 and CYP3A7 expression in the fetal human liver during development. J. Matern.-Fetal Neonatal Med. 2015, 28, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P.; Rasheed, F.N.; Jawla, M.F.; Hall, A.J.; Jansen, L.A.; Montesano, R. In-utero exposure to aflatoxin in west Africa. Lancet 1991, 337, 1602. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dick, R.; Yin, H.; Licad-Coles, E.; Kroetz, D.L.; Szklarz, G.; Harlow, G.; Halpert, J.R.; Correia, M.A. Structure-function relationships of human liver cytochromes P450 3A: Aflatoxin B1 metabolism as a probe. Biochemistry 1998, 37, 12536–12545. [Google Scholar] [CrossRef]
- Krishna, D.R.; Shekar, M.S. Cytochrome P450 3A: Genetic polymorphisms and inter-ethnic differences. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.W.; Guengerich, F.P. Reaction of aflatoxin B1 exo-8,9-epoxide with DNA: Kinetic analysis of covalent binding and DNA-induced hydrolysis. Proc. Natl. Acad. Sci. USA 1997, 94, 6121–6125. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P.; Johnson, W.W.; Ueng, Y.F.; Yamazaki, H.; Shimada, T. Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ. Health Perspect. 1996, 104 (Suppl. 3), 557–562. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Ring, B.J.; Binkley, S.N.; Hall, S.D.; Wrighton, S.A. Autoactivation and activation of the cytochrome P450s. Int. J. Clin. Pharmacol. Ther. 1998, 36, 642–651. [Google Scholar] [PubMed]
- Houston, J.B.; Galetin, A. Modelling atypical CYP3A4 kinetics: Principles and pragmatism. Arch. Biochem. Biophys. 2005, 433, 351–360. [Google Scholar] [CrossRef]
- Kenworthy, K.E.; Clarke, S.E.; Andrews, J.; Houston, J.B. Multisite kinetic models for CYP3A4: Simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab. Dispos. 2001, 29, 1644–1651. [Google Scholar] [PubMed]
- Muller, C.S.; Knehans, T.; Davydov, D.R.; Bounds, P.L.; von Mandach, U.; Halpert, J.R.; Caflisch, A.; Koppenol, W.H. Concurrent cooperativity and substrate inhibition in the epoxidation of carbamazepine by cytochrome P450 3A4 active site mutants inspired by molecular dynamics simulations. Biochemistry 2015, 54, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Ueng, Y.F.; Kuwabara, T.; Chun, Y.J.; Guengerich, F.P. Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 1997, 36, 370–381. [Google Scholar] [CrossRef]
- Gallagher, E.P.; Stapleton, P.L.; Kunze, K.L.; Eaton, D.L. Aflatoxin B1 oxidation in human CYP1A1 and CYP1A2 cDNA-expressed microsomes. Int. Toxicol. VII Int. Congr. Toxicol. 1995, 7, 34. [Google Scholar]
- Gallagher, E.P.; Wienkers, L.C.; Stapleton, P.L.; Kunze, K.L.; Eaton, D.L. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1. Cancer Res. 1994, 54, 101–108. [Google Scholar]
- Putt, D.A.; Ding, X.; Coon, M.J.; Hollenberg, P.F. Metabolism of aflatoxin B1 by rabbit and rat nasal mucosa microsomes and purified cytochrome P450, including isoforms 2A10 and 2A11. Carcinogenesis 1995, 16, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Kranendonk, M.; Carreira, F.; Theisen, P.; Laires, A.; Fisher, C.W.; Rueff, J.; Estabrook, R.W.; Vermeulen, N.P. Escherichia coli MTC, a human NADPH P450 reductase competent mutagenicity tester strain for the expression of human cytochrome P450 isoforms 1A1, 1A2, 2A6, 3A4, or 3A5: Catalytic activities and mutagenicity studies. Mutat. Res. 1999, 441, 73–83. [Google Scholar] [CrossRef]
- Kelly, J.D.; Eaton, D.L.; Guengerich, F.P.; Coulombe, R.A., Jr. Aflatoxin B1 activation in human lung. Toxicol. Appl. Pharmacol. 1997, 144, 88–95. [Google Scholar] [CrossRef]
- Marcelloni, A.M.; Pigini, D.; Chiominto, A.; Gioffre, A.; Paba, E. Exposure to airborne mycotoxins: The riskiest working environments and tasks. Ann. Work. Expo. Health 2024, 68, 19–35. [Google Scholar] [CrossRef]
- Hayes, R.B.; van Nieuwenhuize, J.P.; Raatgever, J.W.; ten Kate, F.J. Aflatoxin exposures in the industrial setting: An epidemiological study of mortality. Food Chem. Toxicol. 1984, 22, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Berggren, S.; Gall, C.; Wollnitz, N.; Ekelund, M.; Karlbom, U.; Hoogstraate, J.; Schrenk, D.; Lennernas, H. Gene and protein expression of P-glycoprotein, MRP1, MRP2, and CYP3A4 in the small and large human intestine. Mol. Pharm. 2007, 4, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Kaminsky, L.S. Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 149–173. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.C.; Carvajal, M.; Garner, R.C. Does aflatoxin exposure in the United Kingdom constitute a cancer risk? Environ. Health Perspect. 1993, 99, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Bammler, T.K.; Slone, D.H.; Eaton, D.L. Effects of dietary oltipraz and ethoxyquin on aflatoxin B1 biotransformation in non-human primates. Toxicol. Sci. 2000, 54, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Ch’ih, J.J.; Biedrzycka, D.W.; Devlin, T.M. Isolated hepatocytes are capable of excreting aflatoxin metabolites. Biochem. Biophys. Res. Commun. 1991, 178, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Halvorson, M.R.; Safe, S.H.; Parkinson, A.; Phillips, T.D. Aflatoxin B1 hydroxylation by the pregnenolone-16 alpha-carbonitrile-inducible form of rat liver microsomal cytochrome P-450. Carcinogenesis 1988, 9, 2103–2108. [Google Scholar] [CrossRef]
- Raney, K.D.; Meyer, D.J.; Ketterer, B.; Harris, T.M.; Guengerich, F.P. Glutathione conjugation of aflatoxin B1 exo- and endo-epoxides by rat and human glutathione S-transferases. Chem. Res. Toxicol. 1992, 5, 470–478. [Google Scholar] [CrossRef]
- Buetler, T.M.; Bammler, T.K.; Hayes, J.D.; Eaton, D.L. Oltipraz-mediated changes in aflatoxin B(1) biotransformation in rat liver: Implications for human chemointervention. Cancer Res. 1996, 56, 2306–2313. [Google Scholar] [PubMed]
- Yanagimoto, T.; Itoh, S.; Sawada, M.; Kamataki, T. Mouse cytochrome P450 (Cyp3a11): Predominant expression in liver and capacity to activate aflatoxin B1. Arch. Biochem. Biophys. 1997, 340, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Yanagimoto, T.; Itoh, S.; Sawada, M.; Hashimoto, H.; Kamataki, T. Molecular cloning and functional expression of a mouse cytochrome P-450 (Cyp3a-13): Examination of Cyp3a-13 enzyme to activate aflatoxin B1 (AFB1). Biochim. Biophys. Acta 1994, 1201, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Kirby, G.M.; Chemin, I.; Montesano, R.; Chisari, F.V.; Lang, M.A.; Wild, C.P. Induction of specific cytochrome P450s involved in aflatoxin B1 metabolism in hepatitis B virus transgenic mice. Mol. Carcinog. 1994, 11, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Fukuhara, M. Effects of co-administration of butylated hydroxytoluene, butylated hydroxyanisole and flavonoids on the activation of mutagens and drug-metabolizing enzymes in mice. Toxicology 1997, 122, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Buhler, D.R. Purified form of cytochrome P-450 from rainbow trout with high activity toward conversion of aflatoxin B1 to aflatoxin B1-2,3-epoxide. Cancer Res. 1983, 43, 4752–4756. [Google Scholar]
- Williams, D.E.; Buhler, D.R. Purification of cytochromes P-448 from beta-naphthoflavone-treated rainbow trout. Biochim. Biophys. Acta 1982, 717, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Buhler, D.R. Benzo[a]pyrene-hydroxylase catalyzed by purified isozymes of cytochrome P-450 from beta-naphthoflavone-fed rainbow trout. Biochem. Pharmacol. 1984, 33, 3743–3753. [Google Scholar] [CrossRef]
- Williams, D.E.; Bender, R.C.; Morrissey, M.T.; Selivonchick, D.P.; Buhler, D.R. Cytochrome P-450 isozymes in salmonds determined with antibodies to purifed forms of P-450 from rainbow trout. Mar. Environ. Res. 1984, 14, 13–21. [Google Scholar] [CrossRef]
- Buhler, D.R.; Yang, Y.H.; Dreher, T.W.; Miranda, C.L.; Wang, J.L. Cloning and sequencing of the major rainbow trout constitutive cytochrome P450 (CYP2K1): Identification of a new cytochrome P450 gene subfamily and its expression in mature rainbow trout liver and trunk kidney. Arch. Biochem. Biophys. 1994, 312, 45–51. [Google Scholar] [CrossRef]
- Williams, D.E.; Okita, R.T.; Buhler, D.R.; Masters, B.S. Regiospecific hydroxylation of lauric acid at the (omega-1) position by hepatic and kidney microsomal cytochromes P-450 from rainbow trout. Arch. Biochem. Biophys. 1984, 231, 503–510. [Google Scholar] [CrossRef]
- Yang, Y.H.; Miranda, C.L.; Henderson, M.C.; Wang-Buhler, J.L.; Buhler, D.R. Heterologous expression of CYP2K1 and identification of the expressed protein (BV-CYP2K1) as lauric acid (omega-1)-hydroxylase and aflatoxin B1 exo-epoxidase. Drug Metab. Dispos. 2000, 28, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Troxel, C.M.; Reddy, A.P.; O’Neal, P.E.; Hendricks, J.D.; Bailey, G.S. In vivo aflatoxin B1 metabolism and hepatic DNA adduction in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 1997, 143, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E. The rainbow trout liver cancer model: Response to environmental chemicals and studies on promotion and chemoprevention. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012, 155, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Wang-Buhler, J.L.; Lee, S.J.; Chung, W.G.; Stevens, J.F.; Tseng, H.P.; Hseu, T.H.; Hu, C.H.; Westerfield, M.; Yang, Y.H.; Miranda, C.L.; et al. CYP2K6 from zebrafish (Danio rerio): Cloning, mapping, developmental/tissue expression, and aflatoxin B1 activation by baculovirus expressed enzyme. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2005, 140, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Valsta, L.M.; Hendricks, J.D.; Bailey, G.S. The significance of glutathione conjugation for aflatoxin B1 metabolism in rainbow trout and coho salmon. Food Chem. Toxicol. 1988, 26, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Bailey, G.; Selivonchick, D.; Hendricks, J. Initiation, promotion, and inhibition of carcinogenesis in rainbow trout. Environ. Health Perspect. 1987, 71, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Bailey, G.S.; Williams, D.E.; Wilcox, J.S.; Loveland, P.M.; Coulombe, R.A.; Hendricks, J.D. Aflatoxin B1 carcinogenesis and its relation to DNA adduct formation and adduct persistence in sensitive and resistant salmonid fish. Carcinogenesis 1988, 9, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Bechtel, D.H. Molecular dosimetry of hepatic aflatoxin B1-DNA adducts: Linear correlation with hepatic cancer risk. Regul. Toxicol. Pharmacol. 1989, 10, 74–81. [Google Scholar] [CrossRef]
- Arafa, A.S.; Bloomer, R.J.; Wilson, H.R.; Simpson, C.F.; Harms, R.H. Susceptibility of various poultry species to dietary aflatoxin. Br. Poult. Sci. 1981, 22, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.J.; Buckner, R.; Kelly, J.; Coulombe, R.A., Jr. Biochemical basis for the extreme sensitivity of turkeys to aflatoxin B(1). Toxicol. Appl. Pharmacol. 2000, 165, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.F.; Edrington, T.S.; Kamps-Holtzapple, C.; Harvey, R.B.; Elissalde, M.H.; Rottinghaus, G.E. Effects of feeding fumonisin B1 present in Fusarium moniliforme culture material and aflatoxin singly and in combination to turkey poults. Poult. Sci. 1995, 74, 1295–1303. [Google Scholar] [CrossRef]
- Blount, W.P. Turkey “X” Disease. J. Br. Turk. Fed. 1961, 9, 55–58. [Google Scholar]
- Quist, C.F.; Bounous, D.I.; Kilburn, J.V.; Nettles, V.F.; Wyatt, R.D. The effect of dietary aflatoxin on wild turkey poults. J. Wildl. Dis. 2000, 36, 436–444. [Google Scholar] [CrossRef]
- Lozano, M.C.; Diaz, G.J. Microsomal and cytosolic biotransformation of aflatoxin B1 in four poultry species. Br. Poult. Sci. 2006, 47, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.J.; Van Vleet, T.R.; Hall, J.O.; Coulombe, R.A., Jr. Biochemical factors underlying the age-related sensitivity of turkeys to aflatoxin B(1). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 132, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Guarisco, J.A.; Hall, J.O.; Coulombe, R.A., Jr. Mechanisms of butylated hydroxytoluene chemoprevention of aflatoxicosis—Inhibition of aflatoxin B1 metabolism. Toxicol. Appl. Pharmacol. 2008, 227, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.S.; Coulombe, R.A., Jr. Molecular cloning and expression of a novel cytochrome p450 from turkey liver with aflatoxin b1 oxidizing activity. Chem. Res. Toxicol. 2006, 19, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Mendoza, K.M.; Coulombe, R.A., Jr. Structure and genetic mapping of the Cytochrome P450 gene (CYP1A5) in the turkey (Meleagris gallopavo). Cytogenet. Genome Res. 2007, 116, 104–109. [Google Scholar] [CrossRef]
- Rawal, S.; Kim, J.E.; Coulombe, R., Jr. Aflatoxin B1 in poultry: Toxicology, metabolism and prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Rawal, S.; Yip, S.S.; Coulombe, R.A., Jr. Cloning, expression and functional characterization of cytochrome P450 3A37 from turkey liver with high aflatoxin B1 epoxidation activity. Chem. Res. Toxicol. 2010, 23, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Dalloul, R.A.; Long, J.A.; Zimin, A.V.; Aslam, L.; Beal, K.; Blomberg Le, A.; Bouffard, P.; Burt, D.W.; Crasta, O.; Crooijmans, R.P.; et al. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): Genome assembly and analysis. PLoS Biol. 2010, 8, e1000475. [Google Scholar] [CrossRef]
- Rawal, S.; Coulombe, R.A., Jr. Metabolism of aflatoxin B1 in turkey liver microsomes: The relative roles of cytochromes P450 1A5 and 3A37. Toxicol. Appl. Pharmacol. 2011, 254, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Allcroft, R.; Caarnaghhan, R.B.A. Groundnut toxicity: An examination for toxin in human food products from animals fed toxic groundnut meal. Vet. Rec. 1963, 75, 259–263. [Google Scholar]
- Allcroft, R.; Carnaghan, R.B.A. Toxic Products in Groundnuts. Biological Effects. Chem. Ind. 1963, 2, 50–53. [Google Scholar]
- De Iongh, H.; Vles, R.O.; Van, P. Milk of Mammals Fed an Aflatoxin-Containing Diet. Nature 1964, 202, 466–467. [Google Scholar] [CrossRef]
- Hsieh, D.P.; Cullen, J.M.; Hsieh, L.S.; Shao, Y.; Ruebner, B.H. Cancer risks posed by aflatoxin M1. Princess Takamatsu Symp. 1985, 16, 57–65. [Google Scholar] [PubMed]
- Purchase, I.F. Acute toxicity of aflatoxins M1 and M2 in one-day-old ducklings. Food Cosmet. Toxicol. 1967, 5, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Cullen, J.M.; Ruebner, B.H.; Hsieh, L.S.; Hyde, D.M.; Hsieh, D.P. Carcinogenicity of dietary aflatoxin M1 in male Fischer rats compared to aflatoxin B1. Cancer Res. 1987, 47, 1913–1917. [Google Scholar] [PubMed]
- Sinnhuber, R.O.; Lee, D.J.; Wales, J.H.; Landers, M.K.; Keyl, A.C. Hepatic carcinogenesis of aflatoxin M1 in rainbow trout (Salmo gairdneri) and its enchancement by cyclopropene fatty acids. J. Natl. Cancer Inst. 1974, 53, 1285–1288. [Google Scholar] [CrossRef]
- Loveland, P.M.; Wilcox, J.S.; Hendricks, J.D.; Bailey, G.S. Comparative metabolism and DNA binding of aflatoxin B1, aflatoxin M1, aflatoxicol and aflatoxicol-M1 in hepatocytes from rainbow trout (Salmo gairdneri). Carcinogenesis 1988, 9, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Bailey, G.S.; Dashwood, R.; Loveland, P.M.; Pereira, C.; Hendricks, J.D. Molecular dosimetry in fish: Quantitative target organ DNA adduction and hepatocarcinogenicity for four aflatoxins by two exposure routes in rainbow trout. Mutat. Res. 1998, 399, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Neal, G.E.; Eaton, D.L.; Judah, D.J.; Verma, A. Metabolism and toxicity of aflatoxins M1 and B1 in human-derived in vitro systems. Toxicol. Appl. Pharmacol. 1998, 151, 152–158. [Google Scholar] [CrossRef]
- Ali, N.; Habib, A.; Mahmud, F.; Tuba, H.R.; Degen, G.H. Aflatoxin M(1) Analysis in Urine of Mill Workers in Bangladesh: A Pilot Study. Toxins 2024, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Manirujjaman, M.; Rana, S.; Degen, G.H. Determination of aflatoxin M(1) and deoxynivalenol biomarkers in infants and children urines from Bangladesh. Arch. Toxicol. 2020, 94, 3775–3786. [Google Scholar] [CrossRef] [PubMed]
- Apolinario, L.A.; Ramalho, L.N.Z.; Moosavi, M.H.; Jager, A.V.; Augusto, M.J.; Trotta, M.R.; Petta, T.; Khaneghah, A.M.; Oliveira, C.A.F.; Ramalho, F.S. Oncogenic and tumor suppressor pathways in subchronic aflatoxicosis in rats: Association with serum and urinary aflatoxin exposure biomarkers. Food Chem. Toxicol. 2021, 153, 112263. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, W.; Rehman, A.; Ahmad, M.U.; Rabbani, M.; Mushtaq, M.H.; Aamir, K.; Akhtar, F.; Wang, J.S. Assessment of aflatoxin M(1) exposure and associated determinants in children from Lahore, Pakistan. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2023, 40, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Ndaw, S.; Remy, A.; Jargot, D.; Antoine, G.; Denis, F.; Robert, A. Mycotoxins exposure of French grain elevator workers: Biomonitoring and airborne measurements. Toxins 2021, 13, 382. [Google Scholar] [CrossRef]
- Qian, G.S.; Ross, R.K.; Yu, M.C.; Yuan, J.M.; Gao, Y.T.; Henderson, B.E.; Wogan, G.N.; Groopman, J.D. A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People’s Republic of China. Cancer Epidemiol. Biomark. Prev. 1994, 3, 3–10. [Google Scholar]
- Sanchez, E.M.; Diaz, G.J. Frequency and levels of aflatoxin M(1) in urine of children in Bogota, Colombia. Mycotoxin Res. 2019, 35, 271–278. [Google Scholar] [CrossRef]
- Sulaiman, S.H.; Jamaluddin, R.; Sabran, M.R. Association between urinary aflatoxin (AFM(1)) and dietary Intake among adults in Hulu Langat district, Selangor, Malaysia. Nutrients 2018, 10, 460. [Google Scholar] [CrossRef] [PubMed]
- Gurtoo, H.L.; Koser, P.L.; Bansal, S.K.; Fox, H.W.; Sharma, S.D.; Mulhern, A.I.; Pavelic, Z.P. Inhibition of aflatoxin B1-hepatocarcinogenesis in rats by beta-naphthoflavone. Carcinogenesis 1985, 6, 675–678. [Google Scholar] [CrossRef]
- Borroz, K.I.; Ramsdell, H.S.; Eaton, D.L. Mouse strain differences in glutathione S-transferase activity and aflatoxin B1 biotransformation. Toxicol. Lett. 1991, 58, 97–105. [Google Scholar] [CrossRef]
- Goeger, D.E.; Shelton, D.W.; Hendricks, J.D.; Pereira, C.; Bailey, G.S. Comparative effect of dietary butylated hydroxyanisole and beta-naphthoflavone on aflatoxin B1 metabolism, DNA adduct formation, and carcinogenesis in rainbow trout. Carcinogenesis 1988, 9, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Loveland, P.M.; Coulombe, R.A.; Libbey, L.M.; Pawlowski, N.E.; Sinnhuber, R.O.; Nixon, J.E.; Bailey, G.S. Identification and mutagenicity of aflatoxicol-M1 produced by metabolism of aflatoxin B1 and aflatoxicol by liver fractions from rainbow trout (Salmo gairdneri) fed beta-naphthoflavone. Food Chem. Toxicol. 1983, 21, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.A.; Rosmaninho, J.F.; Castro, A.L.; Butkeraitis, P.; Reis, T.A.; Correa, B. Aflatoxin residues in eggs of laying Japanese quail after long-term administration of rations containing low levels of aflatoxin B1. Food Addit. Contam. 2003, 20, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Micco, C.; Miraglia, M.; Onori, R.; Brera, C.; Mantovani, A.; Ioppolo, A.; Stasolla, D. Long-term administration of low doses of mycotoxins to poultry. 1. Residues of aflatoxin B1 and its metabolites in broilers and laying hens. Food Addit. Contam. 1988, 5, 303–308. [Google Scholar] [CrossRef]
- Diaz-Zaragoza, M.; Carvajal-Moreno, M.; Mendez-Ramirez, I.; Chilpa-Galvan, N.C.; Avila-Gonzalez, E.; Flores-Ortiz, C.M. Aflatoxins, hydroxylated metabolites, and aflatoxicol from breast muscle of laying hens. Poult. Sci. 2014, 93, 3152–3162. [Google Scholar] [CrossRef] [PubMed]
- Holeski, C.J.; Eaton, D.L.; Monroe, D.H.; Bellamy, G.M. Effects of phenobarbital on the biliary excretion of aflatoxin P1-glucuronide and aflatoxin B1-S-glutathione in the rat. Xenobiotica 1987, 17, 139–153. [Google Scholar] [CrossRef]
- Groopman, J.D.; Hasler, J.A.; Trudel, L.J.; Pikul, A.; Donahue, P.R.; Wogan, G.N. Molecular dosimetry in rat urine of aflatoxin-N7-guanine and other aflatoxin metabolites by multiple monoclonal antibody affinity chromatography and immunoaffinity/high performance liquid chromatography. Cancer Res. 1992, 52, 267–274. [Google Scholar]
- Rowland, A.; Mackenzie, P.I.; Miners, J.O. Transporter-mediated uptake of UDP-glucuronic acid by human liver microsomes: Assay conditions, kinetics, and inhibition. Drug Metab. Dispos. 2015, 43, 147–153. [Google Scholar] [CrossRef]
- Stiborova, M.; Barta, F.; Levova, K.; Hodek, P.; Schmeiser, H.H.; Arlt, V.M.; Martinek, V. A Mechanism of O-demethylation of aristolochic acid I by cytochromes P450 and their contributions to this reaction in human and rat livers: Experimental and theoretical approaches. Int. J. Mol. Sci. 2015, 16, 27561–27575. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Monroe, D.H.; Bellamy, G.; Kalman, D.A. Identification of a novel dihydroxy metabolite of aflatoxin B1 produced in vitro and in vivo in rats and mice. Chem. Res. Toxicol. 1988, 1, 108–114. [Google Scholar] [CrossRef]
- Coulombe, R.A.; Shelton, D.W.; Sinnhuber, R.O.; Nixon, J.E. Comparative mutagenicity of aflatoxins using a Salmonella/trout hepatic enzyme activation system. Carcinogenesis 1982, 3, 1261–1264. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N.; Durston, W.E.; Yamasaki, E.; Lee, F.D. Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA 1973, 70, 2281–2285. [Google Scholar] [CrossRef]
- Krieger, R.I.; Salhab, A.S.; Dalezios, J.I.; Hsieh, D.P. Aflaxation B1 hydroxylation by hepatic microsomal preparations from the rhesus monkey. Food Cosmet. Toxicol. 1975, 13, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, D.P.; Dalezios, J.I.; Krieger, R.I.; Masri, M.S.; Haddon, W.F. Use of monkey liver microsomes in production of aflatoxin Q1. J. Agric. Food Chem. 1974, 22, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Raney, K.D.; Shimada, T.; Kim, D.H.; Groopman, J.D.; Harris, T.M.; Guengerich, F.P. Oxidation of aflatoxins and sterigmatocystin by human liver microsomes: Significance of aflatoxin Q1 as a detoxication product of aflatoxin B1. Chem. Res. Toxicol. 1992, 5, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Forrester, L.M.; Neal, G.E.; Judah, D.J.; Glancey, M.J.; Wolf, C.R. Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B1 metabolism in human liver. Proc. Natl. Acad. Sci. USA 1990, 87, 8306–8310. [Google Scholar] [CrossRef]
- Ramsdell, H.S.; Parkinson, A.; Eddy, A.C.; Eaton, D.L. Bioactivation of aflatoxin B1 by human liver microsomes: Role of cytochrome P450 IIIA enzymes. Toxicol. Appl. Pharmacol. 1991, 108, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, C.N.; Abia, W.A.; Braun, D.; Sarkanj, B.; Ayeni, K.I.; Oyedele, O.A.; Michael-Chikezie, E.C.; Ezekiel, V.C.; Mark, B.N.; Ahuchaogu, C.P.; et al. Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. Environ. Int. 2022, 158, 106996. [Google Scholar] [CrossRef] [PubMed]
- Mykkanen, H.; Zhu, H.; Salminen, E.; Juvonen, R.O.; Ling, W.; Ma, J.; Polychronaki, N.; Kemilainen, H.; Mykkanen, O.; Salminen, S.; et al. Fecal and urinary excretion of aflatoxin B1 metabolites (AFQ1, AFM1 and AFB-N7-guanine) in young Chinese males. Int. J. Cancer 2005, 115, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.; Norcross, R.; Fang, Y.; Lu, P.; Rodrigues, A.D.; Shou, M.; Rushmore, T.; Booth-Genthe, C. Characterization of the rhesus monkey CYP3A64 enzyme: Species comparisons of CYP3A substrate specificity and kinetics using baculovirus-expressed recombinant enzymes. Drug Metab. Dispos. 2006, 34, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Guan, H.; Ding, X.; Wang, J.S. Modulation of aflatoxin toxicity and biomarkers by lycopene in F344 rats. Toxicol. Appl. Pharmacol. 2007, 219, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Renaud, H.J.; Cui, J.Y.; Khan, M.; Klaassen, C.D. Tissue distribution and gender-divergent expression of 78 cytochrome P450 mRNAs in mice. Toxicol. Sci. 2011, 124, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.S.; Rintel, T.D.; Parker, C.M. Aflatoxicol as a possible predictor for species sensitivity to aflatoxin B1 (AFB1). Cancer Res. 1975, 16, 133. [Google Scholar]
- Garner, R.C.; Miller, E.C.; Miller, J.A. Liver microsomal metabolism of aflatoxin B 1 to a reactive derivative toxic to Salmonella typhimurium TA 1530. Cancer Res 1972, 32, 2058–2066. [Google Scholar] [PubMed]
- Patterson, D.S. Hydroxylation and toxicity of aflatoxins. Biochem. J. 1971, 125, 19P–20P. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.S.P. Metabolism as a factor in determining the toxic action of the aflatoxins in different animal species. Food Cosmet. Toxicol. 1973, 11, 287–294. [Google Scholar]
- Salhab, A.S.; Edwards, G.S. Comparative in vitro metabolism of aflatoxicol by liver preparations from animals and humans. Cancer Res. 1977, 37, 1016–1021. [Google Scholar] [PubMed]
- Campbell, T.C.; Hayes, J.R. The role of aflatoxin metabolism in its toxic lesion. Toxicol. Appl. Pharmacol. 1976, 35, 199–222. [Google Scholar] [CrossRef] [PubMed]
- Stich, H.F.; Laishes, B.A. The response of Xeroderma pigmentosum cells and controls to the activated mycotoxins, aflatoxins and sterigmatocystin. Int. J. Cancer 1975, 16, 266–274. [Google Scholar] [CrossRef]
- Murcia, H.; Diaz, G.J. Dealing with aflatoxin B1 dihydrodiol acute effects: Impact of aflatoxin B1-aldehyde reductase enzyme activity in poultry species tolerant to AFB1 toxic effects. PLoS ONE 2020, 15, e0235061. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P.; Johnson, W.W. Kinetics of hydrolysis and reaction of aflatoxin B1 exo-8,9-epoxide and relevance to toxicity and detoxication. Drug Metab. Rev. 1999, 31, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.W.; Yamazaki, H.; Shimada, T.; Ueng, Y.F.; Guengerich, F.P. Aflatoxin B1 8,9-epoxide hydrolysis in the presence of rat and human epoxide hydrolase. Chem. Res. Toxicol. 1997, 10, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.J.; Erickson, K.E.; Sengstag, C.; Eaton, D.L. Expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae reveals a functional role in aflatoxin B1 detoxification. Toxicol. Sci. 2002, 65, 35–42. [Google Scholar] [CrossRef]
- Andersson, T.; Pesonen, M.; Johansson, C. Differential induction of cytochrome P-450-dependent monooxygenase, epoxide hydrolase, glutathione transferase and UDP glucuronosyl transferase activities in the liver of the rainbow trout by beta-naphthoflavone or Clophen A50. Biochem. Pharmacol. 1985, 34, 3309–3314. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.J.; Murcia, H.W. An unusually high production of hepatic aflatoxin B(1)-dihydrodiol, the possible explanation for the high susceptibility of ducks to aflatoxin B(1). Sci. Rep. 2019, 9, 8010. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Cai, H.; McMahon, M.; Hayes, J.D.; Sutter, T.R.; Groopman, J.D.; Deng, Z.; Harris, T.M. Reduction of aflatoxin B1 dialdehyde by rat and human aldo-keto reductases. Chem. Res. Toxicol. 2001, 14, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Judah, D.J.; Hayes, J.D.; Yang, J.C.; Lian, L.Y.; Roberts, G.C.; Farmer, P.B.; Lamb, J.H.; Neal, G.E. A novel aldehyde reductase with activity towards a metabolite of aflatoxin B1 is expressed in rat liver during carcinogenesis and following the administration of an anti-oxidant. Biochem. J. 1993, 292, 13–18. [Google Scholar] [CrossRef]
- Ellis, E.M.; Slattery, C.M.; Hayes, J.D. Characterization of the rat aflatoxin B1 aldehyde reductase gene, AKR7A1. Structure and chromosomal localization of AKR7A1 as well as identification of antioxidant response elements in the gene promoter. Carcinogenesis 2003, 24, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Knight, L.P.; Primiano, T.; Groopman, J.D.; Kensler, T.W.; Sutter, T.R. cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis 1999, 20, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.M.; Hayes, J.D. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase. Biochem. J. 1995, 312, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Judah, D.J.; Davies, R.; Hayes, J.D.; McLellan, L.I.; Neal, G.E. The primary and secondary metabolism of aflatoxin B1 by rat hepatocytes cultured on matrigel. Toxicol. Appl. Pharmacol. 1994, 125, 27–33. [Google Scholar] [CrossRef]
- Johnson, D.N.; Egner, P.A.; Obrian, G.; Glassbrook, N.; Roebuck, B.D.; Sutter, T.R.; Payne, G.A.; Kensler, T.W.; Groopman, J.D. Quantification of urinary aflatoxin B1 dialdehyde metabolites formed by aflatoxin aldehyde reductase using isotope dilution tandem mass spectrometry. Chem. Res. Toxicol. 2008, 21, 752–760. [Google Scholar] [CrossRef]
- Roebuck, B.D.; Johnson, D.N.; Sutter, C.H.; Egner, P.A.; Scholl, P.F.; Friesen, M.D.; Baumgartner, K.J.; Ware, N.M.; Bodreddigari, S.; Groopman, J.D.; et al. Transgenic expression of aflatoxin aldehyde reductase (AKR7A1) modulates aflatoxin B1 metabolism but not hepatic carcinogenesis in the rat. Toxicol. Sci. 2009, 109, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Tulayakul, P.; Sakuda, S.; Dong, K.S.; Kumagai, S. Comparative activities of glutathione-S-transferase and dialdehyde reductase toward aflatoxin B1 in livers of experimental and farm animals. Toxicon 2005, 46, 204–209. [Google Scholar] [CrossRef]
- Monroe, D.H.; Eaton, D.L. Comparative effects of butylated hydroxyanisole on hepatic in vivo DNA binding and in vitro biotransformation of aflatoxin B1 in the rat and mouse. Toxicol. Appl. Pharmacol. 1987, 90, 401–409. [Google Scholar] [CrossRef]
- Monroe, D.H.; Eaton, D.L. Effects of modulation of hepatic glutathione on biotransformation and covalent binding of aflatoxin B1 to DNA in the mouse. Toxicol. Appl. Pharmacol. 1988, 94, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Slone, D.H.; Gallagher, E.P.; Ramsdell, H.S.; Rettie, A.E.; Stapleton, P.L.; Berlad, L.G.; Eaton, D.L. Human variability in hepatic glutathione S-transferase-mediated conjugation of aflatoxin B1-epoxide and other substrates. Pharmacogenetics 1995, 5, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Kirby, G.M.; Wolf, C.R.; Neal, G.E.; Judah, D.J.; Henderson, C.J.; Srivatanakul, P.; Wild, C.P. In vitro metabolism of aflatoxin B1 by normal and tumorous liver tissue from Thailand. Carcinogenesis 1993, 14, 2613–2620. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Bammler, T.K. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci. 1999, 49, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445–600. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.W.; Ueng, Y.F.; Widersten, M.; Mannervik, B.; Hayes, J.D.; Sherratt, P.J.; Ketterer, B.; Guengerich, F.P. Conjugation of highly reactive aflatoxin B1 exo-8,9-epoxide catalyzed by rat and human glutathione transferases: Estimation of kinetic parameters. Biochemistry 1997, 36, 3056–3060. [Google Scholar] [CrossRef] [PubMed]
- Gross-Steinmeyer, K.; Stapleton, P.L.; Tracy, J.H.; Bammler, T.K.; Strom, S.C.; Eaton, D.L. Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: Role of GSTM1 genotype and CYP3A4 gene expression. Toxicol. Sci. 2010, 116, 422–432. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Rosvold, E.A.; Lustbader, E.D.; Hu, Y.; Clapper, M.L.; Zhou, T.; Wild, C.P.; Xia, X.L.; Baffoe-Bonnie, A.; Ofori-Adjei, D.; et al. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1. Proc. Natl. Acad. Sci. USA 1995, 92, 2384–2387. [Google Scholar] [CrossRef]
- Stewart, R.K.; Smith, G.B.; Donnelly, P.J.; Reid, K.R.; Petsikas, D.; Conlan, A.A.; Massey, T.E. Glutathione S-transferase-catalyzed conjugation of bioactivated aflatoxin B(1) in human lung: Differential cellular distribution and lack of significance of the GSTM1 genetic polymorphism. Carcinogenesis 1999, 20, 1971–1977. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Bammler, T.K.; Guo, Y.; Kelly, E.J.; Eaton, D.L. Mu-class GSTs are responsible for aflatoxin B(1)-8, 9-epoxide-conjugating activity in the nonhuman primate macaca fascicularis liver. Toxicol. Sci. 2000, 56, 26–36. [Google Scholar] [CrossRef]
- Wang, C.; Bammler, T.K.; Eaton, D.L. Complementary DNA cloning, protein expression, and characterization of alpha-class GSTs from Macaca fascicularis liver. Toxicol. Sci. 2002, 70, 20–26. [Google Scholar] [CrossRef]
- Degen, G.H.; Neumann, H.G. The major metabolite of aflatoxin B1 in the rat is a glutathione conjugate. Chem. Biol. Interact. 1978, 22, 239–255. [Google Scholar] [CrossRef]
- Eaton, D.L.; Ramsdell, H.S.; Neal, G.E. Biotransformation of Aflatoxins. In The Toxicology of Aflatoxins: Human Health, Veterinary and Agricultural Significance; Eaton, D.L., Groopman, J.D., Eds.; Academic Press: Boston, MA, USA, 1995; pp. 45–72. [Google Scholar]
- Pulford, D.J.; Hayes, J.D. Characterization of the rat glutathione S-transferase Yc2 subunit gene, GSTA5: Identification of a putative antioxidant-responsive element in the 5′-flanking region of rat GSTA5 that may mediate chemoprotection against aflatoxin B1. Biochem. J. 1996, 318, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Van Ness, K.P.; Buetler, T.M.; Eaton, D.L. Enzymatic characteristics of chimeric mYc/rYc1 glutathione S-transferases. Cancer Res. 1994, 54, 4573–4575. [Google Scholar] [PubMed]
- Van Ness, K.P.; McHugh, T.E.; Bammler, T.K.; Eaton, D.L. Identification of amino acid residues essential for high aflatoxin B1-8,9-epoxide conjugation activity in alpha class glutathione S-transferases through site-directed mutagenesis. Toxicol. Appl. Pharmacol. 1998, 152, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Nguyen, T.; Judah, D.J.; Petersson, D.G.; Neal, G.E. Cloning of cDNAs from fetal rat liver encoding glutathione S-transferase Yc polypeptides. The Yc2 subunit is expressed in adult rat liver resistant to the hepatocarcinogen aflatoxin B1. J. Biol. Chem. 1994, 269, 20707–20717. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Judah, D.J.; Neal, G.E. Resistance to aflatoxin B1 is associated with the expression of a novel aldo-keto reductase which has catalytic activity towards a cytotoxic aldehyde-containing metabolite of the toxin. Cancer Res. 1993, 53, 3887–3894. [Google Scholar]
- Hayes, J.D.; Judah, D.J.; McLellan, L.I.; Neal, G.E. Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1. Pharmacol. Ther. 1991, 50, 443–472. [Google Scholar] [CrossRef] [PubMed]
- Kensler, T.W.; Groopman, J.D.; Eaton, D.L.; Curphey, T.J.; Roebuck, B.D. Potent inhibition of aflatoxin-induced hepatic tumorigenesis by the monofunctional enzyme inducer 1,2-dithiole-3-thione. Carcinogenesis 1992, 13, 95–100. [Google Scholar] [CrossRef]
- Yates, M.S.; Kwak, M.K.; Egner, P.A.; Groopman, J.D.; Bodreddigari, S.; Sutter, T.R.; Baumgartner, K.J.; Roebuck, B.D.; Liby, K.T.; Yore, M.M.; et al. Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res. 2006, 66, 2488–2494. [Google Scholar] [CrossRef] [PubMed]
- Crawford, D.R.; Ilic, Z.; Guest, I.; Milne, G.L.; Hayes, J.D.; Sell, S. Characterization of liver injury, oval cell proliferation and cholangiocarcinogenesis in glutathione S-transferase A3 knockout mice. Carcinogenesis 2017, 38, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Ilic, Z.; Crawford, D.; Vakharia, D.; Egner, P.A.; Sell, S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. Toxicol. Appl. Pharmacol. 2010, 242, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Buetler, T.M.; Eaton, D.L. Complementary DNA cloning, messenger RNA expression, and induction of alpha-class glutathione S-transferases in mouse tissues. Cancer Res. 1992, 52, 314–318. [Google Scholar] [PubMed]
- Jowsey, I.R.; Jiang, Q.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Expression of the aflatoxin B1-8,9-epoxide-metabolizing murine glutathione S-transferase A3 subunit is regulated by the Nrf2 transcription factor through an antioxidant response element. Mol. Pharmacol. 2003, 64, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Bauer, M.M.; Mendoza, K.M.; Reed, K.M.; Coulombe, R.A., Jr. Comparative genomics identifies new alpha class genes within the avian glutathione S-transferase gene cluster. Gene 2010, 452, 45–53. [Google Scholar] [CrossRef]
- Kim, J.E.; Bunderson, B.R.; Croasdell, A.; Coulombe, R.A., Jr. Functional characterization of alpha-class glutathione s-transferases from the Turkey (Meleagris gallopavo). Toxicol. Sci. 2011, 124, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Bunderson, B.R.; Croasdell, A.; Reed, K.M.; Coulombe, R.A., Jr. Alpha-class glutathione S-transferases in wild turkeys (Meleagris gallopavo): Characterization and role in resistance to the carcinogenic mycotoxin aflatoxin B1. PLoS ONE 2013, 8, e60662. [Google Scholar] [CrossRef] [PubMed]
- Bunderson, B.R.; Kim, J.E.; Croasdell, A.; Mendoza, K.M.; Reed, K.M.; Coulombe, R.A., Jr. Heterologous expression and functional characterization of avian mu-class glutathione S-transferases. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2013, 158, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Moss, E.J.; Neal, G.E.; Judah, D.J. The mercapturic acid pathway metabolites of a glutathione conjugate of aflatoxin B1. Chem. Biol. Interact. 1985, 55, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, C.D.; Aleksunes, L.M. Xenobiotic, bile acid, and cholesterol transporters: Function and regulation. Pharmacol. Rev. 2010, 62, 1–96. [Google Scholar] [CrossRef]
- Lee, T.K.; Li, L.; Ballatori, N. Hepatic glutathione and glutathione S-conjugate transport mechanisms. Yale J. Biol. Med. 1997, 70, 287–300. [Google Scholar] [PubMed]
- Moss, E.J.; Manson, M.M.; Neal, G.E. Effect of manipulation of gamma-glutamyl transpeptidase levels on biliary excretion of aflatoxin B1 conjugates. Carcinogenesis 1984, 5, 869–874. [Google Scholar] [CrossRef]
- Scholl, P.F.; Musser, S.M.; Groopman, J.D. Synthesis and characterization of aflatoxin B1 mercapturic acids and their identification in rat urine. Chem. Res. Toxicol. 1997, 10, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Kensler, K.H.; Slocum, S.L.; Chartoumpekis, D.V.; Dolan, P.M.; Johnson, N.M.; Ilic, Z.; Crawford, D.R.; Sell, S.; Groopman, J.D.; Kensler, T.W.; et al. Genetic or pharmacologic activation of Nrf2 signaling fails to protect against aflatoxin genotoxicity in hypersensitive GSTA3 knockout mice. Toxicol. Sci. 2014, 139, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Tanuja, P.; Sashidhar, R.B. Synthesis and characterization of mercapturic acid (N-acetyl-L-cysteine)-aflatoxin B1 adduct and its quantitation in rat urine by an enzyme immunoassay. J. AOAC Int. 2009, 92, 487–495. [Google Scholar] [CrossRef]
- Wang, J.S.; Shen, X.; He, X.; Zhu, Y.R.; Zhang, B.C.; Wang, J.B.; Qian, G.S.; Kuang, S.Y.; Zarba, A.; Egner, P.A.; et al. Protective alterations in phase 1 and 2 metabolism of aflatoxin B1 by oltipraz in residents of Qidong, People’s Republic of China. J. Natl. Cancer Inst. 1999, 91, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Roebuck, B.D.; Liu, Y.L.; Rogers, A.E.; Groopman, J.D.; Kensler, T.W. Protection against aflatoxin B1-induced hepatocarcinogenesis in F344 rats by 5-(2-pyrazinyl)-4-methyl-1,2-dithiole-3-thione (oltipraz): Predictive role for short-term molecular dosimetry. Cancer Res. 1991, 51, 5501–5506. [Google Scholar] [PubMed]
- Kensler, T.W.; Eaton, D.L. 65 Years on-Aflatoxin Biomarkers Blossoming: Whither Next? Toxins 2024, 16, 496. [Google Scholar] [CrossRef] [PubMed]
- Ehrich, M.; Huckle, W.R.; Larsen, C. Increase in glucuronide conjugation of aflatoxin P1 after pretreatment with microsomal enzyme inducers. Toxicology 1984, 32, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.I.; Hsieh, D.P. Characterization of water-soluble glucuronide and sulphate conjugates of aflatoxin B1. 2. Studies in primary cultures of rat hepatocytes. Food Chem. Toxicol. 1985, 23, 821–825. [Google Scholar] [CrossRef]
- Wei, C.I.; Marshall, M.R.; Hsieh, D.P. Characterization of water-soluble glucuronide and sulphate conjugates of aflatoxin B1. 1. Urinary excretion in monkey, rat and mouse. Food Chem. Toxicol. 1985, 23, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Chipley, J.R.; Mabee, M.S.; Alegate, K.L.; Dreyfuss, M.S. Further characterization of tissue distribution and metabolism of (14C)aflatoxin B1 in chickens. Appl. Microbiol. 1974, 28, 1027–1029. [Google Scholar] [CrossRef]
- Dalezios, J.; Wogan, G.N.; Weinreb, S.M. Aflatoxin P-1: A new aflatoxin metabolite in monkeys. Science 1971, 171, 584–585. [Google Scholar] [CrossRef] [PubMed]
- Dalezios, J.I.; Hsieh, D.P.; Wogan, G.N. Excretion and metabolism of orally administered aflatoxin B1 by rhesus monkeys. Food Cosmet. Toxicol. 1973, 11, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Dalezios, J.I.; Wogan, G.N. Metabolism of aflatoxin B 1 in rhesus monkeys. Cancer Res. 1972, 32, 2297–2303. [Google Scholar] [PubMed]
- Gregory, J.F., 3rd; Goldstein, S.L.; Edds, G.T. Metabolite distribution and rate of residue clearance in turkeys fed a diet containing aflatoxin B1. Food Chem. Toxicol. 1983, 21, 463–467. [Google Scholar] [CrossRef]
- Gregory, J.F., 3rd; Edds, G.T. Effect of dietary selenium on the metabolism of aflatoxin B1 in turkeys. Food Chem. Toxicol. 1984, 22, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.I.; Decad, G.M.; Wong, Z.A.; Byard, J.L.; Hsieh, D.P.H. Characterization and mutagenciity of water-soluble conjugates of aflatoxin B1. Toxicol. Appl. Pharmacol. 1978, 45, 45–52. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.C.; et al. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef]
AFB1 Form | % of Total | % Extracellular |
---|---|---|
Unchanged AFB1 | 5% | 6% |
Bound to DNA + proteins | 23% | BDL |
AFB-GSH | 60% | 72.4% |
Distribution of Oxidative Metabolites | ||
AFBO (Bound + AFB-GSH) | 83% | - |
AFM1 (15% conjugated) | 3% | 92% |
AFP1 (93% conjugated) | 13% | 95% |
AFQ1 (<31% conjugated) | 1% | 89% |
Enzyme a | Water Fraction b | Peak 1 c | AFBO | AFQ1 | AFM1 | TOTAL | DNA-Adducts d |
---|---|---|---|---|---|---|---|
rCYP3A1 | 17 | 62 | 30 | 37 | 27 | 173 | 6 |
rCYP1A1 | 17 | 26 | 20 | 34 | 125 | 222 | 1 |
trCYP2K1 | 34 | 57 | 404 | 39 | 27 | 561 | 131 |
trCYP1A1 | 8 | 47 | 5 | 14 | 12 | 86 | ND |
Synthetic AFBO a | Microsomally-Generated AFBO b | |||
---|---|---|---|---|
Species | pmol mg−1 | Normalized to Rat | pmol min−1 | Normalized to Rat |
Human c | 1.8 | 0.02 | <2 d | <0.01 d |
Rat | 88.4 | 1 | 140 | 1 |
Hamster | 103 | 1.2 | 930 | 6.6 |
Mouse | 571 | 6.5 | 7080 | 51 |
Sequence Variant | AFBO-GST Activity | CDNB Activity |
---|---|---|
(Mutations of fGSTA3 to mGstA3) | nmol/mg/min | mmol/µg/min |
mGstA3-3 | 265.0 ± 11.11 (34) | 10.0 ± 0.26 (3) |
rGSTA3-3 | <0.02 ± 0.0 (9) | 18.4 ± 1.04 (9) |
rGSTA5-5 | 57.0 ± 2.32 (12) | 9.8 ± 0.79 (6) |
hGSTA1-1 | <0.02 ± 0.0 (3) | 57.1 ± 4.60 (6) |
E208D | 0.09 ± 0.10 (3) | 5.0 ± 0.80 (3) |
E208D + H108Y | 2.1 ± 0.27 (8) | 11.3 ± 1.19 (6) |
E208D + H108Y + L207F | 5.9 ± 0.56 (12) | 48.0 ± 0.90 (9) |
E208D + H108Y + L207F + E104I | 8.4 ± 0.98 (10) | 14.2 ± 0.40 (6) |
E208D + H108Y + L207F + E104I + V217K | 14 ± 0.62 (23) | 23.6 ± 0.64 (6) |
E208D + H108Y + L207F + E104I + V217K + Y111H | 40 ± 3.09 (9) | 8.7 ± 0.31 (9) |
Specific Enzyme Activity (nmol/min/mg Protein) | |||||
---|---|---|---|---|---|
CDNB 1 | DCNB 2 | ECA 3 | CHP 4 | AFB1-GSH 5 | |
tGST1.1 * | 1674.61 ± 48.15 a | 16.35 ± 0.80 a | 44.31 ± 2.00 ab | 451.83 ± 12.41 ab | 19.54 ± 1.42 abc |
EWtGSTA1.1 | 850.45 ± 13.08b bc | 16.02 ± 0.58 a | 20.83±0.48 b | 1977.13 ± 11.45 de | 26.33 ± 0.89 de |
rGSTA1.2 | 7220.94 ± 75.81 b | 10.85 ± 0.09 b | 164.51 ± 6.18 c | 1076.7 ± 11.45 de | 22.49 ± 1.97 be |
EWtGSTA1.2 | 2761 ± 127.16 e | 5.70 ± 0.16 c | 48.80 ± 1.37 ad | 1423 ± 864.02 ef | 16.59 ± 2.10 acf |
RGWtGSTA1.2 | 3137.45 ± 234.93 f | 8.15 ± 0.61 d | 69.92 ± 0.96 d | 2002.85 ± 76.44 c | 16.62 ± 2.02 acf |
RPtGSTA1.2 | 3161.92 ± 15.18 f | 10.60 ± 0.43 b | 95.40 ± 7.36 e | 2769.28 ± 150.69 g | 21.97 ± 2.54 be |
tGSTA1.3 | 1063.48 ± 25.39 b | 1.46 ± 0.15 e | 50.58 ± 0.24 ad | 166.97 ± 68.47 a | 21.98 ± 2.26 be |
RGWtGSTA1.3 | 638.89 ± 12.60 cg | 1.40 ± 0.05 e | 23.61 ± 0.51 b | 1924.87 ± 486.10 cf | 29.10 ± 1.50 d |
tGSTA2 | 3045.23 ± 16.92 f | 7.55 ± 0.59 d | 34.49 ± 0.00 ab | 314.06 ± 7.29 a | 21.71 ± 0.54 be |
RGWtGSTA2 | 1880.01 ± 61.97 a | 9.31 ± 0.31 f | 29.58 ± 0.69 ab | 287.88 ± 7.91 a | 21.35 ± 0.50 ab |
RPtGSTA2 | 1709.40 ± 71.87 a | 7.23 ± 0.24 d | 35.85 ± 1.48 ab | 307.90 ± 8.29 a | 19.42 ± 0.94 abc |
tGSTA3 | 4254.39 ± 37.32 h | 1.25 ± 0.00 e | 174.32 ± 1.54 c | 850.25 ± 59.46 bd | 18.04 ± 2.67 abf |
RPtGSTA3 | 1649.30 ± 53.04 a | 1.23 ± 0.21 e | 543.28 ± 24.36 f | 1934.90 ± 30.79 cf | 21.42 ± 1.43 b |
tGSTA4 | 302.57 ± 44.57 ij | 0.71 ± 0.28 e | 21.38 ± 0.98 b | 27.66 ± 0.45 a | 20.06 ± 0.33 abc |
EWtGSTA4 | 504.92 ± 91.97 gf | 0.86 ± 0.27 e | 453.39 ± 15.09 g | 90.99 ± 3.49 a | 14.57 ± 1.56 f |
RGWtGSTA4 | 251.09 ± 8.98 j | 1.06 ± 0.42 e | 365.68 ± 14.88 h | 91.39 ± 3.52 a | 16.10 ± 1.29 cf |
Hepatic GSTs | |||||
DT | 1027.20 ± 17.81 a | 1.51 ± 0.05 a | 89.58 ± 0.80 a | 180.87 ± 0.97 a | n.d. |
EW | 714.09 ± 37.10 b | 2.21 ± 0.30 a | 90.52 ± 3.75 a | 209.27 ± 13.56 a | 0.018 ± 0.004 a |
RGW | 524.14 ± 14.53 c | 1.59 ± 0.15 a | 81.06 ± 1.98 a | 159.56 ± 11.03 a | 0.028 ± 0.007 a |
RP | 890.18 ± 43.81 a | 2.61 ± 0.09 a | 94.78 ± 4.93 a | 203.91 ± 8.50 a | 0.017 ± 0.003 a |
Mouse | 2888.69 ± 43.98 d | 64.55 ± 1.10 b | 61.10 ± 0.14 b | 805 ± 43.68 b | 0.740 ± 0.013 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eaton, D.L.; Williams, D.E.; Coulombe, R.A. Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species. Toxins 2025, 17, 30. https://doi.org/10.3390/toxins17010030
Eaton DL, Williams DE, Coulombe RA. Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species. Toxins. 2025; 17(1):30. https://doi.org/10.3390/toxins17010030
Chicago/Turabian StyleEaton, David L., David E. Williams, and Roger A. Coulombe. 2025. "Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species" Toxins 17, no. 1: 30. https://doi.org/10.3390/toxins17010030
APA StyleEaton, D. L., Williams, D. E., & Coulombe, R. A. (2025). Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species. Toxins, 17(1), 30. https://doi.org/10.3390/toxins17010030