Fusarium sporotrichioides Produces Two HT-2-α-Glucosides on Rice
Abstract
:1. Introduction
2. Results
2.1. Secondary Metabolite Profile of Fusarium sporotrichioides 15-39
2.2. Optimization of T-2 Toxin, HT-2 Toxin, and HT-2-Glucoside Production Conditions
2.3. Determination of the Anomeric State of HT-2-Glucoside
2.4. Resistance of HT-2-α-Glucosides against Hydrolysis by Alpha-Glucosidases
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Strain Isolation and Secondary Metabolite Profile
5.2. Optimization of T-2 Toxin Production Conditions
5.3. Isolation of HT-2-Glucoside from Crude Extract (Flash Chromatography)
5.4. NMR Analysis of HT-2-Glucosides
5.5. Alpha-Glucosidase Hydrolysis Experiments
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From Simple to Complex Mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef]
- E Desjardins, A.; Hohn, T.M.; McCormick, S.P. Trichothecene biosynthesis in Fusarium species: Chemistry, genetics, and significance. Microbiol. Rev. 1993, 57, 595–604. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.P.; Harris, L.J.; Alexander, N.J.; Ouellet, T.; Saparno, A.; Allard, S.; Desjardins, A.E. Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl. Environ. Microbiol. 2004, 70, 2044–2051. [Google Scholar] [CrossRef]
- McCormick, S.P.; Alexander, N.J.; Proctor, R.H. Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides. Can. J. Microbiol. 2006, 52, 220–226. [Google Scholar] [CrossRef]
- McCormick, S.P.; Price, N.P.J.; Kurtzman, C.P. Glucosylation and Other Biotransformations of T-2 Toxin by Yeasts of the Trichomonascus Clade. Appl. Environ. Microbiol. 2012, 78, 8694–8702. [Google Scholar] [CrossRef]
- Schmidt, R. HPLC of trichothecenes—Separation of neosolaniol, NT-1 toxin, and NT-2 toxin. Mycotoxin Res. 1986, 2, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Fairhurst, S.; Marrs, T.C.; Parker, H.C.; Scawin, J.W.; Swanston, D.W. Acute toxicity of T2 toxin in rats, mice, guinea pigs, and pigeons. Toxicology 1987, 43, 31–49. [Google Scholar] [CrossRef]
- Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of T-2 and HT-2 Toxin in Food and Feed|EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/2481 (accessed on 15 November 2023).
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Rel-Evance, Official Journal of the European Union L 119/103 (5.5.2023)). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32023R0915 (accessed on 1 January 2024).
- EFSA Panel: Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, 4718. [CrossRef]
- Meng-Reiterer, J.; Bueschl, C.; Rechthaler, J.; Berthiller, F.; Lemmens, M.; Schuhmacher, R. Metabolism of HT-2 Toxin and T-2 Toxin in Oats. Toxins 2016, 8, 364. [Google Scholar] [CrossRef]
- Guan, S.; He, J.; Young, J.C.; Zhu, H.; Li, X.-Z.; Ji, C.; Zhou, T. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture 2009, 290, 290–295. [Google Scholar] [CrossRef]
- Islam, R.; Zhou, T.; Young, J.C.; Goodwin, P.H.; Pauls, K.P. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World J. Microbiol. Biotechnol. 2012, 28, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Righetti, L.; Körber, T.; Rolli, E.; Galaverna, G.; Suman, M.; Bruni, R.; Dall’asta, C. Plant biotransformation of T2 and HT2 toxin in cultured organs of Triticum durum Desf. Sci. Rep. 2019, 9, 14320. [Google Scholar] [CrossRef] [PubMed]
- Caputi, L.; Malnoy, M.; Goremykin, V.; Nikiforova, S.; Martens, S. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J. 2012, 69, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Michlmayr, H.; Varga, E.; Malachová, A.; Fruhmann, P.; Piątkowska, M.; Hametner, C.; Šofrová, J.; Jaunecker, G.; Häubl, G.; Lemmens, M.; et al. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides. Toxins 2018, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Wetterhorn, K.M.; Gabardi, K.; Michlmayr, H.; Malachova, A.; Busman, M.; McCormick, S.P.; Berthiller, F.; Adam, G.; Rayment, I. Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from Oryza sativa. Biochemistry 2017, 56, 6585–6596. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Takeda, H.; Shinkai, K.; Kakinuma, T.; Koizumi, Y.; Kase, M.; Yoshinari, T.; Minegishi, H.; Nakajima, Y.; Aikawa, S.; et al. 4-O-Glucosylation of Trichothecenes by Fusarium Species: A Phase II Xenobiotic Metabolism for t-Type Trichothecene Producers. Int. J. Mol. Sci. 2021, 22, 13542. [Google Scholar] [CrossRef] [PubMed]
- Busman, M.; Poling, S.M.; Maragos, C.M. Observation of T-2 toxin and HT-2 toxin glucosides from Fusarium sporotrichioides by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Toxins 2011, 3, 1554–1568. [Google Scholar] [CrossRef]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef]
- McCormick, S.P.; Kato, T.; Maragos, C.M.; Busman, M.; Lattanzio, V.M.T.; Galaverna, G.; Dall-Asta, C.; Crich, D.; Price, N.P.J.; Kurtzman, C.P. Anomericity of T-2 Toxin-glucoside: Masked Mycotoxin in Cereal Crops. J. Agric. Food Chem. 2015, 63, 731–738. [Google Scholar] [CrossRef]
- Schmidt, H.S.; Schulz, M.; Focke, C.; Becker, S.; Cramer, B.; Humpf, H.-U. Glucosylation of T-2 and HT-2 toxins using biotransformation and chemical synthesis: Preparation, stereochemistry, and stability. Mycotoxin Res. 2018, 34, 159–172. [Google Scholar] [CrossRef]
- Yu, W.; Pei, R.; Zhang, Y.; Tu, Y.; He, B. Light regulation of secondary metabolism in fungi. J. Biol. Eng. 2023, 17, 57. [Google Scholar] [CrossRef]
- Chen, Y.; Kistler, H.C.; Ma, Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. Annu. Rev. Phytopathol. 2019, 57, 15–39. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.; Jiao, J.; Liu, H. Roles of AaVeA on Mycotoxin Production via Light in Alternaria alternata. Front. Microbiol. 2022, 13, 842268. [Google Scholar] [CrossRef]
- Lattanzio, V.M.; Visconti, A.; Haidukowski, M.; Pascale, M. Identification and characterization of new Fusarium masked mycotoxins, T2 and HT2 glycosyl derivatives, in naturally contaminated wheat and oats by liquid chromatography–high-resolution mass spectrometry. J. Mass Spectrom. 2012, 47, 466–475. [Google Scholar] [CrossRef]
- Kasimir, M.; Behrens, M.; Schulz, M.; Kuchenbuch, H.S.; Focke, C.; Humpf, H.-U. Intestinal Metabolism of α- and β-Glucosylated Modified Mycotoxins T-2 and HT-2 Toxin in the Pig Cecum Model. J. Agric. Food Chem. 2020, 68, 5455–5461. [Google Scholar] [CrossRef] [PubMed]
- Michlmayr, H.; Varga, E.; Malachova, A.; Nguyen, N.T.; Lorenz, C.; Haltrich, D.; Berthiller, F.; Adam, G. A Versatile Family 3 Glycoside Hydrolase from Bifidobacterium adolescentis Hydrolyzes β-Glucosides of the Fusarium Mycotoxins Deoxynivalenol, Nivalenol, and HT-2 Toxin in Cereal Matrices. Appl. Environ. Microbiol. 2015, 81, 4885–4893. [Google Scholar] [CrossRef] [PubMed]
- Daud, N.; Currie, V.; Duncan, G.; Busman, M.; Gratz, S.W. Intestinal hydrolysis and microbial biotransformation of diacetoxyscirpenol-α-glucoside, HT-2-β-glucoside and N-(1-deoxy-d-fructos-1-yl) fumonisin B1 by human gut microbiota in vitro. Int. J. Food Sci. Nutr. 2020, 71, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Meng-Reiterer, J.; Varga, E.; Nathanail, A.V.; Bueschl, C.; Rechthaler, J.; McCormick, S.P.; Michlmayr, H.; Malachová, A.; Fruhmann, P.; Adam, G.; et al. Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Anal. Bioanal. Chem. 2015, 407, 8019–8033. [Google Scholar] [CrossRef] [PubMed]
- Nathanail, A.V.; Syvähuoko, J.; Malachová, A.; Jestoi, M.; Varga, E.; Michlmayr, H.; Adam, G.; Sieviläinen, E.; Berthiller, F.; Peltonen, K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Anal. Bioanal. Chem. 2015, 407, 4745–4755. [Google Scholar] [CrossRef] [PubMed]
- Daud, N.; Currie, V.; Duncan, G.; Filipe, J.A.N.; Yoshinari, T.; Stoddart, G.; Roberts, D.; Gratz, S.W. Free and Modified Mycotoxins in Organic and Conventional Oats (Avena sativa L.) Grown in Scotland. Toxins 2023, 15, 247. [Google Scholar] [CrossRef] [PubMed]
- Inchley, C.E.; Larbey, C.D.A.; Shwan, N.A.A.; Pagani, L.; Saag, L.; Antão, T.; Jacobs, G.; Hudjashov, G.; Metspalu, E.; Mitt, M.; et al. Selective sweep on human amylase genes postdates the split with Neanderthals. Sci. Rep. 2016, 6, 37198. [Google Scholar] [CrossRef] [PubMed]
- Kawakubo, M.; Horiuchi, K.; Matsumoto, T.; Nakayama, J.; Akamatsu, T.; Katsuyama, T.; Ota, H.; Sagara, J. Cholesterol-α-glucosyltransferase gene is present in most Helicobacter species including gastric non-Helicobacter pylori helicobacters obtained from Japanese patients. Helicobacter 2018, 23, e12449. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Hwang, Y.K.; Park, Y.S. Molecular cloning and disruption of a novel gene encoding UDP-glucose:tetrahydrobiopterin alpha-glucosyltransferase in the cyanobacterium Synechococcus sp. PCC 7942. FEBS Lett. 2001, 502, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Kim, Y.-H.; Song, G.-S.; Suzuki, Y.; Kim, M.-K. Enzymatic transglycosylation of ginsenoside Rg1 by rice seed α-glucosidase. Biosci. Biotechnol. Biochem. 2016, 80, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qi, T.; Guo, L.; Ma, Z.; Gu, G.; Xiao, M.; Lu, L. Enzymatic Glucosylation of Salidroside from Starch by α-Amylase. J. Agric. Food Chem. 2019, 67, 2012–2019. [Google Scholar] [CrossRef]
- Rha, C.-S.; Jung, Y.S.; Seo, D.-H.; Kim, D.-O.; Park, C.-S. Site-specific α-glycosylation of hydroxyflavones and hydroxyflavanones by amylosucrase from Deinococcus geothermalis. Enzym. Microb. Technol. 2019, 129, 109361. [Google Scholar] [CrossRef]
- Kimoto, S.; Takeuchi, M.; Kishino, S.; Itagaki, Y.; Hara, R.; Kitamura, N.; Okada, N.; Park, S.-B.; Ando, A.; Ueda, M.; et al. Characterization of regioselective glycosyltransferase of Rhizobium pusense JCM 16209T useful for resveratrol 4′-O-α-d-glucoside production. J. Biosci. Bioeng. 2022, 134, 213–219. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Zhou, Y.; Zhu, L.; Chen, X. Improving the Transglycosylation Activity of α-Glucosidase from Xanthomonas campestris Through Semi-rational Design for the Synthesis of Ethyl Vanillin-α-Glucoside. Appl. Biochem. Biotechnol. 2022, 194, 3082–3096. [Google Scholar] [CrossRef]
- Berthiller, F.; Krska, R.; Domig, K.J.; Kneifel, W.; Juge, N.; Schuhmacher, R.; Adam, G. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol. Lett. 2011, 206, 264–267. [Google Scholar] [CrossRef]
Fraction Nr. | Elution Time (min.) | Volume (mL) | Metabolites Detected (µg/L) | ||
---|---|---|---|---|---|
HT-2- Glucoside | HT-2 Toxin | T-2 Toxin | |||
1 | 3–8 | 75 | <LOD | <LOD | <LOD |
2 | 9–12 | 85 | <LOD | <LOD | <LOD |
3 | 14–15 | 86 | <LOD | <LOD | 1 |
4 * | 20–24 | 61 | 8305 | 95 | 9 |
5 | 24–27 | 55 | 136 | 127,650 | 44 |
6 | 28–30 | 56 | <LOD | 1482 | 191,500 |
7 | 31–33 | 39 | <LOD | 1114 | 137,600 |
8 | 34 | 32 | <LOD | 287 | 122,700 |
9 | 36–39 | 59 | <LOD | 155 | 12,800 |
10 | 40 | 92 | <LOD | 79 | 4554 |
11 | 45–51 | 156 | <LOD | 75 | 3307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svoboda, T.; Labuda, R.; Sulyok, M.; Krska, R.; Bacher, M.; Berthiller, F.; Adam, G. Fusarium sporotrichioides Produces Two HT-2-α-Glucosides on Rice. Toxins 2024, 16, 99. https://doi.org/10.3390/toxins16020099
Svoboda T, Labuda R, Sulyok M, Krska R, Bacher M, Berthiller F, Adam G. Fusarium sporotrichioides Produces Two HT-2-α-Glucosides on Rice. Toxins. 2024; 16(2):99. https://doi.org/10.3390/toxins16020099
Chicago/Turabian StyleSvoboda, Thomas, Roman Labuda, Michael Sulyok, Rudolf Krska, Markus Bacher, Franz Berthiller, and Gerhard Adam. 2024. "Fusarium sporotrichioides Produces Two HT-2-α-Glucosides on Rice" Toxins 16, no. 2: 99. https://doi.org/10.3390/toxins16020099
APA StyleSvoboda, T., Labuda, R., Sulyok, M., Krska, R., Bacher, M., Berthiller, F., & Adam, G. (2024). Fusarium sporotrichioides Produces Two HT-2-α-Glucosides on Rice. Toxins, 16(2), 99. https://doi.org/10.3390/toxins16020099