Does Clostridium Perfringens Epsilon Toxin Mimic an Auto-Antigen Involved in Multiple Sclerosis?
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Immunological Response Against ETX as Tested by Western Blotting
2.3. Absence of Immunological Neutralization Response Against ETX
2.4. ETX-Specific Antibody Response in Healthy Controls and MS Patients
2.5. ETX-Specific Antibody Response According to Age
2.6. Reactivity of MS Sera with a Linear Peptide Spanning the Amino Acid Sequence of Epsilon Toxin
2.7. Correlation Between ETX-Specific Antibody Response and MS Disease Evolution
2.8. Longitudinal Evolution of ETX-Specific Antibody Response in Relation with Disease Evolution
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Patients and Serum Samples
5.2. Toxin
5.3. Western Blotting
5.4. Quantitative ELISA for Epsilon Toxin-Serum and Peptide Antibody Responses
5.5. Neutralization Assay
5.6. Statistical Analysis
5.7. Ethics Statement
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haki, M.; Al-Biati, H.A.; Al-Tameemi, Z.S.; Ali, I.S.; Al-Hussaniy, H.A. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine 2024, 103, e37297. [Google Scholar] [CrossRef]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Preziosa, P.; Rocca, M.A. MRI in multiple sclerosis: What is changing? Curr. Opin. Neurol. 2018, 31, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, T.; Moccia, M.; Coetzee, T.; Cohen, J.A.; Correale, J.; Graves, J.; Marrie, R.A.; Montalban, X.; Yong, V.W.; Thompson, A.J.; et al. Multiple sclerosis progression: Time for a new mechanism-driven framework. Lancet Neurol. 2023, 22, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Absinta, M.; Sati, P.; Reich, D.S. Advanced MRI and staging of multiple sclerosis lesions. Nat. Rev. Neurol. 2016, 12, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, C.; Kretowska-Grunwald, A.; Adamska-Patruno, E.; Kochanowicz, J.; Kulakowska, A.; Chorazy, M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis-A Systematic Review. Int. J. Mol. Sci. 2024, 25, 2589. [Google Scholar] [CrossRef]
- Khan, Z.; Mehan, S.; Gupta, G.D.; Narula, A.S. Immune System Dysregulation in the Progression of Multiple Sclerosis: Molecular Insights and Therapeutic Implications. Neuroscience 2024, 548, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Riedhammer, C.; Weissert, R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases. Front. Immunol. 2015, 6, 322. [Google Scholar] [CrossRef]
- Wagner, C.A.; Roque, P.J.; Goverman, J.M. Pathogenic T cell cytokines in multiple sclerosis. J. Exp. Med. 2020, 217, e20190460. [Google Scholar] [CrossRef]
- Christovich, A.; Luo, X.M. Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Front. Immunol. 2022, 13, 946248. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.; Doyle, W.J.; Schumacher, S.M.; Ochoa-Reparaz, J. Gut microbiome-modulated dietary strategies in EAE and multiple sclerosis. Front. Nutr. 2023, 10, 1146748. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Huang, D.; Wang, J.; Li, H.; Gao, J.; Zhong, Y.; Xia, L.; Zhang, A.; Lin, Z.; Ke, X. The role of the “gut microbiota-mitochondria” crosstalk in the pathogenesis of multiple sclerosis. Front. Microbiol. 2024, 15, 1404995. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Marugan, L.; Kantsjo, J.B.; Rutsch, A.; Ronchi, F. Microbiota, diet, and the gut-brain axis in multiple sclerosis and stroke. Eur. J. Immunol. 2023, 53, e2250229. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Kiani, L. Rubella virus might increase risk of MS. Nat. Rev. Neurol. 2024, 20, 505. [Google Scholar] [CrossRef] [PubMed]
- Rumah, K.R.; Linden, J.; Fischetti, V.A.; Vartanian, T. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS ONE 2013, 8, e76359. [Google Scholar] [CrossRef]
- Wagley, S.; Bokori-Brown, M.; Morcrette, H.; Malaspina, A.; D’Arcy, C.; Gnanapavan, S.; Lewis, N.; Popoff, M.R.; Raciborska, D.; Nicholas, R.; et al. Evidence of Clostridium perfringens epsilon toxin associated with multiple sclerosis. Mult. Scler. J. 2019, 25, 653–660. [Google Scholar] [CrossRef]
- Ma, Y.; Sannino, D.; Linden, J.R.; Haigh, S.; Zhao, B.; Grigg, J.B.; Zumbo, P.; Dundar, F.; Butler, D.; Profaci, C.P.; et al. Epsilon toxin-producing Clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. J. Clin. Investig. 2023, 133, e163239. [Google Scholar] [CrossRef]
- Popoff, M.R. Epsilon toxin: A fascinating pore-forming toxin. FEBS J. 2011, 278, 4602–4615. [Google Scholar] [CrossRef] [PubMed]
- Rood, J.I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B.A.; Melville, S.B.; Moore, R.J.; Popoff, M.R.; Sarker, M.R.; Songer, J.G.; et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018, 53, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Titball, R.W. The Molecular Architecture and Mode of Action of Clostridium perfringens epsilon-Toxin. Toxins 2024, 16, 180. [Google Scholar] [CrossRef] [PubMed]
- Uzal, F.A.; Fisher, D.J.; Saputo, J.; Sayeed, S.; McClane, B.A.; Songer, G.; Trinh, H.T.; Fernandez Miyakawa, M.E.; Gard, S. Ulcerative enterocolitis in two goats associated with enterotoxin- and beta2 toxin-positive Clostridium perfringens type D. J. Vet. Diagn. Investig. 2008, 20, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Uzal, F.A.; Navarro, M.A.; Li, J.; Freedman, J.C.; Shrestha, A.; McClane, B.A. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe 2018, 53, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Lonchamp, E.; Dupont, J.L.; Wioland, L.; Courjaret, R.; Mbebi-Liegeois, C.; Jover, E.; Doussau, F.; Popoff, M.R.; Bossu, J.L.; de Barry, J.; et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PLoS ONE 2010, 5, e13046. [Google Scholar] [CrossRef] [PubMed]
- Soler-Jover, A.; Dorca, J.; Popoff, M.R.; Gibert, M.; Saura, J.; Tusell, J.M.; Serratosa, J.; Blasi, J.; Martin-Satue, M. Distribution of Clostridium perfringens epsilon toxin in the brains of acutely intoxicated mice and its effect upon glial cells. Toxicon 2007, 50, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Wioland, L.; Dupont, J.L.; Doussau, F.; Gaillard, S.; Heid, F.; Isope, P.; Pauillac, S.; Popoff, M.R.; Bossu, J.L.; Poulain, B. Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination. Cell. Microbiol. 2015, 17, 369–388. [Google Scholar] [CrossRef] [PubMed]
- Finnie, J.W.; Uzal, F.A. Pathology and Pathogenesis of Brain Lesions Produced by Clostridium perfringens Type D Epsilon Toxin. Int. J. Mol. Sci. 2022, 23, 9050. [Google Scholar] [CrossRef]
- Linden, J.R.; Ma, Y.; Zhao, B.; Harris, J.M.; Rumah, K.R.; Schaeren-Wiemers, N.; Vartanian, T. Clostridium perfringens Epsilon Toxin Causes Selective Death of Mature Oligodendrocytes and Central Nervous System Demyelination. mBio 2015, 6, e02513. [Google Scholar] [CrossRef]
- Rumah, K.R.; Ma, Y.; Linden, J.R.; Oo, M.L.; Anrather, J.; Schaeren-Wiemers, N.; Alonso, M.A.; Fischetti, V.A.; McClain, M.S.; Vartanian, T. The Myelin and Lymphocyte Protein MAL Is Required for Binding and Activity of Clostridium perfringens epsilon-Toxin. PLoS Pathog. 2015, 11, e1004896. [Google Scholar] [CrossRef]
- Blanch, M.; Dorca-Arevalo, J.; Not, A.; Cases, M.; Gomez de Aranda, I.; Martinez-Yelamos, A.; Martinez-Yelamos, S.; Solsona, C.; Blasi, J. The Cytotoxicity of Epsilon Toxin from Clostridium perfringens on Lymphocytes Is Mediated by MAL Protein Expression. Mol. Cell. Biol. 2018, 38, 00086-18. [Google Scholar] [CrossRef]
- Titball, R.W.; Lewis, N.; Nicholas, R. Is Clostridium perfringens epsilon toxin associated with multiple sclerosis? Mult. Scler. J. 2023, 29, 1057–1063. [Google Scholar] [CrossRef]
- Kohn, J.; Warrack, G.H. Recovery of Clostridium welchii type D from man. Lancet 1955, 268, 385. [Google Scholar] [CrossRef] [PubMed]
- Morcrette, H.; Bokori-Brown, M.; Ong, S.; Bennett, L.; Wren, B.W.; Lewis, N.; Titball, R.W. Clostridium perfringens epsilon toxin vaccine candidate lacking toxicity to cells expressing myelin and lymphocyte protein. NPJ Vaccines 2019, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Lobato, F.C.; Lima, C.G.; Assis, R.A.; Pires, P.S.; Silva, R.O.; Salvarani, F.M.; Carmo, A.O.; Contigli, C.; Kalapothakis, E. Potency against enterotoxemia of a recombinant Clostridium perfringens type D epsilon toxoid in ruminants. Vaccine 2010, 28, 6125–6127. [Google Scholar] [CrossRef]
- Moreira, G.M.; Salvarani, F.M.; da Cunha, C.E.; Mendonca, M.; Moreira, A.N.; Goncalves, L.A.; Pires, P.S.; Lobato, F.C.; Conceicao, F.R. Immunogenicity of a Trivalent Recombinant Vaccine Against Clostridium perfringens Alpha, Beta, and Epsilon Toxins in Farm Ruminants. Sci. Rep. 2016, 6, 22816. [Google Scholar] [CrossRef]
- Huss, A.; Bachhuber, F.; Feraudet-Tarisse, C.; Hiergeist, A.; Tumani, H. Multiple Sclerosis and Clostridium perfringens Epsilon Toxin: Is There a Relationship? Biomedicines 2024, 12, 1392. [Google Scholar] [CrossRef]
- Hoftberger, R.; Lassmann, H.; Berger, T.; Reindl, M. Pathogenic autoantibodies in multiple sclerosis—From a simple idea to a complex concept. Nat. Rev. Neurol. 2022, 18, 681–688. [Google Scholar] [CrossRef]
- Reiber, H.; Ungefehr, S.; Jacobi, C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult. Scler. J. 1998, 4, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Rostasy, K.; Reiber, H.; Pohl, D.; Lange, P.; Ohlenbusch, A.; Eiffert, H.; Maass, M.; Hanefeld, F. Chlamydia pneumoniae in children with MS: Frequency and quantity of intrathecal antibodies. Neurology 2003, 61, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Brandle, S.M.; Obermeier, B.; Senel, M.; Bruder, J.; Mentele, R.; Khademi, M.; Olsson, T.; Tumani, H.; Kristoferitsch, W.; Lottspeich, F.; et al. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc. Natl. Acad. Sci. USA 2016, 113, 7864–7869. [Google Scholar] [CrossRef]
- Villar, L.M.; Sadaba, M.C.; Roldan, E.; Masjuan, J.; Gonzalez-Porque, P.; Villarrubia, N.; Espino, M.; Garcia-Trujillo, J.A.; Bootello, A.; Alvarez-Cermeno, J.C. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J. Clin. Investig. 2005, 115, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Munoz, U.; Sebal, C.; Escudero, E.; Urcelay, E.; Arroyo, R.; Garcia-Martinez, M.A.; Quintana, F.J.; Alvarez-Lafuente, R.; Sadaba, M.C. Serum levels of IgM to phosphatidylcholine predict the response of multiple sclerosis patients to natalizumab or IFN-beta. Sci. Rep. 2022, 12, 13357. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vera, I.; Escudero, E.; Munoz, U.; Sadaba, M.C. IgM to phosphatidylcholine in multiple sclerosis patients: From the diagnosis to the treatment. Ther. Adv. Neurol. Disord. 2023, 16, 17562864231189919. [Google Scholar] [CrossRef] [PubMed]
- Avrameas, S.; Selmi, C. Natural autoantibodies in the physiology and pathophysiology of the immune system. J. Autoimmun. 2013, 41, 46–49. [Google Scholar] [CrossRef]
- Merbl, Y.; Zucker-Toledano, M.; Quintana, F.J.; Cohen, I.R. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J. Clin. Investig. 2007, 117, 712–718. [Google Scholar] [CrossRef]
- Nagele, E.P.; Han, M.; Acharya, N.K.; DeMarshall, C.; Kosciuk, M.C.; Nagele, R.G. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE 2013, 8, e60726. [Google Scholar] [CrossRef]
- Gronwall, C.; Silverman, G.J. Natural IgM: Beneficial autoantibodies for the control of inflammatory and autoimmune disease. J. Clin. Immunol. 2014, 34 (Suppl. S1), S12–S21. [Google Scholar] [CrossRef]
- Panda, S.; Ding, J.L. Natural antibodies bridge innate and adaptive immunity. J. Immunol. 2015, 194, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Gleeson-White, M.H.; Bullen, J.J. Clostridium welchii epsilon toxin in the intestinal contents of man. Lancet 1955, 268, 384–385. [Google Scholar] [CrossRef] [PubMed]
- Reder, A.T. Clostridium epsilon toxin is excessive in multiple sclerosis and provokes multifocal lesions in mouse models. J. Clin. Investig. 2023, 133, e169643. [Google Scholar] [CrossRef] [PubMed]
- Dorca-Arevalo, J.; Soler-Jover, A.; Gibert, M.; Popoff, M.R.; Martin-Satue, M.; Blasi, J. Binding of epsilon-toxin from Clostridium perfringens in the nervous system. Vet. Microbiol. 2008, 131, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Linden, J.R.; Flores, C.; Schmidt, E.F.; Uzal, F.A.; Michel, A.O.; Valenzuela, M.; Dobrow, S.; Vartanian, T. Clostridium perfringens epsilon toxin induces blood brain barrier permeability via caveolae-dependent transcytosis and requires expression of MAL. PLoS Pathog. 2019, 15, e1008014. [Google Scholar] [CrossRef] [PubMed]
- Uzal, F.A.; Rolfe, B.E.; Smith, N.J.; Thomas, A.C.; Kelly, W.R. Resistance of ovine, caprine and bovine endothelial cells to Clostridium perfringens type D epsilon toxin in vitro. Vet. Res. Commun. 1999, 23, 275–284. [Google Scholar] [CrossRef]
- Goldstein, J.; Morris, W.E.; Loidl, C.F.; Tironi-Farinati, C.; McClane, B.A.; Uzal, F.A.; Fernandez Miyakawa, M.E. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats. PLoS ONE 2009, 4, e7065. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.V.; Mazzucco, M.R.; Winokur, P.; Haigh, S.V.; Rumah, K.R.; Fischetti, V.A.; Vartanian, T.; Linden, J.R. Clostridium perfringens Epsilon Toxin Binds to and Kills Primary Human Lymphocytes. Toxins 2023, 15, 423. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Yu, H.; Xu, L.; Yu, M.; Zhang, Y. Relationship between gut microbiota and multiple sclerosis: A scientometric visual analysis from 2010 to 2023. Front. Immunol. 2024, 15, 1451742. [Google Scholar] [CrossRef]
- Torres-Chavez, M.E.; Torres-Carrillo, N.M.; Monreal-Lugo, A.V.; Garnes-Rancurello, S.; Murugesan, S.; Gutierrez-Hurtado, I.A.; Beltran-Ramirez, J.R.; Sandoval-Pinto, E.; Torres-Carrillo, N. Association of intestinal dysbiosis with susceptibility to multiple sclerosis: Evidence from different population studies (Review). Biomed. Rep. 2023, 19, 93. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Zhu, M.; Liu, K.; Zhang, H.L. Gut flora in multiple sclerosis: Implications for pathogenesis and treatment. Neural Regen. Res. 2024, 19, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Dunalska, A.; Saramak, K.; Szejko, N. The Role of Gut Microbiome in the Pathogenesis of Multiple Sclerosis and Related Disorders. Cells 2023, 12, 1760. [Google Scholar] [CrossRef]
- Chang, S.H.; Choi, Y. Gut dysbiosis in autoimmune diseases: Association with mortality. Front. Cell Infect. Microbiol. 2023, 13, 1157918. [Google Scholar] [CrossRef]
- Cole, A.R.; Gibert, M.; Popoff, M.; Moss, D.S.; Titball, R.W.; Basak, A.K. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol. 2004, 11, 797–798. [Google Scholar] [CrossRef] [PubMed]
- Launay, O.; Sadorge, C.; Jolly, N.; Poirier, B.; Bechet, S.; van der Vliet, D.; Seffer, V.; Fenner, N.; Dowling, K.; Giemza, R.; et al. Safety and immunogenicity of SC599, an oral live attenuated Shigella dysenteriae type-1 vaccine in healthy volunteers: Results of a Phase 2, randomized, double-blind placebo-controlled trial. Vaccine 2009, 27, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
Study Subjects | n | Female n (%) | MS Subtype | Age at First Sampling (Y) Median (Range) | Disease Duration (Y) (Median, Range) |
---|---|---|---|---|---|
All MS | 100 | 77 (77.0) | RRMS | 36 (18–58) | 8.3 (0–32.5) |
P1 | 1 | F | RRMS | 47 | 16.7 |
P2 | 1 | F | RRMS | 41 | 11.3 |
P3 | 1 | F | RRMS | 33 | 8.3 |
P4 | 1 | F | RRMS | 35 | 14.3 |
P5 | 1 | F | RRMS | 25 | 4.3 |
P6 | 1 | F | RRMS | 30 | 7.5 |
P7 | 1 | F | RRMS | 21 | 5 |
P8 | 1 | F | RRMS | 21 | 0.5 |
P9 | 1 | F | RRMS | 32 | 3.3 |
P10 | 1 | F | RRMS | 41 | 5.4 |
Healthy controls | 90 | 47 (52.0) | NA | 44 (20–78) | NA |
Immunoreactivity | Sera from MS Patients n (%) | Sera from Healthy Controls n (%) |
---|---|---|
strong | 10 (14.3%) | 10 (11.1%) |
medium | 14 (15.7%) | 36 (40.0%) |
weak | 34 (38.2%) | 24 (26.6%) |
negative | 31 (34.8%) | 20 (22.2%) |
Total positive/total number | 58/89 (65.1%) | 70/90 (77.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gougeon, M.-L.; Seffer, V.; Hoxha, C.; Maillart, E.; Popoff, M.R. Does Clostridium Perfringens Epsilon Toxin Mimic an Auto-Antigen Involved in Multiple Sclerosis? Toxins 2025, 17, 27. https://doi.org/10.3390/toxins17010027
Gougeon M-L, Seffer V, Hoxha C, Maillart E, Popoff MR. Does Clostridium Perfringens Epsilon Toxin Mimic an Auto-Antigen Involved in Multiple Sclerosis? Toxins. 2025; 17(1):27. https://doi.org/10.3390/toxins17010027
Chicago/Turabian StyleGougeon, Marie-Lise, Valérie Seffer, Cezarela Hoxha, Elisabeth Maillart, and Michel R. Popoff. 2025. "Does Clostridium Perfringens Epsilon Toxin Mimic an Auto-Antigen Involved in Multiple Sclerosis?" Toxins 17, no. 1: 27. https://doi.org/10.3390/toxins17010027
APA StyleGougeon, M.-L., Seffer, V., Hoxha, C., Maillart, E., & Popoff, M. R. (2025). Does Clostridium Perfringens Epsilon Toxin Mimic an Auto-Antigen Involved in Multiple Sclerosis? Toxins, 17(1), 27. https://doi.org/10.3390/toxins17010027