Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens
Abstract
:1. Introduction
2. Results
2.1. Effect of Combined Doses of Mycotoxins on Production Performance
2.2. Effect of Combined Doses of Mycotoxins on Apparent Ileal Amino Acid Digestibility
2.3. Effect of Combined Doses of Mycotoxins on Jejunal and Ileal Histomorphology and Intestinal Lesion Score
2.4. Effect of Combined Doses of Mycotoxins on Jejunal Tight Junction Protein mRNA Expression
2.5. Effect of Combined Doses of Mycotoxins on Splenic Macrophage Nitric Oxide Assay
2.6. Effect of Combined Doses of Mycotoxins on Total IgA Quantification in Bile by ELISA
2.7. Effect of Combined Doses of Mycotoxins on Cecal Tonsils CD4+ and CD8+ T Lymphocytes and CD4+CD25+ T Regulatory Cell Percentages
2.8. Effect of Combined Doses of Mycotoxins on Spleen CD4+ and CD8+ T Lymphocytes and CD4+CD25+ T Regulatory Cell Percentages
2.9. Effect of Combined Doses of Mycotoxins on Liver mRNA Expression
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Diet Formulation
5.2. Birds and Housing
5.3. Growth Performance
5.4. Determination of Apparent Ileal Amino Acid Digestibility
5.5. Jejunal and Ileal Histomorphology
5.6. Jejunal Tight Junctions and Spleen, Liver mRNA Expression
5.7. Nitric Oxide Assay
5.8. Total IgA Quantification in Bile by ELISA
5.9. Spleen and Cecal Tonsil CD4+, CD8+ T Lymphocytes, and CD4+CD25+ T Regulatory Cell Percentages
5.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chhaya, R.S.; O’Brien, J.; Cummins, E. Feed to fork risk assessment of mycotoxins under climate change influences-recent developments. Trends Food Sci. Technol. 2022, 126, 126–141. [Google Scholar] [CrossRef]
- Sweeney, M.J.; Dobson, A.D. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar] [CrossRef]
- Marin, S.; Sanchis, V.; Sanz, D.; Castel, I.; Ramos, A.J.; Canela, R.; Magan, N. Control of growth and fumonisin B1 production by Fusarium verticillioides and Fusarium proliferatum isolates in moist maize with propionate preservatives. Food Addit. Contam. 1999, 16, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Cancer, I.A.f.R.o. Toxins derived from Fusarium graminearum, F. culmorum and F. crookwellense: Zearalenone, deoxynivalenol, nivalenol and fusarenone X. IARC Monogr. Eval. Carcinog. Risks Hum. 1993, 56, 397–444. [Google Scholar]
- DSM-Firmenich World Mycotoxin Survey. The Global Threat 2023. Available online: https://www.dsm.com/content/dam/dsm/anh/en/documents/REP_MTXsurvey_Q3_2023_EN_1123_AUE.pdf (accessed on 11 November 2024).
- Pokoo-Aikins, A.; McDonough, C.M.; Mitchell, T.R.; Hawkins, J.A.; Adams, L.F.; Read, Q.D.; Li, X.; Shanmugasundaram, R.; Rodewald, E.; Acharya, P. Acharya. Mycotoxin contamination and the nutritional content of corn targeted for animal feed. Poult. Sci. 2024, 103, 104303. [Google Scholar]
- Desjardins, A.; Plattner, R.; Shackelford, D.; Leslie, J.; Nelson, P. Heritability of fumonisin B1 production in Gibberella fujikuroi mating population A. Appl. Environ. Microbiol. 1992, 58, 2799–2805. [Google Scholar] [CrossRef] [PubMed]
- Wu, F. Mycotoxin Risk Assessment for the Purpose of Setting International Regulatory Standards; ACS Publications: Washington, DC, USA, 2004. [Google Scholar]
- Girgis, G.; Smith, T. Comparative aspects of Fusarium mycotoxicoses in poultry fed diets containing naturally contaminated grains. World’s Poult. Sci. J. 2010, 66, 65–86. [Google Scholar] [CrossRef]
- Surai, P.F.; Dvorska, J. Effects of mycotoxins on antioxidant status and immunity. Mycotoxin Blue Book 2005, 1, 93–127. [Google Scholar]
- Birhane, N.; Fesseha, H. Vaccine failure in poultry production and its control methods: A review. Biomed. J. Sci. Tech. Res. 2020, 29. [Google Scholar] [CrossRef]
- FDA Mycotoxin Regulatory Guidance. August 2011. Available online: https://www.aflatoxinpartnership.org/wp-content/uploads/2021/05/NGFAComplianceGuide-FDARegulatoryGuidanceforMycotoxins8-2011.pdf (accessed on 11 November 2024).
- Food, U.; Administration, D. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds; Final guidance. US FDA: Silver Spring, MD, USA, 2001. [Google Scholar]
- Kolawole, O.; Graham, A.; Donaldson, C.; Owens, B.; Abia, W.A.; Meneely, J.; Alcorn, M.J.; Connolly, L.; Elliott, C.T. Low doses of mycotoxin mixtures below EU regulatory limits can negatively affect the performance of broiler chickens: A longitudinal study. Toxins 2020, 12, 433. [Google Scholar] [CrossRef]
- Dänicke, S. Orientation values for critical concentrations of deoxynivalenol and zearalenone in diets for pigs, ruminants and gallinaceous poultry. Proc. Soc. Nutr. Physiol. 2001, 10, 171–174. [Google Scholar]
- Filazi, A.; Yurdakok-Dikmen, B.; Kuzukiran, O.; Sireli, U.T. Mycotoxins in poultry. In Poultry Science; IntechOpen: London, UK, 2017; pp. 73–92. [Google Scholar]
- Lun, A.K.; Moran, E., Jr.; Young, L.G.; McMillan, E.G. Disappearance of deoxynivalenol from digesta progressing along the chicken’s gastrointestinal tract after intubation with feed containing contaminated corn. Bull. Environ. Contam. Toxicol. 1988, 40, 317–324. [Google Scholar] [CrossRef]
- Young, J.C.; Zhou, T.; Yu, H.; Zhu, H.; Gong, J. Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem. Toxicol. 2007, 45, 136–143. [Google Scholar] [CrossRef]
- Liu, J.; Doupovec, B.; Schatzmayr, D.; Murugesan, G.; Bortoluzzi, C.; Villegas, A.; Applegate, T.J. The impact of deoxynivalenol, fumonisins, and their combination on performance, nutrient, and energy digestibility in broiler chickens. Poult. Sci. 2020, 99, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shanmugasundaram, R.; Doupovec, B.; Schatzmayr, D.; Murugesan, G.; Applegate, T.J. Short-term exposure to fumonisins and deoxynivalenol, on broiler growth performance and cecal Salmonella load during experimental Salmonella Enteritidis infection. Poult. Sci. 2023, 102, 102677. [Google Scholar] [CrossRef] [PubMed]
- Kubena, L.; Edrington, T.; Harvey, R.; Buckley, S.; Phillips, T.; Rottinghaus, G.; Casper, H. Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and T-2 toxin or deoxynivalenol in broiler chicks. Poult. Sci. 1997, 76, 1239–1247. [Google Scholar] [CrossRef]
- Antonissen, G.; Van Immerseel, F.; Pasmans, F.; Ducatelle, R.; Janssens, G.P.; De Baere, S.; Mountzouris, K.C.; Su, S.; Wong, E.A.; De Meulenaer, B. Mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens. J. Agric. Food Chem. 2015, 63, 10846–10855. [Google Scholar] [CrossRef]
- Yunus, A.; Ghareeb, K.; Twaruzek, M.; Grajewski, J.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Effects on bird performance and response to common vaccines. Poult. Sci. 2012, 91, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Adams, D.; Ramirez, S.; Murugesan, G.; Applegate, T.; Cunningham, S.; Pokoo-Aikins, A.; Glenn, A. Subclinical doses of combined fumonisins and deoxynivalenol predispose Clostridium perfringens–inoculated broilers to necrotic enteritis. Front. Physiol. 2022, 13, 934660. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Lourenco, J.; Hakeem, W.A.; Dycus, M.M.; Applegate, T.J. Subclinical doses of dietary fumonisins and deoxynivalenol cause cecal microbiota dysbiosis in broiler chickens challenged with Clostridium perfringens. Front. Microbiol. 2023, 14, 1106604. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Dohnal, I.; Shanmugasundaram, R.; Eicher, S.D.; Selvaraj, R.K.; Schatzmayr, G.; Applegate, T.J. Susceptibility of broiler chickens to coccidiosis when fed subclinical doses of deoxynivalenol and fumonisins—special emphasis on the immunological response and the mycotoxin interaction. Toxins 2016, 8, 231. [Google Scholar] [CrossRef]
- Antonissen, G.; Van Immerseel, F.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F.; Timbermont, L.; Verlinden, M.; Janssens, G.P.J.; Eeckhaut, V.; Eeckhout, M. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS ONE 2014, 9, e108775. [Google Scholar] [CrossRef] [PubMed]
- Antonissen, G.; Croubels, S.; Pasmans, F.; Ducatelle, R.; Eeckhaut, V.; Devreese, M.; Verlinden, M.; Haesebrouck, F.; Eeckhout, M.; De Saeger, S. Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Vet. Res. 2015, 46, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.; Ghareeb, K.; Böhm, J.; Zentek, J. The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins 2013, 5, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Bondy, G.S.; Pestka, J.J. Immunomodulation by fungal toxins. J. Toxicol. Environ. Health Part B Crit. Rev. 2000, 3, 109–143. [Google Scholar]
- Sun, Y.; Huang, K.; Long, M.; Yang, S.; Zhang, Y. An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food Chem. Toxicol. 2022, 163, 112895. [Google Scholar] [CrossRef] [PubMed]
- Girgis, G.N.; Sharif, S.; Barta, J.R.; Boermans, H.J.; Smith, T.K. Immunomodulatory effects of feed-borne Fusarium mycotoxins in chickens infected with coccidia. Exp. Biol. Med. 2008, 233, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Hlavová, K.; Štěpánová, H.; Šťastný, K.; Levá, L.; Hodkovicová, N.; Vícenová, M.; Matiašovic, J.; Faldyna, M. Minimal concentrations of deoxynivalenol reduce cytokine production in individual lymphocyte populations in pigs. Toxins 2020, 12, 190. [Google Scholar] [CrossRef]
- Wojtacha, P.; Trybowski, W.; Podlasz, P.; Żmigrodzka, M.; Tyburski, J.; Polak-Śliwińska, M.; Jakimiuk, E.; Bakuła, T.; Baranowski, M.; Żuk-Gołaszewska, K. Effects of a low dose of T-2 toxin on the percentage of T and B lymphocytes and cytokine secretion in the porcine ileal wall. Toxins 2021, 13, 277. [Google Scholar] [CrossRef] [PubMed]
- Azizi, T.; Daneshyar, M.; Allymehr, M.; Jalali, A.S.; Behroozyar, H.K.; Tukmechi, A. The impact of deoxynivalenol contaminated diet on performance, immune response, intestine morphology and jejunal gene expression in broiler chicken. Toxicon 2021, 199, 72–78. [Google Scholar] [CrossRef]
- Bulgaru, C.V.; Marin, D.E.; Pistol, G.C.; Taranu, I. Zearalenone and the immune response. Toxins 2021, 13, 248. [Google Scholar] [CrossRef]
- Muhmood, A.; Liu, J.; Liu, D.; Liu, S.; Azzam, M.M.; Junaid, M.B.; Hou, L.; Le, G.; Huang, K. Mitigation of Deoxynivalenol (DON)-and Aflatoxin B1 (AFB1)-Induced Immune Dysfunction and Apoptosis in Mouse Spleen by Curcumin. Toxins 2024, 16, 356. [Google Scholar] [CrossRef]
- Swamy, H.; Smith, T.; Karrow, N.; Boermans, H. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on growth and immunological parameters of broiler chickens. Poult. Sci. 2004, 83, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Ochieng, P.E.; Scippo, M.-L.; Kemboi, D.C.; Croubels, S.; Okoth, S.; Kang’ethe, E.K.; Doupovec, B.; Gathumbi, J.K.; Lindahl, J.F.; Antonissen, G. Mycotoxins in poultry feed and feed ingredients from Sub-Saharan Africa and their impact on the production of broiler and layer chickens: A review. Toxins 2021, 13, 633. [Google Scholar] [CrossRef] [PubMed]
- Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Bouhet, S.; Oswald, I.P. The intestine as a possible target for fumonisin toxicity. Mol. Nutr. Food Res. 2007, 51, 925–931. [Google Scholar] [CrossRef]
- Rotter, B.A. Invited review: Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health Part A 1996, 48, 1–34. [Google Scholar] [CrossRef]
- Grenier, B.; Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [PubMed]
- Girgis, G.N.; Barta, J.R.; Girish, C.K.; Karrow, N.A.; Boermans, H.J.; Smith, T.K. Effects of feed-borne Fusarium mycotoxins and an organic mycotoxin adsorbent on immune cell dynamics in the jejunum of chickens infected with Eimeria maxima. Vet. Immunol. Immunopathol. 2010, 138, 218–223. [Google Scholar] [CrossRef]
- Lucke, A.; Doupovec, B.; Paulsen, P.; Zebeli, Q.; Böhm, J. Effects of low to moderate levels of deoxynivalenol on feed and water intake, weight gain, and slaughtering traits of broiler chickens. Mycotoxin Res. 2017, 33, 261–271. [Google Scholar] [CrossRef]
- Metayer, J.-P.; Travel, A.; Mika, A.; Bailly, J.-D.; Cleva, D.; Boissieu, C.; Guennec, J.L.; Froment, P.; Albaric, O.; Labrut, S. Lack of toxic interaction between fusariotoxins in broiler chickens fed throughout their life at the highest level tolerated in the european union. Toxins 2019, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Oswald, I.P.; Marin, D.; Bouhet, S.; Pinton, P.; Taranu, I.; Accensi, F. Immunotoxicological risk of mycotoxins for domestic animals. Food Addit. Contam. 2005, 22, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Placinta, C.; D’Mello, J.F.; Macdonald, A. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed. Sci. Technol. 1999, 78, 21–37. [Google Scholar] [CrossRef]
- Abbas, M. Co-occurrence of mycotoxins and its detoxification strategies. In Mycotoxins-Impact and Management Strategies; IntechOpen: London, UK, 2019. [Google Scholar]
- Smith, M.-C.; Madec, S.; Coton, E.; Hymery, N. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Awad, W.; Böhm, J.; Razzazi-Fazeli, E.; Hulan, H.; Zentek, J. Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poult. Sci. 2004, 83, 1964–1972. [Google Scholar] [CrossRef]
- Liu, G.; Kim, W.K. The functional roles of methionine and arginine in intestinal and bone health of poultry. Animals 2023, 13, 2949. [Google Scholar] [CrossRef]
- Wu, B.; Li, L.; Ruan, T.; Peng, X. Effect of methionine deficiency on duodenal and jejunal IgA+ B cell count and immunoglobulin level of broilers. Iran. J. Vet. Res. 2018, 19, 165. [Google Scholar] [PubMed]
- Chen, Y.; Cheng, Y.; Li, X.; Yang, W.; Wen, C.; Zhuang, S.; Zhou, Y. Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poult. Sci. 2017, 96, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Cheng, Y.; Li, Y.; Wen, C.; Zhou, Y. Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. Br. J. Nutr. 2018, 119, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Kong, C.; Song, M.; Kim, B. Effects of dietary deoxynivalenol and zearalenone on apparent ileal digestibility of amino acids in growing pigs. Anim. Feed. Sci. Technol. 2016, 219, 77–82. [Google Scholar] [CrossRef]
- Andretta, I.; Kipper, M.; Lehnen, C.; Lovatto, P. Meta-analysis of the relationship of mycotoxins with biochemical and hematological parameters in broilers. Poult. Sci. 2012, 91, 376–382. [Google Scholar] [CrossRef]
- Andretta, I.; Kipper, M.; Lehnen, C.; Hauschild, L.; Vale, M.; Lovatto, P. Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 2012, 6, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P.; Oswald, I.P. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: A review. Toxins 2014, 6, 1615–1643. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.H.; Bantug, G.; Griss, T.; Condotta, S.; Johnson, R.M.; Samborska, B.; Mainolfi, N.; Suri, V.; Guak, H.; Balmer, M.L. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017, 25, 345–357. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, X.; Liu, B.; Xia, Y.; Xin, Z.; Deng, B.; He, L.; Deng, J.; Ren, W. Aspartate metabolism facilitates IL-1β production in inflammatory macrophages. Front. Immunol. 2021, 12, 753092. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yin, Y.-L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, C.; Fernandes, J.; Doranalli, K.; Applegate, T. Effects of dietary amino acids in ameliorating intestinal function during enteric challenges in broiler chickens. Anim. Feed. Sci. Technol. 2020, 262, 114383. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Q.; Chen, Y.; Su, Y.; Wen, C.; Zhou, Y. Modified palygorskite improves immunity, antioxidant ability, intestinal morphology, and barrier function in broiler chickens fed naturally contaminated diet with permitted feed concentrations of Fusarium mycotoxins. Toxins 2018, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Hess, M.; Twarużek, M.; Grajewski, J.; Kosicki, R.; Böhm, J.; Zentek, J. The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int. J. Mol. Sci. 2011, 12, 7996–8012. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Guo, C.; Yu, S.; Zhu, L.; Wang, Y.; Hu, H.; Deng, J. Progress in mycotoxins affecting intestinal mucosal barrier function. Int. J. Mol. Sci. 2019, 20, 2777. [Google Scholar] [CrossRef] [PubMed]
- Iwashita, J.; Sato, Y.; Sugaya, H.; Takahashi, N.; Sasaki, H.; Abe, T. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-α through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol. Cell Biol. 2003, 81, 275–282. [Google Scholar] [CrossRef]
- Rosenthal, R.; Milatz, S.; Krug, S.M.; Oelrich, B.; Schulzke, J.-D.; Amasheh, S.; Günzel, D.; Fromm, M. Claudin-2, a component of the tight junction, forms a paracellular water channel. J. Cell Sci. 2010, 123, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Bracarense, A.-P.F.; Lucioli, J.; Grenier, B.; Pacheco, G.D.; Moll, W.-D.; Schatzmayr, G.; Oswald, I.P. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br. J. Nutr. 2012, 107, 1776–1786. [Google Scholar] [CrossRef]
- Rőszer, T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat. Inflamm. 2015, 2015, 816460. [Google Scholar] [CrossRef] [PubMed]
- Moon, E.Y. Aflatoxin B1-induced suppression of nitric oxide production in murine peritoneal macrophages. J. Toxicol. Environ. Health Part A 1998, 55, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.-i.; Kawakami, H.; Kamata, Y.; Sugita-Konishi, Y. Effect of a combination of deoxynivalenol and nivalenol on lipopolisaccharide-induced nitric oxide production by mouse macrophages. Mycotoxin Res. 2011, 27, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Dresden-Osborne, C.; Noblet, G.P. Fumonisin B1 affects viability and alters nitric oxide production of a murine macrophage cell line. Int. Immunopharmacol. 2002, 2, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004, 75, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Yan, Y.; Zhang, R.; Xiong, H. Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci. 2018, 19, 3805. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Song, Y.; Long, M.; Yang, S. Immunotoxicity of three environmental mycotoxins and their risks of increasing pathogen infections. Toxins 2023, 15, 187. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Uetsuka, K. Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int. J. Mol. Sci. 2011, 12, 5213–5237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yan, M.; Chang, M.; Hou, X.; Wang, F.; Song, W.; Wang, Y.; Feng, K.; Yuan, Y.; Yue, T. Integrated transcriptomics and metabolomics reveal the mechanism of intestinal damage upon acute patulin exposure in mice. Ecotoxicol. Environ. Saf. 2024, 276, 116270. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.; Shang, H.; Miao, Y.; Huang, J.; Niu, X.; Chen, R.; Peng, D.; Wei, K.; Zhu, R. Polysaccharides from Pinus massoniana pollen improve intestinal mucosal immunity in chickens. Poult. Sci. 2021, 100, 507–516. [Google Scholar] [CrossRef]
- Tessari, E.N.C.; Oliveira, C.d.; Cardoso, A.; Ledoux, D.; Rottinghaus, G. Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. Br. Poult. Sci. 2006, 47, 357–364. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.; Böhm, J. Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poult. Sci. 2012, 91, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Lu, Y.; Huang, X.; Jiang, H.; Chen, G.; Shao, Y.; Savelkoul, H.F.; Jansen, C.A.; Liu, G. TGF-β1 impairs IgA class switch recombination and production in porcine Peyer’s patches B cells. Eur. J. Immunol. 2024, 54, 2350704. [Google Scholar] [CrossRef] [PubMed]
- Girish, C.; Smith, T.; Boermans, H.; Kumar, P.A.; Girgis, G. Effects of dietary Fusarium mycotoxins on intestinal lymphocyte subset populations, cell proliferation and histological changes in avian lymphoid organs. Food Chem. Toxicol. 2010, 48, 3000–3007. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J.; Zhou, H.-R.; Moon, Y.; Chung, Y. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 2004, 153, 61–73. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, K.; Bai, S.; Ding, X.; Zeng, Q.; Yang, J.; Fang, J.; Chen, K. Histological lesions, cell cycle arrest, apoptosis and T cell subsets changes of spleen in chicken fed aflatoxin-contaminated corn. Int. J. Environ. Res. Public Health 2014, 11, 8567–8580. [Google Scholar] [CrossRef]
- Chen, Y.; Han, S.; Wang, Y.; Li, D.; Zhao, X.; Zhu, Q.; Yin, H. Oxidative Stress and Apoptotic Changes in Broiler Chicken Splenocytes Exposed to T-2 Toxin. BioMed Res. Int. 2019, 2019, 5493870. [Google Scholar] [CrossRef]
- Liu, H.; Leung, B.P. CD4+ CD25+ regulatory T cells in health and disease. Clin. Exp. Pharmacol. Physiol. 2006, 33, 519. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Selvaraj, R.K. Regulatory T cell properties of chicken CD4+ CD25+ cells. J. Immunol. 2011, 186, 1997–2002. [Google Scholar] [CrossRef]
- Mills, K.H. Regulatory T cells: Friend or foe in immunity to infection? Nat. Rev. Immunol. 2004, 4, 841–855. [Google Scholar] [CrossRef] [PubMed]
- Erf, G. Cell-mediated immunity in poultry. Poult. Sci. 2004, 83, 580–590. [Google Scholar] [CrossRef]
- Bhandari, N.; Sharma, R.P. Fumonisin B1-induced alterations in cytokine expression and apoptosis signaling genes in mouse liver and kidney after an acute exposure. Toxicology 2002, 172, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Kogut, M.H.; Arsenault, R.J.; Swaggerty, C.L.; Cole, K.; Reddish, J.M.; Selvaraj, R.K. Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens. Poult. Sci. 2015, 94, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R. Nutrient Requirements of Poultry: 2024; National Academies Press: Washington, DC, USA, 2024. [Google Scholar]
- McGlone, J. Guide for the Care and Use of Agricultural Animals in Research and Teaching; Federation of Animal Science Societies: Champaign, IL, USA, 2010. [Google Scholar]
- Cunniff, P.; Washington, D. Official methods of analysis of AOAC International. J. AOAC Int 1997, 80, 127A. [Google Scholar]
- Shanmugasundaram, R.; Sifri, M.; Selvaraj, R.K. Effect of yeast cell product (CitriStim) supplementation on broiler performance and intestinal immune cell parameters during an experimental coccidial infection. Poult. Sci. 2013, 92, 358–363. [Google Scholar] [CrossRef]
- Hofacre, C.; Froyman, R.; Gautrias, B.; George, B.; Goodwin, M.; Brown, J. Use of Aviguard and other intestinal bioproducts in experimental Clostridium perfringens-associated necrotizing enteritis in broiler chickens. Avian Dis. 1998, 42, 579–584. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Wick, M.; Lilburn, M.S. Effect of embryonic thermal manipulation on heat shock protein 70 expression and immune system development in Pekin duck embryos. Poult. Sci. 2018, 97, 4200–4210. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Wick, M.; Lilburn, M. Effect of a post-hatch lipopolysaccharide challenge in Turkey poults and ducklings after a primary embryonic heat stress. Dev. Comp. Immunol. 2019, 101, 103436. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Selvaraj, R. Effect of killed whole yeast cell prebiotic supplementation on broiler performance and intestinal immune cell parameters. Poult. Sci. 2012, 91, 107–111. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, Y.; Yang, M.; Zhang, L.; Lu, Z.; Zhou, Y.; Wang, T. Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers. Anim. Feed. Sci. Technol. 2015, 208, 119–131. [Google Scholar] [CrossRef]
- Song, B.; Li, H.; Wu, Y.; Zhen, W.; Wang, Z.; Xia, Z.; Guo, Y. Effect of microencapsulated sodium butyrate dietary supplementation on growth performance and intestinal barrier function of broiler chickens infected with necrotic enteritis. Anim. Feed. Sci. Technol. 2017, 232, 6–15. [Google Scholar] [CrossRef]
- Balbuena, P.; Li, W.; Ehrich, M. Assessments of tight junction proteins occludin, claudin 5 and scaffold proteins ZO1 and ZO2 in endothelial cells of the rat blood–brain barrier: Cellular responses to neurotoxicants malathion and lead acetate. Neurotoxicology 2011, 32, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, X.; Yang, L.; Chen, X.; Jiang, R.; Jin, S.; Geng, Z. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
Days | Parameter | T1 (Control) | T2 | T3 | T4 | T5 | T6 | T7 | T8 | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|
0–7 | BWG (g) | 56.3 | 49.3 | 54.2 | 55.9 | 47.9 | 55.4 | 51.3 | 50.2 | 3.2 | 0.42 |
FCR | 2.33 | 2.47 | 2.33 | 2.5 | 2.63 | 2.32 | 2.33 | 2.49 | 0.16 | 0.43 | |
0–14 | BWG (g) | 213.3 | 195.9 | 187.0 | 211.9 | 219.9 | 202.8 | 218.3 | 227.4 | 12.8 | 0.38 |
FCR | 1.74 | 2.03 | 1.89 | 1.71 | 1.89 | 1.79 | 1.73 | 2.02 | 0.13 | 0.44 | |
0–21 | BWG (g) | 461.2 a | 383.1 b | 408.1 ab | 404.6 ab | 419.0 ab | 399.6 b | 415.8 ab | 444.5 ab | 13.7 | 0.01 |
FCR | 1.68 | 1.79 | 1.72 | 1.74 | 1.72 | 1.77 | 1.80 | 1.72 | 0.07 | 0.31 | |
0–28 | BWG (g) | 784.4 a | 684.8 b | 742.8 ab | 729.4 ab | 748.7 ab | 728.1 | 764.8 ab | 782.2 a | 20.2 | 0.03 |
FCR | 2.41 | 2.79 | 2.58 | 2.59 | 2.56 | 2.51 | 2.42 | 2.45 | 0.11 | 0.26 | |
0–35 | BWG (g) | 1276.3 a | 1120.3 d | 1181.7 cd | 1159.8 cd | 1200.7 bc | 1203.8 bc | 1251.5 ab | 1265.2 ab | 14.9 | <0.01 |
FCR | 1.68 | 1.79 | 1.77 | 1.76 | 1.72 | 1.72 | 1.74 | 1.67 | 0.03 | 0.16 |
Item | T1 (Control) | T2 | T3 | T4 | T5 | T6 | T7 | T8 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
DM% | 60 | 59.2 | 54.3 | 62.5 | 63.1 | 53.1 | 63.3 | 60.1 | 4.01 | 0.49 |
Nitrogen% | 75.4 | 71.8 | 71.4 | 77.4 | 77.2 | 70.2 | 74.5 | 76.6 | 3.19 | 0.60 |
Indispensable amino acids, % | ||||||||||
Arginine | 83.5 | 82.5 | 79.3 | 83.8 | 83.0 | 80.1 | 83.4 | 84.8 | 2.17 | 0.62 |
Histidine | 76.9 | 74.6 | 64.6 | 72.2 | 75.7 | 70.2 | 75.1 | 77.9 | 3.42 | 0.16 |
Leucine | 78.1 | 76.2 | 66.7 | 73.1 | 77.3 | 71.2 | 75.1 | 78.7 | 3.14 | 0.15 |
Isoleucine | 73.4 | 71.3 | 64.4 | 72.3 | 72.7 | 68.0 | 73.0 | 75.7 | 3.55 | 0.44 |
Lysine | 80.8 | 80.9 | 76.0 | 84.5 | 83.5 | 78.8 | 80.9 | 83.9 | 2.53 | 0.29 |
Methionine | 86.3 ab | 83.1 abc | 80.5 bc | 86.6 ab | 87.7 a | 78.0 c | 89.1 a | 85.8 ab | 2.15 | 0.01 |
Phenylalanine | 77.1 | 76.3 | 67.2 | 74.4 | 76.2 | 71.1 | 76.2 | 78.2 | 3.11 | 0.24 |
Threonine | 64.9 | 58.7 | 48.2 | 66.0 | 63.8 | 57.3 | 69.1 | 67.0 | 4.69 | 0.06 |
Valine | 73.9 | 70.0 | 66.5 | 73.9 | 73.8 | 67.9 | 73.8 | 75.2 | 3.62 | 0.58 |
Dispensable amino acids, % | ||||||||||
Alanine | 76.0 | 73.3 | 64.8 | 71.3 | 75.7 | 72.6 | 74.1 | 78.6 | 3.31 | 0.17 |
Aspartate | 70.0 a | 70.8 a | 50.9 b | 62.8 a | 66.3 a | 63.1 a | 69.0 a | 70.1 a | 3.99 | 0.02 |
Cysteine | 54.6 | 61.0 | 54.2 | 65.5 | 62.0 | 51.7 | 62.4 | 64.3 | 4.74 | 0.32 |
Glutamate | 81.8 | 81.5 | 71.2 | 79.0 | 80.3 | 77.1 | 79.9 | 82.0 | 2.50 | 0.07 |
Glycine | 65.2 | 63.1 | 68.0 | 58.5 | 61.9 | 56.1 | 68.8 | 65.9 | 4.49 | 0.45 |
Proline | 70.4 | 67.0 | 57.9 | 65.6 | 68.6 | 61.2 | 67.9 | 71.4 | 3.99 | 0.26 |
Serine | 68.3 ab | 66.9 ab | 52.3 c | 61.9 abc | 68.8 ab | 58.8 bc | 70.3 ab | 72.1 a | 4.05 | 0.02 |
Tyrosine | 74.7 | 74.7 | 65.0 | 72.4 | 70.8 | 63.5 | 76.1 | 77.3 | 3.47 | 0.06 |
Total amino acids, % | 75.6 | 74.0 | 65.6 | 73.4 | 74.8 | 69.4 | 75.2 | 77.0 | 3.20 | 0.24 |
Days of Exposure | Parameter | T1 (Control) | T2 | T3 | T4 | T5 | T6 | T7 | T8 | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|
d21 | |||||||||||
Jejunum | Villi length (µm) | 926 a | 749.7 bc | 722.6 bc | 638.6 c | 686.4 bc | 777.3 abc | 806.8 ab | 808.2 ab | 58.7 | 0.05 |
Jejunum | Crypt depth (µm) | 284.6 | 211.1 | 211.7 | 190.9 | 203.7 | 190.0 | 228.7 | 259.8 | 26.6 | 0.16 |
Ileum | Villi length (µm) | 559.2 a | 431.6 c | 452.7 bc | 462.7 abc | 455.4 abc | 446.8 bc | 562.9 a | 572.1 a | 23 | <0.01 |
Ileum | Crypt depth (µm) | 133.1 a | 113.9 bc | 113.5 bc | 118.9 bc | 122.4 abc | 89.3 c | 146.0 a | 144.5 a | 12 | <0.01 |
d35 | |||||||||||
Jejunum | Villi length (µm) | 1355.3 a | 1071.4 bc | 1012.1 c | 1135.6 bc | 1094.6 bc | 1035.2 bc | 1233.5 abc | 1252.1 ab | 78.6 | 0.042 |
Jejunum | Crypt depth (µm) | 246.4 | 198.9 | 181.9 | 217.8 | 237.0 | 234.6 | 234.6 | 233.3 | 22.3 | 0.46 |
Ileum | Villi length (µm) | 1282.0 a | 1045.8 b | 1086.2 ab | 1130.8 ab | 1111.0 ab | 1082.2 b | 1185.2 ab | 1213.12 ab | 43.9 | <0.01 |
Ileum | Crypt depth (µm) | 255.9 | 209.11 | 205.6 | 210.2 | 227.8 | 210.4 | 238.4 | 255.7 | 20.1 | 0.38 |
Days of Exposure | Cecal Tonsils T Cells | T1 (Control) | T2 | T3 | T4 | T5 | T6 | T7 | T8 | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|
d14 | CD4+ (%) | 18.0 a | 12.1 bc | 7.7 cd | 6.5 d | 4.1 d | 3.2 d | 15.8 ab | 15.3 ab | 1.1 | <0.05 |
CD8+ (%) | 19.9 a | 8.5 b | 9.4 b | 8.8 b | 6.4 b | 4.1 b | 18.9 a | 15.7 a | 1.4 | <0.05 | |
CD8+/CD4+ ratio | 1.1 | 0.7 | 1.2 | 1.3 | 1.5 | 1.3 | 1.2 | 1.0 | 0.2 | 0.28 | |
T regs (%) | 3.7 a | 1.9 b | 1.7 b | 1.4 b | 1.4 b | 0.9 b | 1.7 b | 3.4 a | 0.3 | <0.05 | |
d21 | CD4+ (%) | 21.5 a | 6.6 d | 5.1 d | 7.6 cd | 8.0 cd | 8.2 cd | 12.0 bc | 15.4 b | 1.1 | <0.05 |
CD8+ (%) | 29.6 a | 6.9 c | 7.0 c | 7.4 c | 9.6 bc | 9.9 bc | 14.1 bc | 17.2 b | 1.8 | <0.05 | |
CD8+/CD4+ ratio | 1.4 | 1.0 | 1.4 | 1.0 | 1.2 | 1.2 | 1.2 | 1.1 | 0.1 | 0.30 | |
T regs (%) | 4.5 a | 2.6 cd | 2.3 cd | 2.1 cd | 2.0 cd | 1.5 d | 3.2 bc | 4.3 ab | 0.3 | <0.05 | |
d28 | CD4+ (%) | 24.4 a | 8.3 d | 11.1 cd | 15.1 bc | 13.7 bcd | 12.3 cd | 12.5 cd | 20.0 ab | 1.5 | <0.05 |
CD8+ (%) | 23.3 a | 7.6 d | 10.9 cd | 17.6 ab | 18.8 ab | 13.4 bcd | 13.8 bc | 17.5 ab | 1.4 | <0.05 | |
CD8+/CD4+ ratio | 1.0 | 1.1 | 1.0 | 1.3 | 1.4 | 1.1 | 1.1 | 0.9 | 0.1 | 0.17 | |
T regs (%) | 3.0 a | 1.2 b | 1.5 b | 1.3 b | 1.5 b | 1.2 b | 1.9 ab | 2.3 ab | 0.3 | <0.05 | |
d35 | CD4+ (%) | 20.0 a | 8.3 b | 6.7 bc | 10.0 c | 13.6 c | 8.2 c | 16.1 ab | 18.4 b | 1.2 | <0.05 |
CD8+ (%) | 17.5 a | 7.9 ab | 10.9 b | 13.1 c | 13.3 c | 14.8 c | 14.9 ab | 19.0 a | 1.2 | <0.05 | |
CD8+/CD4+ ratio | 0.9 b | 1.2 ab | 1.7 ab | 1.3 ab | 1.0 b | 1.9 a | 1.0 b | 1.0 b | 0.2 | <0.05 | |
T regs (%) | 3.0 a | 0.5 c | 1.7 bc | 0.7 c | 0.9 c | 1.5 c | 3.2 a | 2.8 ab | 0.3 | <0.05 |
Days of Exposure | Spleen Parameter | T1 (Control) | T2 | T3 | T4 | T5 | T6 | T7 | T8 | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|
d14 | CD4+ (%) | 16.7 a | 5.2 c | 6.8 bc | 6.2 bc | 8.4 b | 8.0 b | 8.5 b | 18.7 a | 0.5 | <0.05 |
CD8+ (%) | 14.4 b | 22.0 a | 24.5 a | 24.8 a | 14.9 b | 26.8 a | 15.8 b | 14.6 b | 1.1 | <0.05 | |
CD8+/CD4 ratio | 0.9 e | 2.7 bcd | 3.7 ab | 4.1 a | 2.9 bc | 3.5 ab | 1.9 cde | 1.6 de | 0.3 | <0.05 | |
T regs (%) | 3.3 a | 1.5 c | 1.9 bc | 1.0 c | 1.4 c | 1.4 c | 1.4 c | 2.7 ab | 0.2 | <0.05 | |
d21 | CD4+ (%) | 17.3 a | 4.5 c | 9.0 b | 9.8 b | 8.7 b | 7.1 bc | 7.9 b | 17.4 a | 0.6 | <0.05 |
CD8+ (%) | 17.0 bc | 30.8 a | 25.9 ab | 26.3 ab | 20.9 abc | 24.6 abc | 25.7 abc | 15.7 c | 2.2 | <0.05 | |
CD8+/CD4 ratio | 1.0 c | 7.5 a | 3.0 bc | 2.8 bc | 2.5 bc | 3.9 b | 3.4 b | 0.9 c | 0.5 | <0.05 | |
T regs (%) | 3.5 a | 1.8 b | 1.8 b | 1.7 b | 1.4 b | 1.2 b | 2.0 b | 3.3 a | 0.3 | <0.05 | |
d28 | CD4+ (%) | 14.9 a | 5.6 b | 5.6 b | 6.1 b | 5.7 b | 5.5 b | 6.2 b | 15.7 a | 0.7 | <0.05 |
CD8+ (%) | 12.9 | 10.6 | 13.7 | 14.8 | 11.0 | 11.3 | 11.5 | 9.7 | 1.2 | 0.07 | |
CD8+/CD4 ratio | 0.9 b | 2.0 a | 2.5 a | 2.4 a | 2.0 a | 2.1 a | 1.9 a | 0.6 b | 0.2 | <0.05 | |
T regs (%) | 3.8 a | 1.0 b | 1.6 b | 1.0 b | 0.6 b | 0.9 b | 1.3 b | 3.9 a | 0.3 | <0.05 | |
d35 | CD4+ (%) | 14.7 a | 7.1 cd | 6.9 cd | 10.9 b | 5.1 d | 9.8 bc | 12.3 ab | 11.8 ab | 0.8 | <0.05 |
CD8+ (%) | 21.8 b | 25.5 ab | 30.1 a | 28.3 ab | 30.6 a | 26.6 ab | 29.7 ab | 19.5 b | 2.3 | <0.05 | |
CD8+/CD4 ratio | 1.5 c | 4.0 abc | 4.5 ab | 2.7 bc | 6.8 a | 2.8 bc | 2.6 bc | 1.8 bc | 0.7 | <0.05 | |
T regs (%) | 3.3 de | 7.2 abc | 9.0 a | 8.1 ab | 6.0 bcd | 5.1 cde | 3.8 de | 3.0 e | 0.7 | <0.05 |
Ingredient | Starter (%) |
---|---|
Corn | 56.29 |
Soybean meal, 48% CP | 37.87 |
Soybean oil | 2.18 |
Dicalcium phosphate | 1.48 |
Calcium carbonate | 0.91 |
Sodium chloride | 0.40 |
MHA | 0.37 |
L-lysine | 0.21 |
Trace mineral premix 1 | 0.10 |
Choline chloride (60%) | 0.07 |
L-threonine | 0.06 |
Vitamin premix 2 | 0.05 |
Phytase (500 FTU) | 0.01 |
Diet | Treatment | Crude Protein (%) | Fat (%) | Moisture (%) | Crude Fiber (%) | Ash (%) | Starch (%) |
---|---|---|---|---|---|---|---|
Starter diet (d0–d21) | |||||||
T1 | 20.42 | 6.10 | 11.79 | 3.64 | 6.74 | 36.89 | |
T2 | 20.31 | 5.92 | 11.99 | 4.07 | 6.60 | 36.67 | |
T3 | 20.63 | 5.69 | 12.11 | 3.74 | 6.10 | 37.73 | |
T4 | 20.75 | 6.04 | 11.56 | 3.70 | 7.12 | 35.92 | |
T5 | 20.44 | 6.00 | 11.78 | 3.67 | 6.84 | 37.33 | |
T6 | 21.07 | 6.08 | 11.69 | 3.79 | 6.88 | 36.63 | |
T7 | 19.81 | 5.96 | 12.03 | 3.91 | 6.00 | 37.18 | |
T8 | 19.83 | 6.20 | 11.73 | 3.84 | 6.39 | 36.95 | |
Grower diet (d21–d35) | |||||||
T1 | 18.65 | 6.34 | 11.83 | 3.34 | 6.65 | 40.04 | |
T2 | 18.98 | 5.81 | 12.27 | 3.18 | 6.06 | 39.54 | |
T3 | 18.73 | 5.87 | 11.90 | 3.10 | 6.31 | 42.08 | |
T4 | 19.39 | 5.78 | 12.23 | 3.02 | 6.13 | 40.52 | |
T5 | 19.19 | 5.81 | 12.27 | 3.17 | 6.05 | 40.07 | |
T6 | 19.35 | 5.49 | 12.38 | 3.04 | 6.17 | 39.63 | |
T7 | 19.15 | 5.62 | 12.31 | 2.86 | 6.24 | 40.38 | |
T8 | 20.24 | 5.84 | 12.34 | 2.97 | 6.5 | 39.52 |
Treatment | Total Fumonisins (FUM) (FB1 + FB2 + FB3) (mg/kg) | FB1 (mg/kg) | DON (mg/kg) | ZEA (mg/kg) |
---|---|---|---|---|
T1 (Control) | 0.8 | 0.6 | 0.4 | <LOD * |
T2 | 33.0 | 21.0 | 3.0 | 0.8 |
T3 | 14.0 | 9.0 | 3.5 | 0.7 |
T4 | 26.0 | 17.0 | 1.0 | 0.2 |
T5 | 7.7 | 5.0 | 0.4 | 0.1 |
T6 | 3.6 | 2.0 | 2.5 | 0.9 |
T7 | 0.8 | 0.6 | 1.0 | 0.3 |
T8 | 1 | 0.8 | 0.5 | 0.1 |
Gene | Primer Sequence (5′-3′) | Annealing Temperature in °C | References |
---|---|---|---|
GAPDH | F-GAGGGTAGTGAAGGCTGCTG R-CCACAACACGGTTGCTGTAT | 57.4 | NM_001303179.1 |
β-actin | F-GACTGCTGCTGACACCTTCA R-ACCGGACTGTTACCAACACC | 57.4 | NM_001303173.1 |
Ribosomal protein S-13 (RPS-13) | F-CAAGAAGGCTGTTGCTGTTCG R-GGCAGAAGCTGTCGATGATT | 57.0 | [100] NM_001001783.2 |
IL-1 | F-TCCTCCAGCCAGAAAGTGA R-CAGGCGGTAGAAGATGAAGC | 57.5 | [101] Y15006.1 |
IL-10 | F-CATCTCTGGGCCTGAA R-CGTCTCCTTGATCTGCTTGATG | 57.5 | [101] NM_001004414.4 |
CYP 1A1 | F-AGATCTGGAAGGACCCCTCC R-TAGGAGGCCAGCTGATTCCT | 57.0 | NM_205147.2 |
CYP 1A2 | F-GCTTTGACACCGTGACAACC R-GTCTGCCTTCTTGCCATCCT | 57.0 | NM_205146.3 |
CYP 1A4 | F-CAGAACGCCCTGAAGACCTT R-CAAGGCAGCGTACATCATGC | 55.4 | X99453.1 |
Claudin-1 | F-CATACTCCTGGGTCTGGTTGGT R-GACAGCCATCCGCATCTTCT | 55.0 | [54] NM_001013611.2 |
Claudin-2 | F-CCTGCTCACCCTCATIGGAG R-GCTGAACTCACTCTTGGGCT | 55.0 | [102] NM_001277622.1 |
Claudin-4 | F-GAAGCGCTGAACCGATACCA R-TGCTTCTGTGCCTCAGTTTCC | 57.0 | [103] AY435420.1 |
Occludin | F-GCCTTTTGCTTCATCGCTTCC R-AACAATGATTAAAGCAAAAG | 57.0 | [104] NM_205128.1 |
Zona-occluden | F-TGTAGCCACAGCAAGAGGTG R-CTGGAATGGCTCCTIGTGGT | 56.0 | [105] XM_046925212.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugasundaram, R.; Kappari, L.; Pilewar, M.; Jones, M.K.; Olukosi, O.A.; Pokoo-Aikins, A.; Applegate, T.J.; Glenn, A.E. Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens. Toxins 2025, 17, 16. https://doi.org/10.3390/toxins17010016
Shanmugasundaram R, Kappari L, Pilewar M, Jones MK, Olukosi OA, Pokoo-Aikins A, Applegate TJ, Glenn AE. Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens. Toxins. 2025; 17(1):16. https://doi.org/10.3390/toxins17010016
Chicago/Turabian StyleShanmugasundaram, Revathi, Laharika Kappari, Mohammad Pilewar, Matthew K. Jones, Oluyinka A. Olukosi, Anthony Pokoo-Aikins, Todd J. Applegate, and Anthony E. Glenn. 2025. "Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens" Toxins 17, no. 1: 16. https://doi.org/10.3390/toxins17010016
APA StyleShanmugasundaram, R., Kappari, L., Pilewar, M., Jones, M. K., Olukosi, O. A., Pokoo-Aikins, A., Applegate, T. J., & Glenn, A. E. (2025). Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens. Toxins, 17(1), 16. https://doi.org/10.3390/toxins17010016