Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China
Abstract
:1. Introduction
2. Results
2.1. Occurrence of AFB1 in Feedstuff and AFM1 in Raw Milk
2.2. Consumption Levels of Milk and Dairy Products
2.3. AFM1 Dietary Exposure Assessment
2.4. Risk Characterization/Cancer Risk Attributable to AFM1
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Collection
5.1.1. Geographical Distribution of Sampling Sites
5.1.2. Raw Milk and Feedstuff Samples Collection and Pretreatment
5.1.3. Sample Analyses
5.2. Consumption Data of Milk and Dairy Products
5.3. Exposure Assessment
5.4. Risk Characterization
5.4.1. Margin of Exposure (MOE) Approach
5.4.2. Quantitative Liver Cancer Risk Approach
5.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Aflatoxin B1 and M1: Biological Properties and Their Involvement in Cancer Development. Toxins 2018, 10, 214. [Google Scholar] [CrossRef]
- Min, L.; Fink-Gremmels, J.; Li, D.; Tong, X.; Tang, J.; Nan, X.; Yu, Z.; Chen, W.; Wang, G. An overview of aflatoxin B1 biotransformation and aflatoxin M1 secretion in lactating dairy cows. Anim. Nutr. 2021, 7, 42–48. [Google Scholar] [CrossRef]
- Ismail, A.; Gonçalves, B.L.; de Neeff, D.V.; Ponzilacqua, B.; Coppa, C.F.; Hintzsche, H.; Sajid, M.; Cruz, A.G.; Corassin, C.H.; Oliveira, C.A. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res. Int. 2018, 113, 74–85. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). A Review of Human Carcinogens: Chemical Agents and Related Occupations; World Health Organization (WHO) Press: Geneva, Switzerland, 2012. [Google Scholar]
- Felicia, W.; Groopman, J.D.; Pestka, a.J. Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef]
- Udovicki, B.; Djekic, I.; Kalogianni, E.P.; Rajkovic, A. Exposure assessment and risk characterization of aflatoxin M1 intake through consumption of milk and yoghurt by student population in Serbia and Greece. Toxins 2019, 11, 205. [Google Scholar] [CrossRef]
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A.; Lebrihi, A. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. Part A 2011, 28, 1590–1609. [Google Scholar] [CrossRef]
- Mendonca, C.; Venâncio, A. Fate of aflatoxin M1 in cheese whey processing. J. Sci. Food Agric. 2005, 85, 2067–2070. [Google Scholar] [CrossRef]
- Committee on Food Additives and Contaminants (CAC). Comments submitted on the draft maximum level for aflatoxin M1 in milk. In Proceedings of the Codex Committee on Food Additives and Contaminants (33rd Session), Hague, The Netherlands, 12–16 March 2001. [Google Scholar]
- European Community (EC). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Communities 2006. [Google Scholar]
- GB 2761-2017; Food Safety National Standard: Maximum Levels of Mycotoxins in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2017.
- Prandini, A.; Tansini, G.; Sigolo, S.; Filippi, L.; Laporta, M.; Piva, G. On the occurrence of aflatoxin M1 in milk and dairy products. Food Chem. Toxicol. 2009, 47, 984–991. [Google Scholar] [CrossRef]
- Frazzoli, C.; Gherardi, P.; Saxena, N.; Belluzzi, G.; Mantovani, A. The hotspot for (global) one health in primary food production: Aflatoxin M1 in dairy products. Front. Public Health 2017, 4, 237359. [Google Scholar] [CrossRef]
- Han, R.W.; Zheng, N.; Wang, J.Q.; Zhen, Y.P.; Xu, X.M.; Li, S.L. Survey of aflatoxin in dairy cow feed and raw milk in China. Food Control 2013, 34, 35–39. [Google Scholar] [CrossRef]
- Xiong, J.L.; Xiong, L.L.; Zhou, H.L.; Liu, Y.L.; Wu, L.Y. Occurrence of aflatoxin B1 in dairy cow feedstuff and aflatoxin M1 in UHT and pasteurized milk in central China. Food Control 2018, 92, 386–390. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBS). Statistical Bulletin of the People’s Republic of China on National Economic and Social Development in 2020. Available online: https://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901004.html (accessed on 14 July 2024).
- Veldman, A.; Meijs, J.; Borggreve, G.; Heeres-van der Tol, J. Carry-over of aflatoxin from cows’ food to milk. Anim. Sci. 1992, 55, 163–168. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Worldwide Regulations for Mycotoxins in Food and Feed in 2003; FAO: Rome, Italy, 2004. [Google Scholar]
- European Community (EC). Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed—Council statement. Off. J. Eur. Communities 2002. [Google Scholar]
- GB 13078-2017; Hygienical Standard for Feeds. General Administration of Quality Supervision Inspection and Quarantine of the People‘s Republic of China (GAQSIQ), Standardization Administration of China (SAC): Beijing, China, 2017.
- Binder, E.M. Managing the risk of mycotoxins in modern feed production. Anim. Feed Sci. Technol. 2007, 133, 149–166. [Google Scholar] [CrossRef]
- Peng, W.X.; Marchal, J.L.M.; Poel, A.F.B. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Wu, L.; Li, J.; Li, Y.; Li, T.; He, Q.; Tang, Y.; Liu, H.; Su, Y.; Yin, Y.; Liao, P. Aflatoxin B1, zearalenone and deoxynivalenol in feed ingredients and complete feed from different Province in China. J. Anim. Sci. Biotechnol. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Xu, N.; Xiao, Y.; Xie, Q.; Li, Y.; Ye, J.; Ren, D. Occurrence of aflatoxin B1 in total mixed rations and aflatoxin M1 in raw and commercial dairy milk in northern China during winter season. Food Control 2021, 124, 107916. [Google Scholar] [CrossRef]
- Cui, F.; Gong, X.; Chen, Y.-s.; Wang, F.; Zheng, W.; Wu, Z.; Miao, N.; Shun, X. Vaccination progress of hepatitis B vaccine and epidemiology changes of carrying rate of hepatitis B surface antigen by province in China. Chin. J. Vacc. Immun. 2012, 18, 6–13. [Google Scholar]
- Chen, W.; Sun, K.; Zheng, R.; Zeng, H.; Zhang, S.; Xia, C.; Yang, Z.; Li, H.; Zou, X.; He, J. Cancer incidence and mortality in China, 2014. Chin. J. Cancer Res 2018, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.Z.; Asi, M.R.; Jinap, S. Variation of aflatoxin M1 contamination in milk and milk products collected during winter and summer seasons. Food Control 2013, 34, 714–718. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Ganev, K.C.; Khaneghah, A.M.; Portela, J.B.; Cruz, A.G.; Granato, D.; Corassin, C.H.; Oliveira, C.A.F.; Sant’Ana, A.S. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. Food Control 2016, 68, 310–329. [Google Scholar] [CrossRef]
- Peng, S.Z. 1-km monthly precipitation dataset for China (1901–2022). Available online: https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2 (accessed on 12 October 2024).
- Bilandžić, N.; Varenina, I.; Kolanović, B.S.; Božić, Đ.; Đokić, M.; Sedak, M.; Tanković, S.; Potočnjak, D.; Cvetnić, Ž. Monitoring of aflatoxin M1 in raw milk during four seasons in Croatia. Food Control 2015, 54, 331–337. [Google Scholar] [CrossRef]
- Lutfullah, G.; Hussain, A. Studies on contamination level of aflatoxins in some cereals and beans of Pakistan. Food Control 2012, 23, 32–36. [Google Scholar] [CrossRef]
- Shah, H.U.; Simpson, T.J.; Alam, S.; Khattak, K.F.; Perveen, S. Mould incidence and mycotoxin contamination in maize kernels from Swat Valley, North West Frontier Province of Pakistan. Food Chem. Toxicol. 2010, 48, 1111–1116. [Google Scholar] [CrossRef]
- Li, S.; Min, L.; Wang, P.; Zhang, Y.; Zheng, N.; Wang, J. Aflatoxin M1 contamination in raw milk from major milk-producing areas of China during four seasons of 2016. For. Policy Econ. 2017, 82, 121–125. [Google Scholar] [CrossRef]
- Asi, M.R.; Iqbal, S.Z.; Ariño, A.; Hussain, A. Effect of seasonal variations and lactation times on aflatoxin M1 contamination in milk of different species from Punjab, Pakistan. Food Control 2012, 25, 34–38. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Y.; Nennich, T.; Li, Y.; Liu, J. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of adsorbent in the diet of dairy cows. J. Dairy Sci. 2015, 98, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Shad, Z.M.; Ghavami, M.; Atungulu, G.G. Occurrence of aflatoxin in dairy cow feed ingredients and total mixed ration. Appl. Eng. Agric. 2019, 35, 679–686. [Google Scholar] [CrossRef]
- Dimitrieska-Stojković, E.; Stojanovska-Dimzoska, B.; Ilievska, G.; Uzunov, R.; Stojković, G.; Hajrulai-Musliu, Z.; Jankuloski, D. Assessment of aflatoxin contamination in raw milk and feed in Macedonia during 2013. Food Control 2016, 59, 201–206. [Google Scholar] [CrossRef]
- Kuilman, M.; Maas, R.; Fink-Gremmels, J. Cytochrome P450-mediated metabolism and cytotoxicity of aflatoxin B1 in bovine hepatocytes. Toxicol. Vitr. 2000, 14, 321–327. [Google Scholar] [CrossRef]
- Frobish, R.; Bradley, B.; Wagner, D.; Long-Bradley, P.; Hairston, H. Aflatoxin residues in milk of dairy cows after ingestion of naturally contaminated grain. J. Food Prot. 1986, 49, 781–785. [Google Scholar] [CrossRef]
- Waqas, M.; Pervaiz, W.; Zia, K.M.; Iqbal, S.Z. Assessment of aflatoxin B1 in animal feed and aflatoxin M1 in raw milk samples of different species of milking animals from Punjab, Pakistan. J. Food Saf. 2021, 41, 12893. [Google Scholar] [CrossRef]
- Abbès, S.; Salah-Abbès, J.B.; Bouraoui, Y.; Oueslati, S.; Oueslati, R. Natural occurrence of aflatoxins (B1 and M1) in feed, plasma and raw milk of lactating dairy cows in Beja, Tunisia, using ELISA. Food Addit. Contam. Part B 2012, 5, 11–15. [Google Scholar] [CrossRef]
- Assaf, J.C.; Khoury, A.E.; Chokr, A.; Louka, N.; Atoui, A. A novel method for elimination of aflatoxin M1 in milk using Lactobacillus rhamnosus GG biofilm. Int. J. Dairy Technol. 2019, 72, 248–256. [Google Scholar] [CrossRef]
- Golge, O. A survey on the occurrence of aflatoxin M1 in raw milk produced in Adana province of Turkey. Food Control 2014, 45, 150–155. [Google Scholar] [CrossRef]
- Bilandzic, N.; Bozic, D.; Dokic, M.; Sedak, M.; Kolanovic, B.S.; Varenina, I.; Cvetnic, Z. Assessment of aflatoxin M1 contamination in the milk of four dairy species in Croatia. Food Control 2014, 43, 18–21. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Fei, P.; Liu, J.; Ren, D. A survey on the aflatoxin M1 occurrence in raw milk and dairy products from water buffalo in South China. Food Control 2019, 105, 159–163. [Google Scholar] [CrossRef]
- Xiong, J.; Peng, L.; Zhou, H.; Lin, B.; Yan, P.; Wu, W.; Liu, Y.; Wu, L.; Qiu, Y. Prevalence of aflatoxin M1 in raw milk and three types of liquid milk products in central-south China. Food Control 2020, 108, 106840. [Google Scholar] [CrossRef]
- Tomašević, J.; Petrović, J.; Jovetić, M.; Raičević, S.; Milojević, M.; Miočinović, J. Two year survey on the occurrence and seasonal variation of aflatoxin M1 in milk and milk products in Serbia. Food Control 2015, 56, 64–70. [Google Scholar] [CrossRef]
- Picinin, L.C.A.; Cerqueira, M.M.O.P.; Vargas, E.A.; Lana, Â.M.Q.; Toaldo, I.M.; Bordignon-Luiz, M.T. Influence of climate conditions on aflatoxin M1 contamination in raw milk from Minas Gerais State, Brazil. Food Control 2013, 31, 419–424. [Google Scholar] [CrossRef]
- Michlig, N.; Signorini, M.; Gaggiotti, M.; Chiericatti, C.; Basílico, J.C.; Repetti, M.R.; Beldomenico, H.R. Risk factors associated with the presence of aflatoxin M1 in raw bulk milk from Argentina. Food Control 2016, 64, 151–156. [Google Scholar] [CrossRef]
- Mohammed, S.; Munissi, J.J.E.; Nyandoro, S.S. Aflatoxin M1in raw milk and aflatoxin B1in feed from household cows in Singida, Tanzania. Food Addit. Contam. Part B 2016, 9, 85–90. [Google Scholar] [CrossRef]
- Akinyemi, M.O.; Ekpakpale, D.O.; Oyedele, O.; Ayeni, K.I.; Ezekiel, C.N. Occurrence of aflatoxin M1 in raw animal milk and dairy products in northern Nigeria. Fungal Territ. 2021, 4, 12–15. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of Certain Veterinary Drug Residues in Food: Fifty-Fourth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- World Health Organization (WHO). GEMS/Food Regional Diets: Regional Per Capita Consumption of Raw and Semi-Processed Agricultural Commodities (WHO/FSF/FOS/98.3); World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Serraino, A.; Bonilauri, P.; Kerekes, K.; Farkas, Z.; Giacometti, F.; Canever, A.; Zambrini, A.V.; Ambrus, Á. Occurrence of aflatoxin M1 in raw milk marketed in Italy: Exposure assessment and risk characterization. Front. Microbiol. 2019, 10, 2516. [Google Scholar] [CrossRef]
- Bilandžić, N.; Varga, I.; Varenina, I.; Solomun Kolanović, B.; Božić Luburić, Đ.; Đokić, M.; Sedak, M.; Cvetnić, L.; Cvetnić, Ž. Seasonal Occurrence of Aflatoxin M1 in Raw Milk during a Five-Year Period in Croatia: Dietary Exposure and Risk Assessment. Foods 2022, 11, 1959. [Google Scholar] [CrossRef]
- Magoha, H.; Kimanya, M.; De Meulenaer, B.; Roberfroid, D.; Lachat, C.; Kolsteren, P. Risk of dietary exposure to aflatoxins and fumonisins in infants less than 6 months of age in Rombo, Northern Tanzania. Matern. Child. Nutr. 2016, 12, 516–527. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China (NBS). China Statistical Yearbook 2018. Available online: https://www.stats.gov.cn/sj/ndsj/2018/indexch.htm (accessed on 14 July 2024).
- Peng, S.Z. 1-km Monthly Mean Temperature Dataset for China (1901–2022). Available online: https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/ (accessed on 12 October 2024).
- European Union. Commission Decision No. 2002/657/EC of 14 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the inter-pretation of results. Off. J. Eur. Union 2002, L221, 8–36. [Google Scholar]
- Pan, F.; Luan, D.-C.; Zhang, T.-W.; Mao, W.-F.; Liang, D.; Liu, A.-D.; Li, J.-W. Assessment of sugar-sweetened beverages consumption and free sugar intake among urban residents aged 3 and above in China. Chin. J. Food Hyg. 2022, 34, 126–130. [Google Scholar] [CrossRef]
- Sengun, I.; Yaman, D.B.; Gonul, S. Mycotoxins and mould contamination in cheese: A review. World Mycotoxin J. 2008, 1, 291–298. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the scientific committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J. 2005, 3, 282. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Mazo, J.D.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-C.; et al. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Scientific opinion—Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of Certain Contaminants in Food: Eighty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2017; pp. 1–166. [Google Scholar]
- World Health Organization (WHO). Second Workshop on Reliable Evaluation of Low-Level Contamination of Food-Report on a WorkShop in the Frame of GEMS/Food-EURO; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
Climate | AFB1 | AFM1 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Samples | Positive Samples (%) | Mean (ng/kg) | Median (ng/kg) | P75 (ng/kg) | P90 (ng/kg) | P95 (ng/kg) | Max (ng/kg) | Positive Samples (%) | Mean (ng/kg) | Median (ng/kg) | P75 (ng/kg) | P90 (ng/kg) | P95 (ng/kg) | Max (ng/kg) | |
Temperate monsoon | 78 | 14 (17.9) | 43.7–67.9 | 15 | 30 | 139.6 | 343.3 | 560 | 15 (19.0) | 3.3–7.4 | 2.5 | 5 | 13.8 | 25.9 | 43.6 |
Subtropical monsoon | 51 | 14 (27.4) | 56.2–78.6 | 15 | 30 | 157.4 | 368.8 | 1190 | 13 (25.5) | 3.2–6.8 | 2.5 | 8.6 | 13.4 | 16.2 | 17.4 |
Temperate continental | 31 | 5 (16.2) | 61.2–82.4 | 15 | 75.7 | 228.2 | 345 | 492 | 9 (29.0) | 1.9–6.1 | 2.5 | 5 | 10.3 | 16.8 | 16.9 |
Total | 160 | 33 (20.6) | 51.1–74.1 | 15 | 30 | 184.9 | 336.1 | 1190 | 37 (23.1) | 3.0–7.0 | 2.5 | 5 | 13.3 | 16.7 | 43.6 |
Population | Number of Consumers | Percentage of Milk and Dairy Product Consumers (%) | Mean Consumption (g/Day) | 95th Percentile Consumption (g/Day) |
---|---|---|---|---|
Temperate monsoon | 4831 | 31.27 | 138.39 | 300.00 |
Subtropical monsoon | 9868 | 27.16 | 136.28 | 300.00 |
Temperate continental | 1338 | 34.40 | 143.03 | 300.00 |
Toddlers | 2146 | 63.89 | 151.71 | 340.00 |
Children | 2643 | 55.24 | 154.90 | 330.00 |
Adolescents | 1265 | 50.06 | 152.70 | 333.33 |
Adults | 8258 | 22.47 | 126.09 | 250.00 |
Elderly | 1725 | 20.88 | 136.42 | 300.00 |
Total | 16,037 | 28.80 | 137.48 | 300.00 |
Population | EDI (ng/kg bw/d) | |||||
---|---|---|---|---|---|---|
Mean | Median | P75 | P90 | P95 | Max | |
Temperate monsoon | 0.0152–0.0291 | 0.0066–0.0176 | 0.0168–0.0318 | 0.0368–0.0607 | 0.0618–0.0951 | 0.6847–0.9476 |
Subtropical monsoon | 0.0147–0.0290 | 0.0086–0.0181 | 0.0166–0.0323 | 0.0316–0.0611 | 0.0477–0.0877 | 0.2878–0.6062 |
Temperate continental | 0.0017–0.0186 | 0.0000–0.0125 | 0.0017–0.0211 | 0.0049–0.0397 | 0.0093–0.0604 | 0.0327–0.3148 |
Toddlers | 0.0367–0.0730 | 0.0236–0.0535 | 0.0166–0.0323 | 0.0879–0.1442 | 0.1157–0.2017 | 0.6847–0.9476 |
Children | 0.0184–0.0375 | 0.0132–0.0304 | 0.0243–0.0473 | 0.0406–0.0698 | 0.0574–0.0886 | 0.3661–0.4630 |
Adolescents | 0.0117–0.0232 | 0.0077–0.0177 | 0.0148–0.0281 | 0.0261–0.0414 | 0.0377–0.0571 | 0.2046–0.3490 |
Adults | 0.0076–0.0161 | 0.0049–0.0118 | 0.0097–0.0203 | 0.0165–0.0298 | 0.0226–0.0377 | 0.2378–0.3291 |
Elderly | 0.0091–0.0192 | 0.0057–0.0150 | 0.0119–0.0243 | 0.0203–0.0341 | 0.0289–0.0465 | 0.1115–0.1994 |
Total | 0.0138–0.0281 | 0.0073–0.0174 | 0.0154–0.0314 | 0.0311–0.0592 | 0.0482–0.0871 | 0.6847–0.9476 |
Population | Extra Liver Cancer Risk from the Average AFM1 Exposure (Cases/100,000 Persons/Year) * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | P75 | P90 | P95 | Max | |||||||
LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | |
Temperate monsoon | 0.00005 | 0.00009 | 0.00002 | 0.00005 | 0.00005 | 0.00010 | 0.00011 | 0.00019 | 0.00019 | 0.00029 | 0.00211 | 0.00292 |
Subtropical monsoon | 0.00005 | 0.00009 | 0.00003 | 0.00006 | 0.00005 | 0.00010 | 0.00010 | 0.00019 | 0.00015 | 0.00027 | 0.00089 | 0.00187 |
Temperate continental | 0.00001 | 0.00006 | 0.00000 | 0.00004 | 0.00001 | 0.00006 | 0.00002 | 0.00012 | 0.00003 | 0.00019 | 0.00010 | 0.00097 |
Toddlers | 0.00011 | 0.00022 | 0.00007 | 0.00016 | 0.00005 | 0.00010 | 0.00027 | 0.00044 | 0.00036 | 0.00062 | 0.00211 | 0.00292 |
Children | 0.00006 | 0.00012 | 0.00004 | 0.00009 | 0.00007 | 0.00015 | 0.00013 | 0.00021 | 0.00018 | 0.00027 | 0.00113 | 0.00143 |
Adolescents | 0.00004 | 0.00007 | 0.00002 | 0.00005 | 0.00005 | 0.00009 | 0.00008 | 0.00013 | 0.00012 | 0.00018 | 0.00063 | 0.00107 |
Adults | 0.00002 | 0.00005 | 0.00002 | 0.00004 | 0.00003 | 0.00006 | 0.00005 | 0.00009 | 0.00007 | 0.00012 | 0.00073 | 0.00101 |
Elderly | 0.00003 | 0.00006 | 0.00002 | 0.00005 | 0.00004 | 0.00007 | 0.00006 | 0.00010 | 0.00009 | 0.00014 | 0.00034 | 0.00061 |
Total | 0.00004 | 0.00009 | 0.00002 | 0.00005 | 0.00005 | 0.00010 | 0.00010 | 0.00018 | 0.00015 | 0.00027 | 0.00211 | 0.00292 |
Liver Cancer Risk Contribution of the Mean AFM1 Exposure (%) | ||||||||||||
Temperate monsoon | 0.0003 | 0.0005 | 0.0001 | 0.0003 | 0.0003 | 0.0005 | 0.0006 | 0.0010 | 0.0011 | 0.0016 | 0.0117 | 0.0162 |
Subtropical monsoon | 0.0003 | 0.0005 | 0.0001 | 0.0003 | 0.0003 | 0.0006 | 0.0005 | 0.0010 | 0.0008 | 0.0015 | 0.0049 | 0.0104 |
Temperate continental | 0.0000 | 0.0003 | 0.0000 | 0.0002 | 0.0000 | 0.0004 | 0.0001 | 0.0007 | 0.0002 | 0.0010 | 0.0006 | 0.0054 |
Toddlers | 0.0006 | 0.0012 | 0.0004 | 0.0009 | 0.0003 | 0.0006 | 0.0015 | 0.0025 | 0.0020 | 0.0035 | 0.0117 | 0.0162 |
Children | 0.0003 | 0.0006 | 0.0002 | 0.0005 | 0.0004 | 0.0008 | 0.0007 | 0.0012 | 0.0010 | 0.0015 | 0.0063 | 0.0079 |
Adolescents | 0.0002 | 0.0004 | 0.0001 | 0.0003 | 0.0003 | 0.0005 | 0.0004 | 0.0007 | 0.0006 | 0.0010 | 0.0035 | 0.0060 |
Adults | 0.0001 | 0.0003 | 0.0001 | 0.0002 | 0.0002 | 0.0003 | 0.0003 | 0.0005 | 0.0004 | 0.0006 | 0.0041 | 0.0056 |
Elderly | 0.0002 | 0.0003 | 0.0001 | 0.0003 | 0.0002 | 0.0004 | 0.0003 | 0.0006 | 0.0005 | 0.0008 | 0.0019 | 0.0034 |
Total | 0.0002 | 0.0005 | 0.0001 | 0.0003 | 0.0003 | 0.0005 | 0.0005 | 0.0010 | 0.0008 | 0.0015 | 0.0117 | 0.0162 |
Continent | Country | Year of Sampling and Season/Month | Number of Raw Milk Samples | Number of Positive Samples (%) | Mean/Mean ± SD/Range | Exceeding EC Legal Limit (>50 ng/L) in Samples (%) |
---|---|---|---|---|---|---|
Europe | Serbia [47] | Four seasons of 2013–2014 | 678 | 540 (79.6) | 0.282 ± 0.358 (µg/kg) | 382 (56.3) |
Croatia [44] | July to September 2013 | 194 | 47 (24.2) | 20.6 ± 18.8 (ng/L) | 13 (6.7) | |
America | Brazil [48] | August 2009 to February 2010 | 129 | 129 (100) | 0.0195 0.0021 (µg/L) | 18 (14.0) |
Argentina [49] | September 2012 to August 2013 | 160 | 62 (38.8) | 0.037 (µg/L) | 12 (7.5) | |
Africa | Tanzania [50] | February 2014 | 37 | 31 (83.8) | <LOD—2.007 (ng/mL) | 31 (83.8) |
Nigeria [51] | July 2020 | 77 | 76 (99) | 92 (ng/L) | 32 (42) | |
Asia | Turkey [43] | January 2012 and December 2012 | 176 | 53 (30.1) | 0.153 (µg/kg) | 30 (17) |
Pakistan [40] | March 2017 until February 2018 | 75 | 41 (54.7) | 68.4 ± 7.4 (ng/L) | 17 (22.7) | |
China [45] | October 2016 | 136 | 85 (62.5) | 37.4 ± 18.7 (ng/kg) | 8 (5.9) | |
China [33] | Four seasons of 2016 | 5650 | 267 (4.7) | 36.8 ± 43.6 (ng/L) | 63 (1.1) | |
China [46] | November 01 2018 to March 31 2019 | 133 | 100 (75.2) | 15.9 ± 7.1 (ng/L) | 0 (0) | |
China [24] | November 2019 to January 2020 | 84 | - * | 110 (ng/kg) | 29 (34.5) | |
China (this study) | Late October to early November 2020 | 160 | 37 (23.1) | 3.0–7.0 (ng/kg) | 0 (0) |
Climate Zones a | Provinces | Milk Production (Ten Thousand Tons) | Climate b | Number of Sampling Points in Different Pasture Sizes c | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | Precipitation (mm) | ≤199 | 200–499 c | 500–999 | 1000~ | Subtotal | ||||
Temperate monsoon climate | Liaoning | 120.7 | 4.9 | 287.3 | 2 | 1 | / | 3 | 6 | 78 |
Jilin | 34.4 | 3.0 | 133.4 | / | 3 | 1 | 2 | 6 | ||
Heilongjiang | 468.4 | 1.3 | 95.9 | 1 | 1 | / | 2 | 4 | ||
Beijing | 37.4 | 7.9 | 80.9 | / | 5 | 1 | 3 | 9 | ||
Tianjin | 52.1 | 9.9 | 98.2 | 1 | 1 | 3 | 5 | 10 | ||
Hebei | 388.3 | 8.7 | 145.8 | 2 | 3 | 3 | 10 | 18 | ||
Henan | 212.9 | 11.8 | 322.2 | / | 1 | 2 | 3 | 6 | ||
Shandong | 231.3 | 11.3 | 306.6 | / | 2 | 1 | 4 | 7 | ||
Shanxi | 78.1 | 4.6 | 118.6 | / | 3 | 2 | 7 | 12 | ||
Subtropical monsoon climate | Shaanxi | 156.9 | 9.4 | 527.1 | 1 | 1 | 2 | 2 | 6 | 51 |
Jiangsu | 49.0 | 13.6 | 281.6 | 1 | 1 | 3 | 3 | 8 | ||
Anhui | 29.8 | 13.7 | 490.9 | 1 | 1 | 2 | 3 | 7 | ||
Shanghai | 36.4 | 17.0 | 226.5 | / | 1 | / | 1 | |||
Zhejiang | 14.3 | 17.6 | 404.7 | / | 2 | / | 1 | 3 | ||
Jiangxi | 9.5 | 18.1 | 460.5 | / | 1 | / | 1 | |||
Hubei | 12.8 | 15.0 | 882.0 | 4 | / | / | 4 | |||
Hunan | 6.1 | 18.1 | 460.5 | / | / | / | 1 | 1 | ||
Sichuan | 63.8 | 15.6 | 603.2 | 1 | / | 2 | 3 | 6 | ||
Yunnan | 64.5 | 13.0 | 278.9 | 1 | 1 | 2 | 4 | |||
Guangdong | 13.9 | 21.8 | 140.3 | / | 1 | 1 | 2 | 4 | ||
Fujian | 13.1 | 17.1 | 284.3 | / | / | 5 | 1 | 6 | ||
Guizhou | 4.4 | / | / | / | / | / | / | 0 | ||
Chongqing | 5.1 | / | / | / | / | / | / | 0 | ||
Guangxi | 8.1 | / | / | / | / | / | / | 0 | ||
Temperate continental climate | Neimenggu | 599.6 | 2.4 | 76.9 | 1 | 2 | 4 | 6 | 13 | 31 |
Xinjiang | 200.3 | 4.6 | 44.5 | / | 1 | 1 | / | 2 | ||
Ningxia | 160.1 | 5.4 | 91.3 | / | 2 | 2 | 5 | 9 | ||
Gansu | 41.0 | 4.2 | 104.9 | / | 1 | 2 | 4 | 7 | ||
Tropical monsoon climate | Hainan | 0.5 | / | / | / | / | / | / | 0 | 0 |
Plateau alpine climate | Xizang | 42.0 | / | / | / | / | / | / | 0 | 0 |
Qinghai | 33.2 | / | / | / | / | / | / | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Liu, B.; Zhang, L.; Wang, X.; Xie, J.; Liang, J. Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China. Toxins 2025, 17, 41. https://doi.org/10.3390/toxins17010041
Yang X, Liu B, Zhang L, Wang X, Xie J, Liang J. Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China. Toxins. 2025; 17(1):41. https://doi.org/10.3390/toxins17010041
Chicago/Turabian StyleYang, Xueli, Bolin Liu, Lei Zhang, Xiaodan Wang, Jian Xie, and Jiang Liang. 2025. "Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China" Toxins 17, no. 1: 41. https://doi.org/10.3390/toxins17010041
APA StyleYang, X., Liu, B., Zhang, L., Wang, X., Xie, J., & Liang, J. (2025). Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China. Toxins, 17(1), 41. https://doi.org/10.3390/toxins17010041