Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals
Abstract
:1. Introduction
2. Influence of AFB1 on Intestinal Microbiota in Monogastric Animals
2.1. Intestinal Microbiota
2.2. Crosstalk Between the Mucosa-Associated Microbiota and the Intestinal Immune System
Age or IBW 1 | Experimental Period (d) | AFB1 (µg/kg) | Result 2,3 | Reference |
---|---|---|---|---|
Intestinal microbiota | ||||
Chicken (d) | ||||
1 | 42 | 42 | Relative abundance (RA): ↑ Staphylococcus xylosus (jejunal tissue) | [42] |
1 | 21 | 40 | Cell count: ↑ Escherichia coli, ↑ Clostridium perfringens, and ↑ Gram-negative bacteria (ileal digesta) | [47] |
1 | 42 | 600 | Cell count: ↑ Coliforms (cecal digesta) | [48] |
1 | 42 | 1000 | ↓ acetate, ↓ propionate, and ↓ butyrate (feces) | [49] |
7 | 14 | 394 to 1574 | Cell count: ↑ Escherichia coli, ↑ Salmonella, and ↑ Klebsiella (ileal digesta) | [22] |
22 | 21 | 40 | RA: ↑ Staphylococcus, ↑ Escherichia-shigella, ↓ Lactobacillus, ↓ Burkholderia-caballeronia-paraburkholderia, ↓ Romboutsia, and ↓ Corynebacterium (jejunal tissue) | [19] |
Pig (kg) | ||||
6 | 48 | 180 | RA: ↓ Lactobacillus kitasatonis (jejunal mucosa) | [43] |
38 | 102 | 102 | Cell count: ↑ Escherichia coli (colonic digesta) | [26] |
Immune response and oxidative damage products | ||||
Chicken (d) | ||||
1 | 7 to 21 | 300 | ↓ IgA+ number and ↓ sIgA, ↓ IgA, and ↓ IgG (ileum) | [50] |
1 | 7 to 21 | 600 | mRNA expression: ↑ TNF-α, ↑ CASPASE-3, ↑ CASPASE-8, and ↑ CASPASE-10 (jejunum) | [51] |
1 | 7 to 21 | 600 | mRNA expression: ↓ TLR2-2, ↓ TLR4, and ↓ TLR7 (small intestine) | [46] |
1 | 21 | 600 | ↓ IgA+ number and mRNA expression: ↓ IgA, ↓ pIgR, ↓ IgM, and ↓ IgG (small intestine) | [52] |
1 | 21 | 100 | ↑ diamine oxidase and ↑ endotoxin (small intestine) | [53] |
1 | 21 | 2000 | ↓ IgA (small intestine) | [54] |
1 | 42 | 1000 | ↓ sIgA, ↑ IL-1β, and ↑ TNF-α (ileum) | [49] |
22 | 21 | 40 | mRNA expression: ↑ TLR2, ↑ NOD1, ↑NF-κB, ↑ iNOS, ↑ IL-6, ↑ IL-8, and ↑ TNF-α (jejunum) | [19] |
Pig (kg) | ||||
6 | 48 | 180 | ↑ IgA and ↑ protein carbonyl (jejunal mucosa) | [43] |
56 | 35 | 180 | ↑ IgG (duodenal and jejunal mucosa) | |
7 | 31 | 180 | ↑ protein carbonyl and ↑ TNF-α (jejunal mucosa) | [45] |
7 | 30 | 500 | ↓ nitric oxide (small intestine) | [55] |
9 | 30 | 320 | ↓ IFN-γ, ↓ IL-1β, ↓ TNF-α, ↓ IL-6, ↓ CAT, ↓ GPx, and ↓ SOD (duodenum), ↑ IFN-γ, ↑ IL-1β, and ↑ IL-6 (colon), and ↑ TBARS (duodenum and colon) | [56] |
38 | 102 | 102 | mRNA expression: ↑ TNF-α and ↑ IL-1β and ↑ TGF-β and ↓ SOD (jejunal mucosa) | [26] |
Intestinal barrier function | ||||
Chicken (d) | ||||
1 | 7 to 21 | 600 | ↓ goblet cells (small intestine) | [46] |
1 | 21 | 40 | mRNA expression: ↓ claudin-1, ↓ sIgA, and ↓ pIgR (jejunum) | [47] |
1 | 42 | 1000 | mRNA expression: ↓ occludin, ↓ claudin-1, and ↓ zonula occludens-1 (ileal mucosa) | [49] |
1 | 42 | 200 | mRNA expression: ↓ claudin-3, ↓ occludin, and ↑ claudin-2 (jejunum) | [57] |
22 | 21 | 40 | mRNA expression: ↑ CASPASE-3 (jejunum) | [19] |
Pig (kg) | ||||
38 | 102 | 102 | mRNA expression: ↓ zonula occludens-1 (jejunal mucosa) | [26] |
Not available 4 | 12 h | 10 to 50 | mRNA expression: ↓ CASPASE-3, ↑ zonula occludens-1, and ↑ occludin at 10 µg/kg of AFB1, mRNA expression: ↓ mucin 2 at 20 µg/kg of AFB, and mRNA expression: ↑ Bcl-2 and ↑ratio of Bax to Bcl-2 at 30 to 50 µg/kg of AFB1 (jejunal cell culture) | [24] |
Not available 4 | 48 h | 40 | mRNA expression: ↓ Bcl-2, ↓ zonula occludens-1, ↑ BaX, ↑IL-6, and ↑ CASPASE-3 (jejunal cell culture) | [25] |
3. Influence of AFB1 on the Intestinal Health Parameters of Chicken and Pig
3.1. Immune Response and Oxidative Damage Products in the Small Intestine
3.2. Tight Junction Protein, Intestinal Morphology, Tissue Repair, and Nutrient Digestion
3.3. Impacts of AFB1 After Absorption on Overall Health and Growth Performance
IBW (g) 3 | Experimental Period (d) | Dietary AFB1 (µg/kg) 4 | AFB1 Intake per BW (ng/g·d) 5 | Contamination Type | Growth Performance (% Change) | Reference | ||
---|---|---|---|---|---|---|---|---|
ADG | ADFI | G:F | ||||||
40 | 44 | 25 | 2.0 | Natural | −3.17 ** | −2.96 ** | −0.22 | [88] |
40 | 21 | 40 | 5.1 | Natural | −7.39 ** | −5.32 ** | −2.19 ** | [92] |
40 | 35 | 1000 | 98.7 | Culture | −14.99 ** | −4.34 | −11.14 ** | [74] |
33 | 35 | 1000 | 119.7 | Not available | −5.69 ** | 4.65 | −9.88 ** | [93] |
35 | 62 | 15 | 1.2 | Culture | −0.32 | −0.13 | −0.19 | [94] |
30 | 2.3 | −1.92 | −1.29 | −0.64 | ||||
45 | 3.5 | −2.88 | −1.03 | −1.87 ** | ||||
60 | 4.7 | −4.79 | −2.83 | −2.02 ** | ||||
35 | 21 | 100 | 15.2 | Pure AFB1 with LPS (1.7 × 106 EU/bird) | −22.44 ** | −13.80 ** | −10.02 ** | [53] |
40 | 28 | 1000 | 104.3 | Culture | −34.74 ** | −28.93 ** | −8.17 ** | [83] |
40 | 42 | 500 | 52.6 | Culture | −25.00 ** | −7.62 ** | −18.81 ** | [95] |
40 | 42 | 100 | 10.7 | Culture | −35.56 ** | −26.50 ** | −12.31 ** | [96] |
40 | 35 | 1000 | 108.3 | Culture | −35.33 ** | −26.29 ** | −12.54 ** | [97] |
40 | 21 | 2500 | 350.9 | Culture | −16.77 ** | −14.77 ** | −2.35 | [98] |
40 | 49 | 500 | 41.4 | Culture | −5.28 | −0.31 | −4.98 | [99] |
1000 | 87.6 | −19.90 ** | −9.83 ** | −11.17 ** | ||||
2000 | 181.6 | −33.73 ** | −21.45 ** | −15.64 ** | ||||
40 | 42 | 100 | 8.6 | Pure AFB1 | −9.78 ** | −5.69 | −4.34 ** | [100] |
40 | 23 | 750 | 79.6 | Culture | −9.42 ** | −9.67 ** | 0.27 | [101] |
1500 | 158.9 | −29.70 ** | −28.25 ** | −2.02 ** | ||||
40 | 49 | 129 | 10.2 | Pure AFB1 | −5.53 ** | 5.41 | −10.37 ** | [102] |
385 | 32.7 | −8.91 ** | 9.67 ** | −16.95 ** | ||||
895 | 96.8 | −22.48 ** | 19.57 ** | −35.17 ** | ||||
40 | 42 | 50 | 4.1 | Pure AFB1 | −4.05 ** | −9.67 ** | 6.23 ** | [103] |
100 | 7.9 | −5.74 | −14.77 | 10.60 | ||||
40 | 42 | 500 | 45.3 | Culture | −19.44 | −16.17 | −3.91 | [104] |
40 | 42 | 200 | 15.7 | Pure AFB1 | −3.29 ** | −1.46 | −1.82 ** | [57] |
40 | 20 | 1500 | 185.4 | Culture | −13.51 ** | −8.20 ** | −6.88 ** | [71] |
42 | 37 | 40 | 3.2 | Culture | 1.96 | 3.95 ** | −1.91 ** | [105] |
43 | 42 | 500 | 43.4 | Culture | −11.29 ** | −1.88 | −9.6 | [106] |
43 | 42 | 600 | 48.7 | Culture | −19.23 ** | −9.85 ** | −10.40 ** | [48] |
45 | 21 | 60 | 6.6 | Pure AFB1 | 2.07 | 2.02 | 0.05 | [72] |
833 | 21 | 120 | 11.0 | −4.00 | −1.43 | −2.61 | ||
47 | 42 | 1000 | 80.8 | Pure AFB1 | −15.47 ** | −6.94 | −9.16 ** | [82] |
48 | 21 | 2000 | 269.6 | −25.12 ** | 3.33 | −27.54 ** | [54] | |
838 | 7 | 100 | 10.4 | Pure AFB1 | −53.33 ** | −4.76 ** | −51.00 ** | [87] |
140 | 14 | 394 | 60.0 | Culture | −18.34 ** | −7.17 ** | −12.04 ** | [22] |
1574 | 247.5 | −32.87 ** | −14.88 ** | −21.14 ** | ||||
Mycotoxin 6, µg/kg | ||||||||
45 | 42 | 25 | 1.7 | DON: 1000, ZEA: 90, and OTA: 90 | −4.10 ** | −4.85 ** | 0.78 | [107] |
50 | 3.3 | DON: 1000, ZEA: 90, and OTA: 475 | −6.15 ** | −8.13 ** | 2.16 | |||
50 | 21 | 42 | 4.9 | DON: 86 and ZEA: 50 µg/kg | −9.11 ** | −15.71 ** | 7.83 ** | [42] |
42 | 42 | 4.3 | DON: 86 and ZEA: 50 µg/kg | −8.80 | 3.67 | −12.02 | ||
40 | 49 | 500 | 38.1 | OTA: 1000 | −20.22 ** | −21.83 ** | 2.06 | [99] |
1000 | 82.0 | OTA: 2000 | −35.41 ** | −30.69 ** | −6.81 | |||
2000 | 194.1 | OTA: 4000 | −51.00 ** | −35.98 ** | −23.47 ** | |||
162 | 34 | 330 | 30.2 | ZEA: 4, AFB2: 80, AFG1: 30, and AFG2: 7 | −4.52 ** | −2.73 | −1.84 ** | [108] |
45 | 35 | 20 | 1.9 | AFB2: 5, AFG1: 10, and AFG2: 4 | −8.42 ** | −2.43 | −6.14 ** | [109] |
40 | 42 | 100 | 8.4 | DON: 2000, ZEA: 280, and FMN: 5800 | −8.04 | −0.66 | −7.43 | [110] |
IBW (kg) 3 | Experimental Period (d) | Dietary AFB1 (µg/kg) 4 | AFB1 Intake/BW (µg/kg·d) 5 | Contamination Type | Growth Performance (% Change) | Reference | ||
---|---|---|---|---|---|---|---|---|
ADG | ADFI | G:F | ||||||
7 | 28 | 182 | 9.2 | Natural | −10.20 ** | −8.43 ** | −1.95 ** | [111] |
7 | 28 | 182 | 12.8 | −3.98 ** | −5.56 | 1.65 | ||
7 | 40 | 500 | 20.9 | Natural | −15.17 ** | −15.48 ** | 0.37 | [112] |
9 | 35 | 922 | 51.8 | Natural | −22.38 ** | −20.00 ** | −2.97 | [113] |
9 | 30 | 320 | - | Natural | −45.31 ** | - | - | [56] |
11 | 28 | 420 | 18.6 | Natural | −11.54 ** | −15.93 ** | 4.35 | [114] |
840 | 32.6 | −46.15 ** | −40.71 ** | −19.57 | ||||
9 | 42 | 800 | 36.9 | −35.94 ** | −37.88 ** | 2.04 | ||
11 | 28 | 800 | 53.7 | Natural | −25.00 ** | −11.36 | −15.38 ** | [113] |
10 | 33 | 500 | 28.1 | −30.30 ** | −31.21 ** | 1.31 | ||
10 | 28 | 800 | 48. 0 | −17.46 ** | −20.93 ** | 4.39 | ||
53 | 66 | 385 | 12.9 | Natural | −12.99 ** | −11.85 ** | −1.29 | [114] |
750 | 21.7 | −25.97 ** | −25.09 ** | −1.18 | ||||
1480 | 35.2 | −46.75 ** | −43.90 ** | −5.08 ** | ||||
9 | 42 | 373 | 18.6 | Culture | −9.26 | −10.09 | 1.01 | [115] |
9 | 21 | 500 | 25.5 | Culture | −27.52 ** | −29.19 ** | 2.35 | [116] |
10 6 | 35 | 250 | 14.4 | Culture | −7.64 ** | −14.61 ** | 8.17 ** | [117] |
500 | 26.2 | −25.04 ** | −29.38 ** | 6.15 ** | ||||
800 | 46.4 | −28.01 ** | −25.74 ** | −3.05 | ||||
11 | 41 | 200 | 8.3 | Culture | −23.64 ** | −10.00 | −15.06 ** | [118] |
11 | 30 | 140 | - | Culture | −7.36 | - | - | [119] |
280 | - | −33.33 ** | - | - | ||||
12 | 28 | 385 | - | Purified AFB1 | −14.35 | - | - | [120] |
867 | - | −36.14 | - | - | ||||
1807 | - | −75.33 ** | - | - | ||||
16 | 21 | 110 | 5.3 | Culture | −44.35 ** | −33.81 ** | −19.75 ** | [77] |
16 | 28 | 2500 | - | Culture | −54.55 ** | - | - | [121] |
30 | 90 | 110 | 3.0 | Culture | −12.90 ** | −6.37 | −7.09 ** | [122] |
Mycotoxin 7, µg/kg | ||||||||
6 | 35 | 20 | 1.1 | FMN: 1600 | 2.26 | 1.77 | 0.48 | [123] |
6 | 32 | 217 | 8.2 | FMN: 7506 | −17.35 ** | −19.28 ** | 2.39 ** | [66] |
7 | 31 | 180 | 7.9 | DON: 2000 | −16.47 ** | −20.62 ** | 5.18 ** | [45] |
10 | 21 | 180 | 8.3 | DON: 2000 | −13.05 ** | −13.54 ** | 0.58 ** | |
9 | 42 | 150 | 6.8 | DON: 1100 | −10.87 ** | −6.99 | −5.53 | [124] |
14 | 33 | 64 | 2.9 | DON: 320 and FMN: 42 | −11.54 | −6.73 | −5.15 | [125] |
124 | 5.4 | DON: 548 and FMN: 84 | −17.31 ** | −5.15 ** | −1.44 | |||
182 | 7.8 | DON: 768 and FMN:128 | −21.15 ** | −4.35 * | −0.32 | |||
29 | 26 | 190 | 8.9 | FMN: 8000 | −6.96 ** | −9.88 ** | 3.09 | [18] |
38 | 102 | 286 | 8.2 | ZEA: 50 and DON: 406 | −8.63 ** | −8.33 ** | −0.32 | [26] |
6 | 48 | 180 | 5.9 | FMN: 9000 and DON: 1000 | −15.79 ** | −18.48 ** | 2.88 | [43] |
56 | 35 | 180 | 6.7 | FMN: 14000 | −5.96 | −6.25 | 0.26 |
4. Aflatoxin B1 Mitigation Strategies for Intestinal Health and Growth Performance of Monogastric Animals
4.1. Mycotoxin-Adsorbing Agent
Age or IBW 1 | Experimental Period (d) | AFB1 (µg/kg) | Type | Level (%) | Result 2 | Reference |
---|---|---|---|---|---|---|
Mycotoxin-adsorbing agent | ||||||
Chicken (d) | ||||||
1 | 21 | 40 | Clay (HSCA 3) | 0.30 | Cell count: ↓ Escherichia coli and ↓ Gram-negative bacteria (ileal digesta) and mRNA expression: ↑ claudin-1, ↑ sIgA, and ↑ pIgR (jejunum) | [47] |
11 | 19 | 250 | Clay (bentonite) | 0.40 | ↑ villus height and ↑ villus surface area (ileum) and ↑ ATTD of CP and EE and AME | [27] |
Mineral (zeolite) | 0.40 | ↑ ATTD of CP | ||||
7 | 21 | 394 to 1574 | Manno-oligosaccharides | 0.10 to 0.20 | Cell count: ↓ Escherichia coli, ↓ Salmonella, Klebsiella, and ↓ Gram-negative bacteria (ileal digesta) and ↑ villus height, ↑ VH:CD, ↓ crypt depth, and ↓ goblet cell counts (jejunum) | [22] |
35 | 394 to 1574 | Manno-oligosaccharides | 0.10 to 0.20 | Cell count: ↓ Escherichia coli, ↓ Salmonella, and ↓ Klebsiella (ileal digesta) and ↑ villus height, ↑ crypt depth, ↑ VH:CD, and ↓ goblet cell counts (jejunum) | ||
1 | 21 | 2000 | Cellulosic polymer | 0.30 | ↓ relative weight of intestine | [54] |
1 | 42 | 1000 | Lactobacillus salivarius | 108 CFU/kg | ↑ acetate, ↑ propionate, and ↑ butyrate (feces) and ↓ IL-1β and ↓ TNF-alpha (ileum) | [49] |
1 | 21 | 40 | Lactobacillus acidophilus, Lactobacillus plantarum, and Enterococcus faecium | 3 × 1010 CFU/kg | Cell count: ↓ Clostridium perfringens, ↓ Escherichia coli, and ↓ Gram-negative bacteria (ileal digesta) and mRNA expression: ↑ claudin-1, ↑ sIgA, and ↑ pIgR (jejunum) and ↓ visceral lesion score (small intestine) | [47] |
Pig (kg) | ||||||
6 | 48 | 180 | Yeast cell wall | 0.20 | ↓ IgA and ↓ protein carbonyl (jejunal mucosa) and ↑ AID of DM and CP | [43] |
Multi-component mycotoxin-detoxifying agent | ||||||
Chicken (d) | ||||||
1 | 21 to 42 | 200 | Clay (bentonite) + yeast cell wall | 0.20 | mRNA abundance: ↑ claudin-1 on d 21 and mRNA abundance: ↑ claudin-2 and ↑ occludin on d 42 (jejunum) | [57] |
1 | 42 | 600 | Adsorbing gent [clay (bentonite), activated charcoal, Lactobacillus sp., and Bifidobacterium sp.] + biotransforming agent (Bacillus sp.) | 0.10 | Cell count: ↓ Coliforms (cecal digesta) | [48] |
1 | 21 to 42 | 42 | Adsorbing gent 4 [clay (montmorillonite), Lactobacillus casei, and Enterococcus faecalis] + biotransforming agent 5 (Bacillus subtilis, Candida utilis, and mycotoxin-degrading enzyme) | 0.10 | ↑ ATTD of CP | [42] |
0.15 | ↓ crypt depth, ↑ VH:CD, and ↑ relative jejunum weight on d 42 (jejunum) and ↑ ATTD of CP | |||||
Pig (kg) | ||||||
7 | 30 | 500 | Clay + yeast cell wall | 0.10 | ↓ villus height (small intestine) | [55] |
Not available 6 | 48 h | 40 | Adsorbing agent (Lactobacillus casein and Candida utilis) + biotransforming agent (Aspergillus oryzae, Bacillus subtilis, and mycotoxin-degrading enzyme)] | 5.00 | mRNA abundance: ↓ IL-6, ↑ occludin, ↑ ZO-1, ↓ Bax, ↓ CASPASE-3, and ↑ Bcl-2 and ↑ rate of cell viability, ↓ % of necrotic cell, ↓ early apoptotic cell, and ↓ viable cell rate (jejunal cell culture) | [25] |
Other feed additive | ||||||
Chicken (d) | ||||||
1 | 34 | 250 | Phytobiotics | 0.03 to 0.05 | ↑ villus height, ↑ VH:CD, and ↓ crypt depth (jejunum) | [145] |
1 | 42 | 600 | Milk thistle (Silybum marianum) | 1.00 | Cell count: ↓ Coliforms (cecal digesta) | [48] |
1 | 35 | 1000 | Phytobiotics | 0.05 | No difference in the number of bacteria (cecal digesta) and ↑ villus height, ↑ VH:CD, and ↓ crypt depth (jejunum) | [74] |
1 | 7 to 21 | 600 | Selenium | 0.4 mg/kg | ↑ villus height, ↑ VH:CD, ↑ number of absorptive cells, ↓ crypt depth, and ↓ TUNEL-positive cells (jejunum) | [51] |
1 | 14 to 21 | 300 | Sodium selenite | 0.4 mg/kg | ↑ IgA+ number and ↑ IgG (ileum) | [50] |
1 | 21 | 2000 | Cellulosic polymer + curcumin | 0.50 | ↑ IgA and ↓ relative weight of intestine (small intestine) | [54] |
1 | 35 | 1000 | Toxin binders (adsorbing agents + mycotoxin-degrading enzyme + plant extract) | 0.05 | No difference on the number of bacteria (cecal digesta) and ↑ villus height, ↑ VH:CD, and ↓ crypt depth (jejunum) | [74] |
Pig (kg) | ||||||
9 | 30 | 320 | Grape seed waste | 8.00 | ↑ SOD, ↑ antioxidant capacity, ↑ thiobartituric acid reactive substances, ↑ IL-6, and ↑ IL-8 (duodenum) and ↑ CAT, ↑ GPx, ↓ IFN-γ, ↓ IL-1β, ↓ TNF-α, and ↓ IL-6 (colon) | [56] |
Age or IBW 1 | Experimental Period (d) | AFB1 (µg/kg) | Type | Level (%) | Growth Performance 2 (% Change) | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
ADG | ADFI | G:F | |||||||||
vs. AFB1 3 | vs. Control 4 | vs. AFB1 | vs. Control | vs. AFB1 | vs. Control | ||||||
Chicken (d) | |||||||||||
1 | 21 | 40 | Clay (HSCA 4) | 0.30 | 4.47 ** | −3.26 ** | 3.66 ** | −1.85 ** | 0.78 ** | −1.43 ** | [92] |
1 | 20 | 250 | Clay (bentonite) | 0.40 | 17.05 ** | −6.36 | 6.88 | −0.33 | 9.52 ** | −6.05 | [27] |
Clay (zeolite) | 0.40 | 18.41 ** | −5.27 | 10.26 ** | 2.83 | 7.40 ** | −7.87 ** | ||||
1 | 42 | 100 | Clay (sodium bentonite) | 0.50 | 29.12 ** | −16.70 ** | 16.21 ** | −14.77 ** | 11.10 ** | −2.26 ** | [96] |
Clay (sodium bentonite) | 1.00 | 4.85 ** | −32.35 ** | −1.91 ** | −28.06 ** | 6.89 ** | −5.96 ** | ||||
Silicate (sorbatox) | 0.50 | 4.08 ** | −32.85 ** | −2.42 ** | −28.43 ** | 6.65 ** | −6.17 ** | ||||
Silicate (klinofeed) | 0.20 | 3.12 ** | −33.47 ** | 0.54 ** | −26.27 ** | 2.56 ** | −9.77 ** | ||||
1 | 42 | 500 | Clay (smectite) | 0.20 | 14.29 ** | −14.29 ** | 0.00 | −7.62 ** | 14.29 ** | −7.22 ** | [95] |
1 | 42 | 1000 | Diatomaceous earth extracted from a quarry | 0.10 | 2.15 ** | −13.62 ** | 2.29 | −4.79 | −0.14 | −9.27 ** | [82] |
0.20 | 18.84 ** | 0.50 | 11.87 ** | 4.13 | 6.23 | −3.48 | |||||
0.50 | 14.29 | −3.35 ** | 6.77 | −0.62 | 7.04 ** | −2.74 | |||||
1 | 35 | 1000 | Yeast cell wall | 0.20 | 3.45 ** | −31.82 ** | 3.45 ** | −24.05 ** | 0.00 | −10.23 ** | [97] |
7 | 14 | 500 | Mannanoligosaccharides | 0.10 | 4.35 ** | 2.33 ** | 1.98 ** | −12.73 ** | −5.38 ** | −7.77 ** | [22] |
0.20 | 10.87 ** | 6.98 ** | 3.64 ** | −7.27 ** | −1.08 ** | −6.26 ** | |||||
2000 | Mannanoligosaccharides | 0.10 | 13.16 ** | 3.70 ** | 9.12 ** | −21.82 ** | −9.68 ** | −13.44 ** | |||
0.20 | 18.42 ** | 6.17 ** | 11.54 ** | −18.18 ** | −7.53 ** | −11.52 ** | |||||
1 | 21 | 2000 | Cellulosic polymer | 0.30 | 25.15 ** | −6.19 ** | −3.23 ** | 0.12 | 21.56 ** | −2.13 ** | [54] |
1 | 42 | 500 | Mineral (toxin binder) | 0.10 | 7.55 ** | −5.00 ** | 1.98 ** | 0.00 | 5.46 ** | −5.00 ** | [106] |
Pig (kg) | |||||||||||
9 | 35 | 922 | Clay (sodium bentonite) | 1.00 | 20.15 ** | −6.73 | 21.59 ** | −2.73 | −1.18 | −4.12 | [113] |
9 | 42 | 150 | Clay (montmorillonite) | 0.02 | 5.84 | −5.67 | 4.22 | −3.06 | 1.9 | −2.69 | [124] |
9 | 42 | 500 | Clay (sodium bentonite) | 0.50 | 37.46 ** | −0.41 | 9.43 | 2.96 | 25.62 ** | −3.27 | [146] |
Clay (montmorillonite) + zeolite | 0.50 | 18.03 ** | −14.49 | −4.83 | −10.45 | 24.01 ** | −4.51 | ||||
Clay (calcium bentonite) | 0.50 | 22.54 ** | −11.22 | −5.16 | −10.77 | 29.21 ** | −0.51 | ||||
Clay (attapulgite) | 0.50 | −0.56 | −27.96 | −8.98 | −14.36 | 9.25 | −15.88 | ||||
9 | 42 | 373 | Clay (maifanite) | 1.00 | 12.24 | 1.85 | 8.16 | −2.75 | 3.77 | 4.73 | [115] |
10 | 21 | 500 | Clay (HSCA 5) | 0.50 | 36.20 ** | −1.28 | 39.14 ** | −1.47 | −2.11 | 0.19 | [116] |
11 | 28 | 840 | Clay (HSCA) | 0.50 | 71.43 ** | −7.69 | 74.63 ** | 3.54 | −1.83 | −10.85 | [114] |
11 | 28 | 800 | Clay (calcium bentonite) | 0.50 | 29.17 ** | −3.13 | 13.68 | 0.76 | 13.63 ** | −3.85 | [113] |
Clay (HSCA) | 0.50 | 20.83 ** | −9.38 | 8.55 | −3.79 | 11.32 | −5.81 | ||||
Clay mineral (palygorskite) | 0.50 | 10.42 | −17.19 | 0.00 | −11.36 | 10.42 | −6.57 | ||||
Clay mineral (sepiolite) | 0.50 | 25.00 ** | −6.25 | 0.85 | −10.61 | 23.94 ** | 4.87 | ||||
11 | 41 | 200 | Clay (bentonite) | 0.40 | 26.19 ** | −3.64 | 7.41 | −3.33 | 17.49 ** | −0.31 | [118] |
0.50 | 23.81 ** | −5.45 ** | 11.11 | 0.00 | 11.43 | −5.45 | |||||
20 | 21 | 1100 | Clay (HSCA) | 0.50 | 166.67 ** | −18.99 | 38.82 | −19.73 | 92.09 ** | 0.92 | [77] |
30 | 90 | 110 | Clay (montmorillonite) | 0.30 | 5.56 | −8.06 | 5.44 | −1.27 | 0.11 | −6.88 | [122] |
Clay (montmorillonite nanocomposite) | 0.30 | 12.96 ** | −1.61 | 7.48 | 0.64 | 5.10 ** | −2.24 | ||||
Clay (montmorillonite nanocomposite) | 0.30 | 12.96 ** | −1.61 | 7.54 | 0.73 | 5.04 ** | −2.33 | ||||
6 | 35 | 20 | Yeast cell wall | 0.20 | 5.42 ** | 7.8 | 6.10 ** | 7.98 | −0.64 | −0.17 | [123] |
4.2. Mycotoxin-Biotransforming Agent
4.3. Multi-Component Mycotoxin-Detoxifying Agent
4.4. Other Feed Additives That Mitigate Mycotoxin Impacts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef] [PubMed]
- Schelstraete, W.; Devreese, M.; Croubels, S. Comparative toxicokinetics of fusarium mycotoxins in pigs and humans. Food Chem. Toxicol. 2020, 137, 111140. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.M.; Kim, S.W. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol. Toxins 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of mycotoxin on immune response and consequences for pig health. Anim. Nutr. 2016, 2, 63–68. [Google Scholar] [CrossRef]
- Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Gormley, A.; Jang, K.B.; Duarte, M.E. Current status of global pig production: An overview and research trends. Anim. Biosci. 2023, 37, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci. 2019, 29, 99–108. [Google Scholar] [CrossRef]
- Patriarca, A.; Pinto, V.F. Prevalence of mycotoxins in foods and decontamination. Curr. Opin. Food Sci. 2017, 14, 50–60. [Google Scholar] [CrossRef]
- Abbas, H.K.; Wilkinson, J.R.; Zablotowicz, R.M.; Accinelli, C.; Abel, C.A.; Bruns, H.A.; Weaver, M.A. Ecology of Aspergillus flavus, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of corn. Toxin reviews 2009, 28, 142–153. [Google Scholar] [CrossRef]
- Braicu, C.; Berindan-Neagoe, I.; Chedea, V.S.; Balacescu, L.; Brie, I.; Soritau, O.; Socaciu, C.; Irimie, A. Individual and combined cytotoxic effects of the major four aflatoxins in different in vitro stabilized systems. J. Food Biochem. 2010, 34, 1079–1090. [Google Scholar] [CrossRef]
- Lizárraga-Paulín, E.G.; Moreno-Martínez, E.; Miranda-Castro, S.P. Aflatoxins and their impact on human and animal health: An emerging problem. In Aflatoxin-Biochemistry and Molecular Biology; Guevara-González, R.G., Ed.; InTech: Rijeka, Croatia, 2011; pp. 255–282. [Google Scholar]
- Bervis, N.; Lorán, S.; Juan, T.; Carramiñana, J.J.; Herrera, A.; Ariño, A.; Herrera, M. Field monitoring of aflatoxins in feed and milk of high-yielding dairy cows under two feeding systems. Toxins 2021, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [PubMed]
- Yunus, A.W.; Razzazi-Fazeli, E.; Bohm, J. Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: A review of history and contemporary issues. Toxins 2011, 3, 566–590. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.M.; Kim, Y.I.; Parnsen, W.; Kim, S.W. Phytobiotics with adsorbent to mitigate toxicity of multiple mycotoxins on health and growth of pigs. Toxins 2021, 13, 442. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, P.; Liu, C.; Zhou, T.; Chang, J.; Yin, Q.; Wang, L.; Jin, S.; Zhu, Q.; Lu, F. Effects of compound mycotoxin detoxifier on alleviating aflatoxin B1-induced inflammatory responses in intestine, liver and kidney of broilers. Toxins 2022, 14, 665. [Google Scholar] [CrossRef]
- Guo, H.-W.; Chang, J.; Wang, P.; Yin, Q.-Q.; Liu, C.-Q.; Xu, X.-X.; Dang, X.-W.; Hu, X.-F.; Wang, Q.-L. Effects of compound probiotics and aflatoxin-degradation enzyme on alleviating aflatoxin-induced cytotoxicity in chicken embryo primary intestinal epithelium, liver and kidney cells. AMB Express 2021, 11, 35. [Google Scholar] [CrossRef]
- Kumagai, S. Intestinal absorption and excretion of aflatoxin in rats. Toxicol. Appl. Pharmacol. 1989, 97, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Jahanian, E.; Mahdavi, A.H.; Asgary, S.; Jahanian, R. Effect of dietary supplementation of mannanoligosaccharides on growth performance, ileal microbial counts, and jejunal morphology in broiler chicks exposed to aflatoxins. Livest. Sci. 2016, 190, 123–130. [Google Scholar] [CrossRef]
- Duarte, M.E.; Kim, S.W. Intestinal microbiota and its interaction to intestinal health in nursery pigs. Anim. Nutr. 2022, 8, 169–184. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Wang, J.; Sun, J.; Xiang, Y.; Jin, X. Aflatoxin B1 disrupts the intestinal barrier integrity by reducing junction protein and promoting apoptosis in pigs and mice. Ecotoxicol. Environ. Saf. 2022, 247, 114250. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Chang, J.; Wang, P.; Liu, C.; Yin, Q.; Song, A.; Gao, T.; Dang, X.; Lu, F. Effect of compound probiotics and mycotoxin degradation enzymes on alleviating cytotoxicity of swine jejunal epithelial cells induced by aflatoxin B1 and zearalenone. Toxins 2019, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Yuan, Q.; Yan, H.; Tian, G.; Chen, D.; He, J.; Zheng, P.; Yu, J.; Mao, X.; Huang, Z. Effects of chronic exposure to low levels of dietary aflatoxin B1 on growth performance, apparent total tract digestibility and intestinal health in pigs. Animals 2021, 11, 336. [Google Scholar] [CrossRef]
- Alharthi, A.S.; Al Sulaiman, A.R.; Aljumaah, R.S.; Alabdullatif, A.A.; Ferronato, G.; Alqhtani, A.H.; Al-Garadi, M.A.; Al-Sornokh, H.; Abudabos, A.M. The efficacy of bentonite and zeolite in reducing aflatoxin B1 toxicity on production performance and intestinal and hepatic health of broiler chickens. Ital. J. Anim. Sci. 2022, 21, 1181–1189. [Google Scholar] [CrossRef]
- Jang, K.B.; Purvis, J.M.; Kim, S.W. Supplemental effects of dietary lysophospholipids in lactation diets on sow performance, milk composition, gut health, and gut-associated microbiome of offspring. J. Anim. Sci. 2020, 98, skaa227. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.R.; Jian, C.; Uddin, M.K.; Huhtinen, M.; Salonen, A.; Peltoniemi, O.; Venhoranta, H.; Oliviero, C. Impact of intestinal microbiota on growth performance of suckling and weaned piglets. Microbiol. Spectr. 2023, 11, e0374422. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.E.; Deng, Z.; Kim, S.W. Effects of dietary Lactobacillus postbiotics and bacitracin on the modulation of mucosa-associated microbiota and pattern recognition receptors affecting immunocompetence of jejunal mucosa in pigs challenged with enterotoxigenic F18+ Escherichia coli. J. Anim. Sci. Biotechnol. 2024, 15, 139. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, W.; Zhang, W.; Yao, J.; Mo, X. Ultrasound-assisted extraction of boulardii yeast cell wall polysaccharides: Characterization and its biological functions on early-weaned lambs. Food Sci. Nutr. 2021, 9, 3617–3630. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, J.; Li, L.; Xing, S.; Yang, Y.; Liao, X. Sodium butyrate reduces ammonia production in the cecum of laying hens by regulating ammonia-producing bacteria. Poult. Sci. 2023, 102, 102241. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Y.; Yang, J.; Wagner, K.M.; Hwang, S.H.; Cheng, J.; Singh, N.; Edwards, P.; Morisseau, C.; Zhang, G.; et al. Aflatoxin B1 exposure disrupts the intestinal immune function via a soluble epoxide hydrolase-mediated manner. Ecotoxicol. Environ. Saf. 2023, 249, 114417. [Google Scholar] [CrossRef] [PubMed]
- Poloni, V.; Magnoli, A.; Fochesato, A.; Cristofolini, A.; Caverzan, M.; Merkis, C.; Montenegro, M.; Cavaglieri, L. A Saccharomyces cerevisiae RC016-based feed additive reduces liver toxicity, residual aflatoxin B1 levels and positively influences intestinal morphology in broiler chickens fed chronic aflatoxin B1-contaminated diets. Anim. Nutr. 2020, 6, 31–38. [Google Scholar] [CrossRef]
- Gao, Y.; Li, S.; Wang, J.; Luo, C.; Zhao, S.; Zheng, N. Modulation of intestinal epithelial permeability in differentiated Caco-2 cells exposed to aflatoxin M1 and ochratoxin a individually or collectively. Toxins 2018, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bai, Y.; Tao, S.; Zhang, G.; Wang, J.; Liu, L.; Zhang, S. Fiber-rich foods affected gut bacterial community and short-chain fatty acids production in pig model. J. Funct. Foods 2019, 57, 266–274. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Soderholm, A.T.; Pedicord, V.A. Intestinal epithelial cells: At the interface of the microbiota and mucosal immunity. Immunology 2019, 158, 267–280. [Google Scholar] [CrossRef]
- Martín, R.; Chamignon, C.; Mhedbi-Hajri, N.; Chain, F.; Derrien, M.; Escribano-Vázquez, U.; Garault, P.; Cotillard, A.; Pham, H.P.; Chervaux, C.; et al. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep. 2019, 9, 5398. [Google Scholar] [CrossRef] [PubMed]
- Graziani, F.; Pujol, A.; Nicoletti, C.; Dou, S.; Maresca, M.; Giardina, T.; Fons, M.; Perrier, J. Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation. J. Appl. Microbiol. 2016, 120, 1403–1417. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Kim, S.W.; Kwon, Y.M. Characterization of microbiota associated with digesta and mucosa in different regions of gastrointestinal tract of nursery pigs. Int. J. Mol. Sci. 2019, 20, 1630. [Google Scholar] [CrossRef]
- Guo, H.; Wang, P.; Liu, C.; Chang, J.; Yin, Q.; Wang, L.; Jin, S.; Zhu, Q.; Lu, F. Compound mycotoxin detoxifier alleviating aflatoxin B1 toxic effects on broiler growth performance, organ damage and gut microbiota. Poult. Sci. 2023, 102, 102434. [Google Scholar] [CrossRef]
- Kim, S.W.; Holanda, D.M.; Gao, X.; Park, I.; Yiannikouris, A. Efficacy of a yeast cell wall extract to mitigate the effect of naturally co-occurring mycotoxins contaminating feed ingredients fed to young pigs: Impact on gut health, microbiome, and growth. Toxins 2019, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Warger, T.; Osterloh, P.; Rechtsteiner, G.; Fassbender, M.; Heib, V.; Schmid, B.; Schmitt, E.; Schild, H.r.; Radsak, M.P. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 2006, 108, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.M.; Kim, S.W. Impacts of weaning weights and mycotoxin challenges on jejunal mucosa-associated microbiota, intestinal and systemic health, and growth performance of nursery pigs. J. Anim. Sci. Biotechnol. 2022, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zuo, Z.; Chen, K.; Gao, C.; Yang, Z.; Zhao, S.; Li, J.; Song, H.; Peng, X.; Fang, J.; et al. Histopathological injuries, ultrastructural changes, and depressed tlr expression in the small intestine of broiler chickens with aflatoxin B1. Toxins 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, J.Q.; Liu, Z.Y.; Wang, Y.C.; Wang, J.P. Comparison of probiotics and clay detoxifier on the growth performance and enterotoxic markers of broilers fed diets contaminated with aflatoxin B1. J. Appl. Poult. Res. 2018, 27, 341–348. [Google Scholar] [CrossRef]
- Feshanghchi, M.; Baghban-Kanani, P.; Kashefi-Motlagh, B.; Adib, F.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Zangeronimo, M.G.; Swelum, A.A. Milk thistle (Silybum marianum), marine algae (Spirulina platensis) and toxin binder powders in the diets of broiler chickens exposed to aflatoxin-B1: Growth performance, humoral immune response and cecal microbiota. Agriculture 2022, 12, 805. [Google Scholar] [CrossRef]
- Chen, X.; Ishfaq, M.; Wang, J. Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella pullorum infection resistance of broilers challenged with aflatoxin B1. Poult. Sci. 2022, 101, 101651. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Fang, J.; Peng, X.; Cui, H.; Zuo, Z.; Deng, J.; Chen, Z.; Geng, Y.; Lai, W.; Shu, G.; et al. Effects of sodium selenite on aflatoxin B1-induced decrease of ileal IgA+ cell numbers and immunoglobulin contents in broilers. Biol. Trace Elem. Res. 2014, 160, 49–55. [Google Scholar] [CrossRef]
- Fang, J.; Zheng, Z.; Yang, Z.; Peng, X.; Zuo, Z.; Cui, H.; Ouyang, P.; Shu, G.; Chen, Z.; Huang, C. Ameliorative effects of selenium on the excess apoptosis of the jejunum caused by AFB1 through death receptor and endoplasmic reticulum pathways. Toxicol. Res. 2018, 7, 1108–1119. [Google Scholar] [CrossRef]
- Jiang, M.; Fang, J.; Peng, X.; Cui, H.; Yu, Z. Effect of aflatoxin B1 on IgA+ cell number and immunoglobulin mrna expression in the intestine of broilers. Immunopharmacol. Immunotoxicol. 2015, 37, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhang, L.; Zhu, D.; Huang, J.; Yang, J.; Jiang, J.; Wu, H.; Lv, G. Effects of glucose oxidase and Bacillus subtilis on growth performance and serum biochemical indicexs of broilers exposed to aflatoxin B1 and endotoxin. Anim. Feed Sci. Technol. 2022, 286, 115186. [Google Scholar] [CrossRef]
- Solis-Cruz, B.; Hernandez-Patlan, D.; Petrone, V.M.; Pontin, K.P.; Latorre, J.D.; Beyssac, E.; Hernandez-Velasco, X.; Merino-Guzman, R.; Owens, C.; Hargis, B.M.; et al. Evaluation of cellulosic polymers and curcumin to reduce aflatoxin B1 toxic effects on performance, biochemical, and immunological parameters of broiler chickens. Toxins 2019, 11, 121. [Google Scholar] [CrossRef]
- Tarasconi, L.; Dazuk, V.; Molosse, V.L.; Cécere, B.G.O.; Deolindo, G.L.; Mendes, R.E.; Gloria, E.M.; Ternus, E.M.; Galli, G.M.; Paiano, D.; et al. Nursery pigs fed with feed contaminated by aflatoxin B1 (Aspergillus flavus) and anti-mycotoxin blend: Pathogenesis and negative impact on animal health and weight gain. Microb. Pathog. 2024, 186, 106474. [Google Scholar] [CrossRef]
- Taranu, I.; Marin, D.E.; Palade, M.; Pistol, G.C.; Chedea, V.S.; Gras, M.A.; Rotar, C. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet on performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon 2019, 162, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Sun, M.; He, Y.; Lei, J.; Han, Y.; Wu, Y.; Bai, D.; Guo, Y.; Zhang, B. Mycotoxins binder supplementation alleviates aflatoxin B1 toxic effects on the immune response and intestinal barrier function in broilers. Poult. Sci. 2022, 101, 101683. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef]
- Yin, H.; Jiang, M.; Peng, X.; Cui, H.; Zhou, Y.; He, M.; Zuo, Z.; Ouyang, P.; Fan, J.; Fang, J. The molecular mechanism of G2M cell cycle arrest induced by AFB1 in the jejunum. Oncotarget 2016, 7, 35592–35606. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, Y.; Guo, Y.; Ma, Q.; Ji, C.; Zhao, L. Transcriptional profiling of aflatoxin B1-induced oxidative stress and inflammatory response in macrophages. Toxins 2021, 13, 401. [Google Scholar] [CrossRef]
- Yilmaz, S.; Kaya, E.; Kiscam, M.A. The effect on oxidative stress of aflatoxin and protective effect of lycopene on aflatoxin damage. In Aflatoxin-Control, Analysis, Detection and Health Risks; Lukman Bola, A.U., Ed.; IntechOpen: London, UK, 2017; pp. 67–90. [Google Scholar]
- Yin, J.; Wu, M.; Li, Y.; Ren, W.; Xiao, H.; Chen, S.; Li, C.; Tan, B.; Ni, H.; Xiong, X.; et al. Toxicity assessment of hydrogen peroxide on Toll-like receptor system, apoptosis, and mitochondrial respiration in piglets and IPEC-J2 cells. Oncotarget 2017, 8, 3124–3131. [Google Scholar] [CrossRef]
- Miller, M.A.; Zachary, J.F. Mechanisms and morphology of cellular injury, adaptation, and death. In Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, J.F., Ed.; Mosby: St. Louis, MO, USA, 2017; pp. 2–43. [Google Scholar]
- Gao, Y.; Bao, X.; Meng, L.; Liu, H.; Wang, J.; Zheng, N. Aflatoxin B1 and aflatoxin M1 induce compromised intestinal integrity through clathrin-mediated endocytosis. Toxins 2021, 13, 184. [Google Scholar] [CrossRef]
- Jebali, R.; Salah-Abbès, J.B.; Abbès, S.; Hassan, A.M.; Abdel-Aziem, S.H.; El-Nekeety, A.A.; Oueslati, R.; Abdel-Wahhab, M.A. Lactobacillus plantarum alleviate aflatoxins (B1 and M1) induced disturbances in the intestinal genes expression and DNA fragmentation in mice. Toxicon 2018, 146, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Jang, K.B.; Jalukar, S.; Du, X.; Kim, S.W. Efficacy of feed additive containing bentonite and enzymatically hydrolyzed yeast on intestinal health and growth of newly weaned pigs under chronic dietary challenges of fumonisin and aflatoxin. Toxins 2023, 15, 433. [Google Scholar] [CrossRef]
- Pandey, I.; Chauhan, S.S. Studies on production performance and toxin residues in tissues and eggs of layer chickens fed on diets with various concentrations of aflatoxin AFB1. Br. Poult. Sci. 2007, 48, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Ghishan, F.K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Wang, T.; Liao, G.; Gu, J.; Hou, R.; Qiu, J. Lipidomic profiling study on neurobehavior toxicity in zebrafish treated with aflatoxin B1. Sci. Total Environ. 2023, 898, 165553. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ramírez, J.O.; Merino-Guzmán, R.; Téllez-Isaías, G.; Vázquez-Durán, A.; Méndez-Albores, A. Mitigation of AFB1-related toxic damage to the intestinal epithelium in broiler chickens consumed a yeast cell wall fraction. Front. Vet. Sci. 2021, 8, 677965. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Naehrer, K.; Applegate, T.J. Interactive effects of dietary protein concentration and aflatoxin B1 on performance, nutrient digestibility, and gut health in broiler chicks. Poult. Sci. 2016, 95, 1312–1325. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Xi, Y.; Wang, S.T.; Zheng, L.Y.; Qi, Y.; Guo, S.S.; Ding, B.Y. Effects of chinese gallnut tannic acid on growth performance, blood parameters, antioxidative status, intestinal histomorphology, and cecal microbial shedding in broilers challenged with aflatoxin B1. J. Anim. Sci. 2022, 100, skac099. [Google Scholar] [CrossRef]
- Domingues, J.M.; Schreiner Spiassi, B.; Sanches, A.D.; Belote, B.L.; Santin, E.; Wagner, R. The use of histological parameters to assess intestinal and liver health on broilers challenged isolatedly and simultaneously with cyclopiazonic acid and aflatoxin B1. Acta. Toxicol. Argent. 2021, 29, 67–76. [Google Scholar]
- Tavangar, P.; Gharahveysi, S.; Rezaeipour, V.; Irani, M. Efficacy of phytobiotic and toxin binder feed additives individually or in combination on the growth performance, blood biochemical parameters, intestinal morphology, and microbial population in broiler chickens exposed to aflatoxin B1. Trop. Anim Health Prod. 2021, 53, 335. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, Y.; Cao, Z.; Zhang, J.; Huang, W. AFB1-induced mice liver injury involves mitochondrial dysfunction mediated by mitochondrial biogenesis inhibition. Ecotoxicol. Environ. Saf. 2021, 216, 112213. [Google Scholar] [CrossRef]
- Liu, X.; Kumar Mishra, S.; Wang, T.; Xu, Z.; Zhao, X.; Wang, Y.; Yin, H.; Fan, X.; Zeng, B.; Yang, M. AFB1 induced transcriptional regulation related to apoptosis and lipid metabolism in liver of chicken. Toxins 2020, 12, 290. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, M.C.; Jager, A.V.; Souto, P.C.M.C.; Costa, A.A.; Rottinghaus, G.E.; Passarelli, D.; Budiño, F.E.L.; Corassin, C.H.; Oliveira, C.A.F. Determination of serum aflatoxin B1-lysine to evaluate the efficacy of an aflatoxin-adsorbing feed additive in pigs fed an aflatoxin B1-contaminated diet. Mycotoxin Res. 2017, 33, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Macé, K.; Aguilar, F.; Wang, J.S.; Vautravers, P.; Gómez-Lechón, M.; Gonzalez, F.J.; Groopman, J.; Harris, C.C.; Pfeifer, A.M. Aflatoxin B1-induced DNA adduct formation and P53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis 1997, 18, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Chen, H.; Tsim, K.W.K.; Shen, X.; Li, X.; Li, X.; Lei, H.; Liu, Y. Aflatoxin B1 induces inflammatory liver injury via gut microbiota in mice. J. Agric. Food Chem. 2023, 71, 10787–10797. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.B.; Maurya, B.K.; Trigun, S.K. Activation of oxidative stress and inflammatory factors could account for histopathological progression of aflatoxin-B1 induced hepatocarcinogenesis in rat. Mol. Cell. Biochem. 2015, 401, 185–196. [Google Scholar] [CrossRef]
- Vipin, A.V.; Rao, R.; Kurrey, N.K.; KA, A.A.; Venkateswaran, G. Protective effects of phenolics rich extract of ginger against aflatoxin B1-induced oxidative stress and hepatotoxicity. Biomed. Pharmacother. 2017, 91, 415–424. [Google Scholar]
- Denli, M.; Blandon, J.C.; Guynot, M.E.; Salado, S.; Perez, J.F. Effects of dietary afladetox on performance, serum biochemistry, histopathological changes, and aflatoxin residues in broilers exposed to aflatoxin B(1). Poult. Sci. 2009, 88, 1444–1451. [Google Scholar] [CrossRef]
- Ali Rajput, S.; Sun, L.; Zhang, N.; Mohamed Khalil, M.; Gao, X.; Ling, Z.; Zhu, L.; Khan, F.A.; Zhang, J.; Qi, D. Ameliorative effects of grape seed proanthocyanidin extract on growth performance, immune function, antioxidant capacity, biochemical constituents, liver histopathology and aflatoxin residues in broilers exposed to aflatoxin B1. Toxins 2017, 9, 371. [Google Scholar] [CrossRef] [PubMed]
- Popescu, R.G.; Rădulescu, A.L.; Georgescu, S.E.; Dinischiotu, A. Aflatoxins in feed: Types, metabolism, health consequences in swine and mitigation strategies. Toxins 2022, 14, 853. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, X.; Wu, J.; Ji, X.; Xu, Q. Research progress in toxicological effects and mechanism of aflatoxin B(1) toxin. PeerJ 2022, 10, e13850. [Google Scholar] [CrossRef]
- Hou, L.; Qiu, H.; Li, A.; Dong, J.; Zhu, L.; Liu, G.; Chen, F. Effects of aflatoxin B1 on growth performance, antioxidant status, immune response, and pro-inflammatory cytokine mrna expression in isa chicks. Front. Vet. Sci. 2022, 9, 993039. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Fu, P.; Chen, N.; Gao, N.; Cao, Q.; Yue, K.; Xu, T.; Zhang, C.; Zhang, C.; Liu, F.; et al. Total flavonoids of rhizoma drynariae protect hepatocytes against aflatoxin B1-induced oxidative stress and apoptosis in broiler chickens. Ecotoxicol. Environ. Saf. 2022, 230, 113148. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ma, Q.; Zhao, L.; Jia, R.; Zhang, J.; Ji, C.; Wang, X. Protective effects of sporoderm-broken spores of ganderma iucidum on growth performance, antioxidant capacity and immune function of broiler chickens exposed to low level of aflatoxin B1. Toxins 2016, 8, 278. [Google Scholar] [CrossRef]
- Jurišić, N.; Schwartz-Zimmermann, H.E.; Kunz-Vekiru, E.; Moll, W.D.; Schweiger, W.; Fowler, J.; Berthiller, F. Determination of aflatoxin biomarkers in excreta and ileal content of chickens. Poult. Sci. 2019, 98, 5551–5561. [Google Scholar] [CrossRef]
- Kim, S.W.; Duarte, M.E. Understanding intestinal health in nursery pigs and the relevant nutritional strategies. Anim. Biosci. 2021, 34, 338–344. [Google Scholar] [CrossRef]
- Szabó, C.; Kachungwa Lugata, J.; Ortega, A. Gut health and influencing factors in pigs. Animals 2023, 13, 1350. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.Q.; Liu, Z.Y.; Chen, Y.K.; Wang, J.P. Effect of cysteamine hydrochloride supplementation on the growth performance, enterotoxic status, and glutathione turnover of broilers fed aflatoxin B1 contaminated diets. Poult. Sci. 2018, 97, 3594–3600. [Google Scholar] [CrossRef]
- El-Katcha, M.I.; Soltan, M.A.; El-Shobokshy, S.A.; Shokry, A. Protective effect of chemical and biological mycotoxin binder on growth performance, serum biochemistry and carcass traits in broiler chicks fed on aflatoxin contaminated diet. Alex. J. Vet. Sci. 2017, 55, 180–197. [Google Scholar]
- Zou, Y.; Liu, S.-B.; Zhang, Q.; Tan, H.-Z. Effects of aflatoxin B1 on growth performance, carcass traits, organ index, blood biochemistry and oxidative status in chinese yellow chickens. J. Vet. Med. Sci. 2023, 85, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Zabiulla, I.; Malathi, V.; Swamy, H.V.L.N.; Naik, J.; Pineda, L.; Han, Y. The efficacy of a smectite-based mycotoxin binder in reducing aflatoxin B1 toxicity on performance, health and histopathology of broiler chickens. Toxins 2021, 13, 856. [Google Scholar] [CrossRef]
- Pasha, T.N.; Farooq, M.U.; Khattak, F.M.; Jabbar, M.A.; Khan, A.D. Effectiveness of sodium bentonite and two commercial products as aflatoxin absorbents in diets for broiler chickens. Anim. Feed Sci. Technol. 2007, 132, 103–110. [Google Scholar] [CrossRef]
- Nemati, Z.; Karimi, A.; Besharati, M. Effects of aflatoxin B1 and yeast cell wall supplementation on the growth performance of broilers. Int. Conf. Innovations Chem. Agric. Eng. 2015, 8, 117–120. [Google Scholar]
- Huff, W.E.; Kubena, L.F.; Harvey, R.B.; Hagler Jr, W.M.; Swanson, S.P.; Phillips, T.D.; Creger, C.R. Individual and combined effects of aflatoxin and deoxynivalenol (DON, vomitoxin) in broiler chickens. Poult. Sci. 1986, 65, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Johri, T.S.; Swain, B.K.; Ameena, S. Effect of graded levels of aflatoxin, ochratoxin and their combinations on the performance and immune response of broilers. Br. Poult. Sci. 2004, 45, 512–518. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Q.; Yang, H.; Wan, X. Effects of lycopene on the growth performance, meat quality, and antioxidant capacity of broiler chickens challenged with aflatoxin B1. J. Food Sci. 2024, 89, 96–103. [Google Scholar] [CrossRef]
- Cravens, R.L.; Goss, G.R.; Chi, F.; De Boer, E.D.; Davis, S.W.; Hendrix, S.M.; Richardson, J.A.; Johnston, S.L. The effects of necrotic enteritis, aflatoxin B1, and virginiamycin on growth performance, necrotic enteritis lesion scores, and mortality in young broilers. Poult. Sci. 2013, 92, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Al-Shawabkeh, K.; Herzallah, S.; Al-Fataftah, A.; Zakaria, H. Effect of aflatoxin B1 contaminated feed on broiler chickens performance and meat content of conjugated linoleic acid. J. Agric. Sci. 2009, 5, 314–323. [Google Scholar]
- Bintvihok, A.; Kositcharoenkul, S. Effect of dietary calcium propionate on performance, hepatic enzyme activities and aflatoxin residues in broilers fed a diet containing low levels of aflatoxin B1. Toxicon 2006, 47, 41–46. [Google Scholar] [CrossRef]
- Saei, M.M.; Sadeghi, A.A.; Ahmadvand, H. The effect of myrtus communis oil extract on growth performance, serum biochemistry and humoral immune responses in broiler chicks fed diet containing aflatoxin B1. Arch. Anim. Breed. 2013, 56, 842–850. [Google Scholar] [CrossRef]
- El-Sayed, H.G.M.; Elwan, H.A.M.; Aboelhassan, A.F.A.; Abdel-Wareth, A.A.A. Effects of probiotic feed additives on the growth performance and carcass criteria of broiler chickens exposed to an aflatoxin B1 challenge. SVU Int. J. Agric. Sci. 2022, 4, 29–36. [Google Scholar] [CrossRef]
- Rashidi, N.; Khatibjoo, A.; Taherpour, K.; Akbari-Gharaei, M.; Shirzadi, H. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poult. Sci. 2020, 99, 5896–5906. [Google Scholar] [CrossRef] [PubMed]
- Raj, J.; Vasiljević, M.; Tassis, P.; Farkaš, H.; Bošnjak-Neumüller, J.; Männer, K. Effects of a modified clinoptilolite zeolite on growth performance, health status and detoxification of aflatoxin B1 and ochratoxin a in male broiler chickens. Br. Poult. Sci. 2021, 62, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhao, L.; Ma, Q.; Li, X.; Shi, H.; Zhou, T.; Zhang, J.; Ji, C. Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food Chem. Toxicol. 2013, 59, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Saminathan, M.; Selamat, J.; Abbasi Pirouz, A.; Abdullah, N.; Zulkifli, I. Effects of nano-composite adsorbents on the growth performance, serum biochemistry, and organ weights of broilers fed with aflatoxin-contaminated feed. Toxins 2018, 10, 345. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.H.; Yang, Z.B.; Yang, W.R.; Li, Z.; Zhang, G.G.; Jiang, S.Z. Toxicity of mycotoxins from contaminated corn with or withoutyeast cell wall adsorbent on broiler chickens. Asian-Australas. J. Anim. Sci. 2015, 29, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Coffey, M.T.; Hagler Jr, W.M.; Cullen, J.M. Influence of dietary protein, fat or amino acids on the response of weanling swine to aflatoxin B1. J. Anim. Sci. 1989, 67, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Dazuk, V.; Tarasconi, L.; Molosse, V.L.; Cécere, B.G.O.; Deolindo, G.L.; Strapazzon, J.V.; Bottari, N.B.; Bissacotti, B.F.; Schetinger, M.R.C.; Sareta, L. Can the inclusion of a vegetable biocholine additive in pig feed contaminated with aflatoxin reduce toxicological impacts on animal health and performance? Animals 2023, 13, 3010. [Google Scholar] [CrossRef]
- Schell, T.C.; Lindemann, M.D.; Kornegay, E.T.; Blodgett, D.J. Effects of feeding aflatoxin-contaminated diets with and without clay to weanling and growing pigs on performance, liver function, and mineral metabolism. J. Anim. Sci. 1993, 71, 1209–1218. [Google Scholar] [CrossRef]
- Lindemann, M.D.; Blodgett, D.J.; Kornegay, E.T.; Schurig, G.G. Potential ameliorators of aflatoxicosis in weanling/growing swine. J. Anim. Sci. 1993, 71, 171–178. [Google Scholar] [CrossRef]
- Fu, J.-C.; Chen, Q.; Du, J.; Shi, B.-M.; Shan, A.-S. Effectiveness of maifanite in reducing the detrimental effects of aflatoxin B1 on hematology, aflatoxin B1 residues, and antioxidant enzymes activities of weanling piglets. Livest. Sci. 2013, 157, 218–224. [Google Scholar] [CrossRef]
- Harper, A.F.; Estienne, M.J.; Meldrum, J.B.; Harrell, R.J.; Diaz, D.E. Assessment of a hydrated sodium calcium aluminosilicate agent and antioxidant blend for mitigation of aflatoxin-induced physiological alterations in pigs. J. Swine Health Prod. 2010, 18, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Lindemann, M.D.; Estienne, M.J. Effect of folic acid supplementation and dietary protein level on growth performance, serum chemistry and immune response in weanling piglets fed differing concentrations of aflatoxin. Toxins 2020, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Thieu, N.Q.; Ogle, B.; Pettersson, H. Efficacy of bentonite clay in ameliorating aflatoxicosis in piglets fed aflatoxin contaminated diets. Trop. Anim Health Prod. 2008, 40, 649–656. [Google Scholar] [CrossRef]
- Marin, D.E.; Taranu, I.; Bunaciu, R.P.; Pascale, F.; Tudor, D.S.; Avram, N.; Sarca, M.; Cureu, I.; Criste, R.D.; Suta, V. Changes in performance, blood parameters, humoral and cellular immune responses in weanling piglets exposed to low doses of aflatoxin. J. Anim. Sci. 2002, 80, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Meissonnier, G.M.; Pinton, P.; Laffitte, J.; Cossalter, A.-M.; Gong, Y.Y.; Wild, C.P.; Bertin, G.; Galtier, P.; Oswald, I.P. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol. Appl. Pharmacol. 2008, 231, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.B.; Kubena, L.F.; Huff, W.E.; Corrier, D.E.; Rottinghaus, G.E.; Phillips, T.D. Effects of treatment of growing swine with aflatoxin and T-2 toxin. Am. J. Vet. Res. 1990, 51, 1688–1693. [Google Scholar] [CrossRef]
- Shi, Y.H.; Xu, Z.R.; Feng, J.L.; Xia, M.S.; Hu, C.H. Effects of modified montmorillonite nanocomposite on growing/finishing pigs during aflatoxicosis. Asian-Australas. J. Anim. Sci. 2005, 18, 1305–1309. [Google Scholar] [CrossRef]
- Sun, Y.; Park, I.; Guo, J.; Weaver, A.C.; Kim, S.W. Impacts of low level aflatoxin in feed and the use of modified yeast cell wall extract on growth and health of nursery pigs. Anim. Nutr. 2015, 1, 177–183. [Google Scholar] [CrossRef]
- Weaver, A.C.; See, M.T.; Hansen, J.A.; Kim, Y.B.; De Souza, A.L.; Middleton, T.F.; Kim, S.W. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins 2013, 5, 1261–1281. [Google Scholar] [CrossRef] [PubMed]
- Chaytor, A.C.; See, M.T.; Hansen, J.A.; De Souza, A.L.P.; Middleton, T.F.; Kim, S. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J. Anim. Sci. 2011, 89, 124–135. [Google Scholar] [CrossRef]
- Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.C.; Fremy, J.M.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2009, 6, 22E. [Google Scholar] [CrossRef]
- Weaver, A.C.; See, M.T.; Kim, S.W. Protective effect of two yeast based feed additives on pigs chronically exposed to deoxynivalenol and zearalenone. Toxins 2014, 6, 3336–3353. [Google Scholar] [CrossRef]
- Holanda, D.M.; Kim, S.W. Investigation of the efficacy of mycotoxin-detoxifying additive on health and growth of newly-weaned pigs under deoxynivalenol challenges. Asian-Australas. J. Anim. Sci. 2021, 34, 405–416. [Google Scholar] [CrossRef]
- Rasheed, U.; Ain, Q.U.; Yaseen, M.; Yao, X.; Liu, B. Synthesis and characterization of tannic acid pillared bentonite composite for the efficient adsorption of aflatoxins. Colloids Surf. B Biointerfaces. 2021, 202, 111679. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.X.; Tokach, M.D.; Woodworth, J.C.; DeRouchey, J.M.; Goodband, R.D.; Gebhardt, J.T. Evaluation of selenium source on nursery pig growth performance, serum and tissue selenium concentrations, and serum antioxidant status. Transl. Anim. Sci. 2023, 7, txad049. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Zhou, Y.; Lv, G.; Zhou, R. Simultaneous detoxification of aflatoxin B1, zearalenone and deoxynivalenol by modified montmorillonites. Molecules 2022, 27, 315. [Google Scholar] [CrossRef]
- Kong, C.; Shin, S.Y.; Kim, B.G. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: An in vitro approach. SpringerPlus 2014, 3, 1–4. [Google Scholar] [CrossRef]
- Wijesooriya, M.M.; Wijesekara, H.; Bolan, N.; Rajapaksha, A.U.; Vithanage, M. Clays and clay minerals: Long-lasting applications in environmental remediation. In Clay composites: Environmental applications; Springer: Singapore, 2023; pp. 3–28. [Google Scholar]
- Zhang, N.; Han, X.; Zhao, Y.; Li, Y.; Meng, J.; Zhang, H.; Liang, J. Removal of aflatoxin B1 and zearalenone by clay mineral materials: In the animal industry and environment. Appl. Clay Sci. 2022, 228, 106614. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Kim, J.; Cheong, D.H.; Hong, H.; Jeong, J.Y.; Kim, B.G. An in vitro study on the efficacy of mycotoxin sequestering agents for aflatoxin B1, deoxynivalenol, and zearalenone. Animals 2022, 12, 333. [Google Scholar] [CrossRef] [PubMed]
- Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Heathcote, J.G.; Hibbert, J.R. Biological activity and electronic structure of the aflatoxins. Br. J. Cancer 1974, 29, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Dallies, N.; François, J.; Paquet, V. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 1998, 14, 1297–1306. [Google Scholar] [CrossRef]
- Choi, H.; Kim, S.W. Characterization of β-glucans from cereal and microbial sources and their roles in feeds for intestinal health and growth of nursery pigs. Animals 2023, 13, 2236. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus lactobacillus and saccharomyces cerevisiae yeast. Probiotics Antimicro. Proteins 2020, 12, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.A.; Brown, G.D. The role of dectin-1 in the host defence against fungal infections. Curr. Opin. Microbiol. 2011, 14, 392–399. [Google Scholar] [CrossRef]
- Amer, S.A.; Attia, G.A.; Aljahmany, A.A.; Mohamed, A.K.; Ali, A.A.; Gouda, A.; Alagmy, G.N.; Megahed, H.M.; Saber, T.; Farahat, M. Effect of 1,3-beta glucans dietary addition on the growth, intestinal histology, blood biochemical parameters, immune response, and immune expression of CD3 and CD20 in broiler chickens. Animals 2022, 12, 3197. [Google Scholar] [CrossRef] [PubMed]
- Peltonen, K.; El-Nezami, H.; Haskard, C.; Ahokas, J.; Salminen, S. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J. Dairy Sci. 2001, 84, 2152–2156. [Google Scholar] [CrossRef]
- El Khoury, A.; Atoui, A.; Yaghi, J. Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in lebanese industry. Food Control 2011, 22, 1695–1699. [Google Scholar] [CrossRef]
- Armanini, E.H.; Boiago, M.M.; de Oliveira, P.V.; Roscamp, E.; Strapazzon, J.V.; de Lima, A.G.; Copetti, P.M.; Morsch, V.M.; de Oliveira, F.C.; Wagner, R. Inclusion of a phytogenic bend in broiler diet as a performance enhancer and anti-aflatoxin agent: Impacts on health, performance, and meat quality. Res. Vet. Sci. 2021, 137, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, M.D.; Blodgett, D.J.; Harper, A.F.; Kornegay, E.T.; Doerr, J.A. Appraisal of the value of selected clays and minerals in diets with and without aflatoxin-contaminated maize fed to young pigs. J. Anim. Feed Sci. 1997, 6, 507–519. [Google Scholar] [CrossRef]
- Shu, X.; Wang, Y.; Zhou, Q.; Li, M.; Hu, H.; Ma, Y.; Chen, X.; Ni, J.; Zhao, W.; Huang, S. Biological degradation of aflatoxin B1 by cell-free extracts of bacillus velezensis DY3108 with broad pH stability and excellent thermostability. Toxins 2018, 10, 330. [Google Scholar] [CrossRef]
- Xiong, D.; Wen, J.; Lu, G.; Li, T.; Long, M. Isolation, purification, and characterization of a laccase-degrading aflatoxin B1 from Bacillus amyloliquefaciens B10. Toxins 2022, 14, 250. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wu, T.; Zhang, H.; Sun, Z.; Mwabulili, F.; Xie, Y.; Sun, S.; Ma, W.; Li, Q.; Yang, Y. Mining lactonase gene from aflatoxin B1-degrading strain bacillus megaterium and degrading properties of the recombinant enzyme. J. Agric. Food Chem. 2023, 71, 20762–20771. [Google Scholar] [CrossRef] [PubMed]
- Subagia, R.; Schweiger, W.; Kunz-Vekiru, E.; Wolfsberger, D.; Schatzmayr, G.; Ribitsch, D.; Guebitz, G.M. Detoxification of aflatoxin B1 by a Bacillus subtilis spore coat protein through formation of the main metabolites AFQ1 and epi-AFQ1. Front. Microbiol. 2024, 15, 1406707. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Renaud, J.B.; Rosini, E.; Pollegioni, L.; Vignali, E.; Haidukowski, M.; Sumarah, M.W.; Logrieco, A.F.; Mulè, G. Enzymatic transformation of aflatoxin B1 by Rh_Dypb peroxidase and characterization of the reaction products. Chemosphere 2020, 250, 126296. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, M.L.G.; Martínez, M.P.; Cavaglieri, L.R. Presence of aiia homologue genes encoding for n-acyl homoserine lactone-degrading enzyme in aflatoxin B1-decontaminating Bacillus strains with potential use as feed additives. Food Chem. Toxicol. 2019, 124, 316–323. [Google Scholar] [CrossRef] [PubMed]
- El-Deeb, B.; Altalhi, A.; Khiralla, G.; Hassan, S.; Gherbawy, Y. Isolation and characterization of endophytic bacilli bacterium from maize grains able to detoxify aflatoxin B1. Food Biotechnol. 2013, 27, 199–212. [Google Scholar] [CrossRef]
- Farzaneh, M.; Shi, Z.-Q.; Ghassempour, A.; Sedaghat, N.; Ahmadzadeh, M.; Mirabolfathy, M.; Javan-Nikkhah, M. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of iran. Food control 2012, 23, 100–106. [Google Scholar] [CrossRef]
- Li, G.; Tong, Y.; Xiao, Y.; Huang, S.; Zhao, T.; Xia, X. Probiotic Bacillus subtilis contributes to the modulation of gut microbiota and blood metabolic profile of hosts. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 272, 109712. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.; Feng, C.; Jiang, L.; Zhang, L.; Zhang, J.; Zhang, L.; Wang, T. Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poult. Sci. 2018, 97, 2312–2321. [Google Scholar] [CrossRef]
- Ciegler, A.; Lillehoj, E.B.; Peterson, R.E.; Hall, H.H. Microbial detoxification of aflatoxin. Appl. Microbiol. 1966, 14, 934–939. [Google Scholar] [CrossRef]
- Teniola, O.D.; Addo, P.A.; Brost, I.M.; Färber, P.; Jany, K.-D.; Alberts, J.F.; Van Zyl, W.H.; Steyn, P.S.; Holzapfel, W.H. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. Nov. DSM44556T. Int. J. Food Microbiol. 2005, 105, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Castañeda, Z.I.; Avila-Gonzalez, E.; Casaubon-Huguenin, M.T.; Cervantes-Olivares, R.A.; Vásquez-Peláez, C.; Hernández-Baumgarten, E.M.; Moreno-Martínez, E. Biodetoxification of aflatoxin-contaminated chick feed. Poult. Sci. 2008, 87, 1569–1576. [Google Scholar] [CrossRef]
- Papatsiros, V.G.; Eliopoulos, C.; Voulgarakis, N.; Arapoglou, D.; Riahi, I.; Sadurní, M.; Papakonstantinou, G.I. Effects of a multi-component mycotoxin-detoxifying agent on oxidative stress, health and performance of sows. Toxins 2023, 15, 580. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Vilar, M.; Malekinejad, H.; Selman, M.; Van Der Doelen, M.; Fink-Gremmels, J. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia 2007, 163, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Kim, I.H. Effects of grape seed extract on performance, immunity, antioxidant capacity, and meat quality in pekin ducks. Poult. Sci. 2020, 99, 2078–2086. [Google Scholar] [CrossRef]
- Nallathambi, R.; Poulev, A.; Zuk, J.B.; Raskin, I. Proanthocyanidin-rich grape seed extract reduces inflammation and oxidative stress and restores tight junction barrier function in Caco-2 colon cells. Nutrients 2020, 12, 1623. [Google Scholar] [CrossRef]
- González-Quilen, C.; Gil-Cardoso, K.; Ginés, I.; Beltrán-Debón, R.; Pinent, M.; Ardévol, A.; Terra, X.; Blay, M.T. Grape-seed proanthocyanidins are able to reverse intestinal dysfunction and metabolic endotoxemia induced by a cafeteria diet in wistar rats. Nutrients 2019, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Zhang, Y.; Li, J.; Shi, B.; Ma, Q.; Shan, A. Lycopene affects intestinal barrier function and the gut microbiota in weaned piglets via antioxidant signaling regulation. J. Nutr. 2022, 152, 2396–2408. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.-H.; Zhang, N.-Y.; Zhu, M.-K.; Zhao, L.; Zhou, J.-C.; Qi, D.-S. Prevention of aflatoxin B1 hepatoxicity by dietary selenium is associated with inhibition of cytochrome P450 isozymes and up-regulation of 6 selenoprotein genes in chick liver. J. Nutr. 2016, 146, 655–661. [Google Scholar] [CrossRef]
- Liao, S.; Shi, D.; Clemons-Chevis, C.L.; Guo, S.; Su, R.; Qiang, P.; Tang, Z. Protective role of selenium on aflatoxin B1-induced hepatic dysfunction and apoptosis of liver in ducklings. Biol. Trace Elem. Res. 2014, 162, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Purushothaman, A.; Teena Rose, K.S.; Jacob, J.M.; Varatharaj, R.; Shashikala, K.; Janardanan, D. Curcumin analogues with improved antioxidant properties: A theoretical exploration. Food Chem. 2022, 373, 131499. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, F.; Liu, M.; Zhou, X.; Wang, M.; Cao, K.; Jin, S.; Shan, A.; Feng, X. Curcumin mitigates aflatoxin B1-induced liver injury via regulating the NLRP3 inflammasome and Nrf2 signaling pathway. Food Chem. Toxicol. 2022, 161, 112823. [Google Scholar] [CrossRef]
- Gao, X.; Kuo, J.; Jiang, H.; Deeb, D.; Liu, Y.; Divine, G.; Chapman, R.A.; Dulchavsky, S.A.; Gautam, S.C. Immunomodulatory activity of curcumin: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochem. Pharmacol. 2004, 68, 51–61. [Google Scholar] [CrossRef]
- Solís-Cruz, B.; Hernandez-Patlan, D.; Beyssac, E.; Latorre, J.D.; Hernandez-Velasco, X.; Merino-Guzman, R.; Tellez, G.; López-Arellano, R. Evaluation of chitosan and cellulosic polymers as binding adsorbent materials to prevent aflatoxin B1, fumonisin B1, ochratoxin, trichothecene, deoxynivalenol, and zearalenone mycotoxicoses through an in vitro gastrointestinal model for poultry. Polymers 2017, 9, 529. [Google Scholar] [CrossRef]
- Huang, W.; Cao, Z.; Cui, Y.; Huo, S.; Shao, B.; Song, M.; Cheng, P.; Li, Y. Lycopene ameliorates aflatoxin B1-induced testicular lesion by attenuating oxidative stress and mitochondrial damage with nrf2 activation in mice. Ecotoxicol. Environ. Saf. 2023, 256, 114846. [Google Scholar] [CrossRef]
- Sarker, M.T.; Wan, X.; Yang, H.; Wang, Z. Dietary lycopene supplementation could alleviate aflatoxin B1 induced intestinal damage through improving immune function and anti-oxidant capacity in broilers. Animals 2021, 11, 3165. [Google Scholar] [CrossRef]
Age or IBW 1 | Experimental Period (d) | AFB1 (µg/kg) | Result 2,3 | Reference |
---|---|---|---|---|
Intestinal morphology | ||||
Chicken (d) | ||||
1 | 7 to 21 | 600 | ↓ villus height, ↓ villus width, ↓ VH:CD, and ↑ crypt depth (small intestine) | [46] |
1 | 7 to 21 | 600 | ↓ villus height, ↓ VH:CD, ↑ crypt depth, and ↑ G2/M cell cycle arrest (jejunum) | [59] |
1 | 7 to 21 | 600 | ↓ villus height, ↓ VH:CD, ↓ number of absorptive cells, ↑ number of TUNEL-positive cells, and ↑ apoptotic rate in cells (jejunum) | [51] |
1 | 20 | 1500 | ↑ lactulose/rhamnose ratio (jejunum) | [71] |
1 | 21 | 60 to 120 | ↑ crypt depth at 60 µg/kg of AFB1 (jejunum) and ↓ villus height at 120 µg/kg of AFB1 (ileum) | [72] |
1 | 28 | 0.5 mL of 20 µg/d | ↑ epithelial thickness, ↑ enterocyte proliferation, ↑ epithelial plasma cell infiltration, and ↑ goblet cell proliferation (small intestine) | [73] |
1 | 42 | 42 | ↓ villus height, ↓ VH:CD, and ↑ crypt depth (jejunum) | [42] |
1 | 35 | 1000 | ↓ villus height, ↓villus width, ↓ VH:CD, and ↑ crypt depth (jejunum) | [74] |
7 | 14 | 394 to 1574 | ↓ villus height, ↓ VH:CD, ↑ crypt depth, ↑ goblet cell count, and ↑ lamina propria lymphoid follicles diameter (jejunum) | [22] |
11 | 19 | 250 | ↓ villus height, ↓ villus width, ↓ VH:CD, and ↑ crypt depth (jejunum) | [27] |
Pig (kg) | ||||
6 | 48 | 180 | ↓ villus height (jejunum) | [43] |
7 | 30 | 500 | ↓ fold size and ↑ villus height (small intestine) | [55] |
Not available 4 | 48 h | 40 | ↓ rate of intestinal cell viability, ↑ the % of necrotic cell, ↑ late apoptotic cell, and ↑ early apoptotic cell (jejunal cell culture) | [25] |
Not available 4 | 12 h | 30 | ↓ fluorescent intensity of Bcl-2 and ↑ fluorescent intensity of the ratio of BaX to Bcl-2 (jejunal cell culture) | [24] |
40 to 60 | ↓ cell viability (jejunal cell culture) | |||
Nutrient digestion | ||||
Chicken (d) | ||||
1 | 20 | 1500 | ↓ AID of GE, CP, Asp, Thr, Pro, Gly, Ala, Cys, Val, Ile, Leu, Tyr, Phe, and His | [71] |
1 | 21 | 70 to 750 | ↑ ATTD of EE at 750 µg/kg of AFB1 | [17] |
1 | 273 | 2500 to 3910 | ↓ Retention of DM, CP, and EE | [67] |
11 | 19 | 250 | ↓ ATTD of GE, CP, and EE | [27] |
Pig (kg) | ||||
7 | 31 | 180 | ↓ AID of CP | [45] |
38 | 102 | 102 | ↓ ATTD of DM, GE, and EE | [26] |
Age or IBW 1 | Experimental Period (d) | AFB1 (µg/kg) | Type | Level (%) | Growth Performance 2 (% Change) | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
ADG | ADFI | G:F | |||||||||
vs. AFB1 3 | vs. Control 4 | vs. AFB1 | vs. Control | vs. AFB1 | vs. Control | ||||||
Chicken (d) | |||||||||||
1 | 42 | 200 | Clay (bentonite) + yeast cell wall | 0.20 | 0.17 | −3.09 | 0.90 | −0.57 | −0.72 | −2.53 | [57] |
1 | 35 | 1000 | Clay (bentonite and HSCA) + oligomannose | 0.05 | 7.77 ** | −8.37 ** | 4.65 | 0.10 | 2.97 | −8.46 ** | [74] |
1 | 42 | 42 | Adsorbing agent 5 [Clay (montmorillonite), Lactobacillus casei, and Enterococcus faecalis)] + biotransforming agent 6 (Bacillus subtilis, Candida utilis, and mycotoxin-degrading enzyme) | 0.50 | 5.35 | −8.47 | −8.47 | −3.92 | 15.10 | 1.26 | [42] |
0.10 | 8.42 | −12.65 | 24.44 ** | −1.12 | 24.44 ** | 9.19 | |||||
0.15 | 9.75 ** | −11.16 | 24.44 ** | 0.10 | 24.44 ** | 8.69 | |||||
1 | 42 | 600 | Adsorbing agent [clay (bentonite), activated charcoal, Lactobacillus sp., and Bifidobacterium sp.] + biotransforming agent (Bacillus sp.) | 0.10 | 18.75 ** | −5.00 ** | 8.14 ** | −2.11 | 9.81 ** | −2.96 ** | [48] |
1 | 37 | 40 | Adsorbing gent (Lactobacillus acidophilus) + biotransforming agent (Bacillus subtitlis) | 0.005 | 3.45 ** | 7.14 ** | −5.68 ** | −1.19 ** | 9.68 ** | 8.43 ** | [105] |
1 | 42 | 500 | Adsorbing gent (Streptococcus salivarius sp. Thermophilus, Lactobacillus spp. 7, Bifidobacterium bifidum, Enterococcus faecium, and Candida pintolopesii) + biotransforming agent (Aspergillus oryzae) | 0.50 | 5.66 ** | −6.67 ** | −2.97 ** | −4.85 ** | 8.89 ** | −1.90 ** | [106] |
Pig (kg) | |||||||||||
7 | 30 | 500 | Yeast cell wall + calcium carbonate | 0.10 | 15.15 ** | −7.32 | −3.77 | −22.73 | 19.67 | 19.94 | [55] |
9 | 42 | 150 | Clay (sodium bentonite and sepiolite) + dried yeast | 0.011 | 4.10 | −6.86 | 0.53 | −6.50 | 4.32 | −0.39 | [124] |
Clay (sodium bentonite and sepiolite) + yeast culture | 0.015 | 2.12 | −8.98 | 0.66 | −6.37 | 1.80 | −2.79 | ||||
6 | 32 | 217 | Clay (bentonite) + yeast cell wall | 0.20 | 6.76 | −11.76 | 6.76 | −11.76 | −1.04 | 1.33 | [66] |
0.40 | 19.93 * | −0.88 | 19.93 * | −0.88 | 1.86 | 4.30 |
Age or IBW 1 | Experimental Period (d) | AFB1 (µg/kg) | Type | Level (%) | Growth Performance 2 (% Change) | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
ADG | ADFI | G:F | |||||||||
vs. AFB1 3 | vs. Control 4 | vs. AFB1 | vs. Control | vs. AFB1 | vs. Control | ||||||
Chicken (d) | |||||||||||
1 | 35 | 1000 | Clay (bentonite and HSCA) + oligomannose + phytobiotics | 0.05 | 7.88 ** | −8.27 ** | 2.74 | −1.73 | 5.01 ** | −6.65 ** | [74] |
1 | 42 | 100 | Clay (sodium bentonite) + gention violet | 0.50 | 11.60 ** | −27.99 ** | 3.50 ** | −24.10 ** | 7.83 ** | −5.14 ** | [96] |
1.00 | 10.61 ** | −28.63 ** | 4.91 ** | −23.06 ** | 5.44 ** | −7.24 ** | |||||
Clay (sodium bentonite) + acetic acid | 0.50 | 13.02 ** | −27.08 ** | 3.65 ** | −23.99 ** | 9.05 ** | −4.07 ** | ||||
1.00 | 8.14 ** | −30.23 ** | −2.12 ** | −28.22 ** | 10.48 ** | −2.81 ** | |||||
1 | 35 | 38 | Nano-composite magnetic graphene oxide + chitosan | 0.25 | 6.56 ** | −2.36 | 7.86 ** | 5.24 | −1.20 | −0.28 | [109] |
0.50 | 8.44 ** | −0.65 | 2.11 | −0.36 | 6.19 ** | −0.28 | |||||
1 | 35 | 1000 | Phytobiotics | 0.05 | 7.13 ** | −8.90 ** | 1.52 | −2.89 | 5.53 ** | −6.19 ** | [74] |
1 | 44 | 122 | Sporoderm-broken spores of Ganoderma lucidum | 0.02 | 6.55 ** | 3.54 ** | 4.41 ** | 0.92 | 2.05 * | 1.82 ** | [88] |
1 | 42 | 600 | Milk thistle (Silybum marianum) | 1.00 | 12.50 ** | −10.00 ** | 10.47 ** | 0.00 | 1.84 ** | −10.00 ** | [48] |
1 | 28 | 1000 | Grapeseed extract | 0.025 | 19.43 ** | −21.57 ** | 12.50 ** | 2.65 ** | 6.67 ** | −2.47 ** | [83] |
0.050 | 18.44 ** | −22.22 ** | 16.07 ** | 3.54 ** | 3.38 | −5.47 ** | |||||
1 | 21 | 60 | Tannic acid | 0.025 | 2.63 ** | 5.41 ** | 6.25 ** | 8.51 ** | 1.98 ** | −7.77 ** | [72] |
0.050 | 2.63 ** | 5.41 ** | 4.17 ** | 6.38 ** | 3.64 ** | −6.26 ** | |||||
1 | 21 | 100 | Lycopene | 0.020 | 6.52 ** | −3.92 ** | 3.45 ** | −2.17 ** | 2.97 ** | −1.79 ** | [100] |
1 | 42 | 500 | Licorice extract | 0.30 | 7.55 ** | −5.00 ** | 0.00 | −1.94 ** | 7.55 ** | −3.12 ** | [106] |
0.60 | 5.66 ** | −6.67 ** | −0.99 ** | −2.91 ** | 6.72 ** | −3.87 ** | |||||
Poultry litter biochar | 0.50 | 3.77 ** | −8.33 ** | 0.99 ** | −0.97 ** | 2.76 ** | −7.43 ** | ||||
1 | 42 | 50 | Calcium propionate | 0.25 | 4.12 | −0.09 | 9.87 | −0.76 | −5.24 | 0.67 | [103] |
0.50 | 4.51 | 0.28 | 10.40 | −0.28 | −5.33 | 0.57 | |||||
100 | Calcium propionate | 0.25 | 5.79 | −0.28 | 15.67 | −1.42 | −8.54 | 1.15 | |||
0.50 | 6.29 | 0.19 | 16.89 | −0.38 | −9.07 | 0.57 | |||||
1 | 21 | 2000 | Curcumin | 0.20 | 19.80 ** | −10.21 ** | 1.33 | 4.83 ** | −0.35 | −19.77 ** | [54] |
1 | 21 | 2000 | Cellulosic polymer + curcumin | 0.50 | 23.22 ** | −7.64 ** | −2.12 ** | 1.27 | 24.20 ** | 0.00 | [54] |
1 | 42 | 600 | Algae (Spirulina platensis) | 1.00 | 12.50 ** | −10.00 ** | 3.49 ** | −6.32 ** | 8.71 ** | −3.93 ** | [48] |
Pig (kg) | |||||||||||
7 | 40 | 500 | Vegetable biocholine | 0.08 | 6.55 | −9.62 | 0.56 | −11.11 ** | 5.95 | 1.68 ** | [112] |
9 | 30 | 320 | Grape seed waste | 8.00 | 51.05 ** | −11.84 | - | - | - | - | [56] |
11 | 28 | 420 | Selenium | 0.006 | 2.17 | −9.62 | 5.26 | −11.50 | −2.93 | 2.13 | [114] |
840 | Selenium | 0.006 | 10.71 ** | −40.38 | 1.49 | −39.82 | 9.09 | −0.93 | |||
840 | Folic acid | 0.020 | 32.14 ** | −28.85 | 23.88 | −26.55 | 6.67 | −3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Garavito-Duarte, Y.; Gormley, A.R.; Kim, S.W. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins 2025, 17, 43. https://doi.org/10.3390/toxins17010043
Choi H, Garavito-Duarte Y, Gormley AR, Kim SW. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins. 2025; 17(1):43. https://doi.org/10.3390/toxins17010043
Chicago/Turabian StyleChoi, Hyunjun, Yesid Garavito-Duarte, Alexa R. Gormley, and Sung Woo Kim. 2025. "Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals" Toxins 17, no. 1: 43. https://doi.org/10.3390/toxins17010043
APA StyleChoi, H., Garavito-Duarte, Y., Gormley, A. R., & Kim, S. W. (2025). Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins, 17(1), 43. https://doi.org/10.3390/toxins17010043