Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides
Abstract
:1. Introduction
2. Biomimetic Nanosensors for Mycotoxins
2.1. Nano-Electrochemical MIP-Based Sensors for Mycotoxins
2.1.1. MIPs as Bioreceptors
2.1.2. AFB1 and FuB1
2.1.3. AFM1
2.1.4. Patulin
2.1.5. Ochratoxin A and B
2.1.6. Trichothecenes
2.2. Electrochemical Aptamer-Based Sensor for the Detection of Mycotoxins
2.2.1. Labelled Aptasensors
2.2.2. Label Free Aptasensors
3. Biomimetic Nanosensors for the Detection of Pesticides
4. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goud, K.Y.; Reddy, K.K.; Satyanarayana, M.; Kummari, S.; Gobi, K.V. A Review on Recent Developments in Optical and Electrochemical Aptamer-Based Assays for Mycotoxins Using Advanced Nanomaterials. Microchim. Acta 2020, 187, 29. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.C.; Bonel, L.; Ezquerra, A.; Hernández, S.; Bertolín, J.R.; Cubel, C.; Castillo, J.R. Electrochemical Affinity Biosensors for Detection of Mycotoxins: A Review. Biosens. Bioelectron. 2013, 49, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M.L.; Wang, J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front. Chem. 2020, 8, 195. [Google Scholar] [CrossRef] [PubMed]
- Parihar, A.; Choudhary, N.K.; Sharma, P.; Khan, R. MXene-Based Aptasensor for the Detection of Aflatoxin in Food and Agricultural Products. Environ. Pollut. 2023, 316, 120695. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; Dietrich, D.R. Ochratoxin A: The Continuing Enigma. Crit. Rev. Toxicol. 2005, 35, 33–60. [Google Scholar] [CrossRef] [PubMed]
- Rhouati, A.; Catanante, G.; Nunes, G.; Hayat, A.; Marty, J.-L. Label-Free Aptasensors for the Detection of Mycotoxins. Sensors 2016, 16, 2178. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Z.; Zhang, Q.; Li, P. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers. Toxins 2016, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Donarski, W.J.; Dumas, D.P.; Heitmeyer, D.P.; Lewis, V.E.; Raushel, F.M. Structure-Activity Relationships in the Hydrolysis of Substrates by the Phosphotriesterase from Pseudomonas Diminuta. Biochemistry 1989, 28, 4650–4655. [Google Scholar] [CrossRef] [PubMed]
- Chapalamadugu, S.; Chaudhry, G.R. Microbiological and Biotechnological Aspects of Metabolism of Carbamates and Organophosphates. Crit. Rev. Biotechnol. 1992, 12, 357–389. [Google Scholar] [CrossRef] [PubMed]
- De Flora, S.; Viganò, L.; D’Agostini, F.; Camoirano, A.; Bagnasco, M.; Bennicelli, C.; Melodia, F.; Arillo, A. Multiple Genotoxicity Biomarkers in Fish Exposed in Situ to Polluted River Water. Mutat. Res. Toxicol. 1993, 319, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Rapini, R.; Marrazza, G. Electrochemical Aptasensors for Contaminants Detection in Food and Environment: Recent Advances. Bioelectrochemistry 2017, 118, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Fate of Pesticides in the Environment and Its Bioremediation. Eng. Life Sci. 2005, 5, 497–526. [Google Scholar] [CrossRef]
- Verma, N.; Bhardwaj, A. Biosensor Technology for Pesticides—A Review. Appl. Biochem. Biotechnol. 2015, 175, 3093–3119. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Yu, Y.; Chu, X.; Wang, X.; Yang, X.; Yu, J. Degradation of Chlorpyrifos in Laboratory Soil and Its Impact on Soil Microbial Functional Diversity. J. Environ. Sci. 2009, 21, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Odukkathil, G.; Vasudevan, N. Toxicity and Bioremediation of Pesticides in Agricultural Soil. Rev. Environ. Sci. Biotechnol. 2013, 12, 421–444. [Google Scholar] [CrossRef]
- Hara, T.O.; Singh, B. Electrochemical Biosensors for Detection of Pesticides and Heavy Metal Toxicants in Water: Recent Trends and Progress. ACS ES T Water 2021, 1, 462–478. [Google Scholar] [CrossRef]
- Zejli, H.; Goud, K.Y.; Marty, J.L. An Electrochemical Aptasensor Based on Polythiophene-3-Carboxylic Acid Assisted Methylene Blue for Aflatoxin B1 Detection. Sens. Bio-Sen. Res. 2019, 25, 100290. [Google Scholar] [CrossRef]
- Goud, K.Y.; Sharma, A.; Hayat, A.; Catanante, G.; Gobi, K.V.; Gurban, A.M.; Marty, J.L. Tetramethyl-6-Carboxyrhodamine Quenching-Based Aptasensing Platform for Aflatoxin B1: Analytical Performance Comparison of Two Aptamers. Anal. Biochem. 2016, 508, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Goud, K.Y.; Hayat, A.; Bhand, S.; Marty, J.L. Recent Advances in Electrochemical-Based Sensing Platforms for Aflatoxins Detection. Chemosensors 2017, 5, 1. [Google Scholar] [CrossRef]
- Goud, K.Y.; Hayat, A.; Catanante, G.; Satyanarayana, S.M.; Gobi, K.V.; Marty, J.L. An Electrochemical Aptasensor Based on Functionalized Graphene Oxide Assisted Electrocatalytic Signal Amplification of Methylene Blue for Aflatoxin B1 Detection. Electrochim. Acta 2017, 244, 96–103. [Google Scholar] [CrossRef]
- Yugender Goud, K.; Sunil Kumar, V.; Hayat, A.; Vengatajalabathy Gobi, K.; Song, H.; Kim, K.H.; Marty, J.L. A Highly Sensitive Electrochemical Immunosensor for Zearalenone Using Screen-Printed Disposable Electrodes. J. Electroanal. Chem. 2019, 832, 336–342. [Google Scholar] [CrossRef]
- Majdinasab, M.; Daneshi, M.; Louis Marty, J. Recent Developments in Non-Enzymatic (Bio)Sensors for Detection of Pesticide Residues: Focusing on Antibody, Aptamer and Molecularly Imprinted Polymer. Talanta 2021, 232, 122397. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent Advances in Nanomaterials-Based Electrochemical (Bio)Sensors for Pesticides Detection. TrAC—Trends Anal. Chem. 2020, 132, 116041. [Google Scholar] [CrossRef]
- Mugo, S.M.; Lu, W.; Robertson, S.V. Molecularly Imprinted Polymer-Modified Microneedle Sensor for the Detection of Imidacloprid Pesticides in Food Samples. Sensors 2022, 22, 8492. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Pleil, J.D. Human Blood and Environmental Media Screening Method for Pesticides and Polychlorinated Biphenyl Compounds Using Liquid Extraction and Gas Chromatography-Mass Spectrometry Analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 769, 155–167. [Google Scholar] [CrossRef]
- Njumbe Ediage, E.; Diana Di Mavungu, J.; Song, S.; Wu, A.; Van Peteghem, C.; De Saeger, S. A Direct Assessment of Mycotoxin Biomarkers in Human Urine Samples by Liquid Chromatography Tandem Mass Spectrometry. Anal. Chim. Acta 2012, 741, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, L.; Sun, Q.; Qiu, S.; Liu, Y.; Zhang, X.; Liu, X.; Zheng, L. Preparation and Performance of Fe3O4@hydrophilic Graphene Composites with Excellent Photo-Fenton Activity for Photocatalysis. Mater. Lett. 2016, 183, 61–64. [Google Scholar] [CrossRef]
- Rastrelli, L.; Totaro, K.; De Simone, F. Determination of Organophosphorus Pesticide Residues in Cilento (Campania, Italy) Virgin Olive Oil by Capillary Gas Chromatography. Food Chem. 2002, 79, 303–305. [Google Scholar] [CrossRef]
- Kolosova, A.Y.; Shim, W.B.; Yang, Z.Y.; Eremin, S.A.; Chung, D.H. Direct Competitive ELISA Based on a Monoclonal Antibody for Detection of Aflatoxin B1. Stabilization of ELISA Kit Components and Application to Grain Samples. Anal. Bioanal. Chem. 2006, 384, 286–294. [Google Scholar] [CrossRef]
- Verma, N.; Dhillon, S.S. Biosensors For Monitoring Insecticides And Herbicides—A Survey. Int. J. Environ. Stud. 2003, 60, 29–43. [Google Scholar] [CrossRef]
- Goud, K.Y.; Kalisa, S.K.; Kumar, V.; Tsang, Y.F.; Lee, S.E.; Gobi, K.V.; Kim, K.H. Progress on Nanostructured Electrochemical Sensors and Their Recognition Elements for Detection of Mycotoxins: A Review. Biosens. Bioelectron. 2018, 121, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.K.; Goud, K.Y.; Satyanarayana, M.; Kummari, S.; Kumar, V.S.; Bandal, H.; Jayaramudu, T.; Pyarasani, R.D.; Kim, H.; Amalraj, J.; et al. Metal Oxide-Metal Nanocomposite-Modified Electrochemical Sensors for Toxic Chemicals; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128207277. [Google Scholar]
- Goud, K.Y.; Moru, S.; Reddy, K.K.; Gobi, K.V. Development of Highly Selective Electrochemical Impedance Sensor for Detection of Sub-Micromolar Concentrations of 5-Chloro-2,4-Dinitrotoluene. J. Chem. Sci. 2016, 128, 763–770. [Google Scholar] [CrossRef]
- Mishra, R.K.; Goud, K.Y.; Li, Z.; Moonla, C.; Mohamed, M.A.; Tehrani, F.; Teymourian, H.; Wang, J. Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array. J. Am. Chem. Soc. 2020, 142, 5991–5995. [Google Scholar] [CrossRef] [PubMed]
- Goud, K.Y.; Satyanarayana, M.; Hayat, A.; Gobi, K.V.; Marty, J.L. Nanomaterial-Based Electrochemical Sensors in Pharmaceutical Applications. In Nanoparticles in Pharmacotherapy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 195–216. ISBN 9780128165041. [Google Scholar]
- Goud, K.Y.; Kumar, V.S.; Hayat, A.; Catanante, G.; Gobi, K.V.; Marty, J.L. Polymer Scaffold Layers of Screen-Printed Electrodes for Homogeneous Deposition of Silver Nanoparticles: Application to the Amperometric Detection of Hydrogen Peroxide. Microchim. Acta 2019, 186, 810. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lasalde-Ramírez, J.A.; Mahato, K.; Wang, J.; Gao, W. Wearable Chemical Sensors for Biomarker Discovery in the Omics Era. Nat. Rev. Chem. 2022, 6, 899–915. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, E.; Şenocak, A.; Demirbaş, E.; Koca, A.; Akyüz, D. Electrochromic Molecular Imprinted Polymer Sensor for Detection of Selective Acetamiprid. Microchem. J. 2024, 196, 109626. [Google Scholar] [CrossRef]
- Kumar, V.S.; Kummari, S.; Catanante, G.; Gobi, K.V.; Marty, J.L.; Goud, K.Y. A Label-Free Impedimetric Immunosensor for Zearalenone Based on CS-CNT-Pd Nanocomposite Modified Screen-Printed Disposable Electrodes. Sens. Actuators B Chem. 2023, 377, 133077. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Obare, S.O.; Wei, J. Molecularly Imprinted Polymers as Chemosensors for Organophosphate Pesticide Detection and Environmental Applications. TrAC Trends Anal. Chem. 2023, 167, 117231. [Google Scholar] [CrossRef]
- Thurner, F.; Alatraktchi, F.A. Recent Advances in Electrochemical Biosensing of Aflatoxin M1 in Milk—A Mini Review. Microchem. J. 2023, 190, 108594. [Google Scholar] [CrossRef]
- Singh, A.K.; Lakshmi, G.B.V.S.; Fernandes, M.; Sarkar, T.; Gulati, P.; Singh, R.P.; Solanki, P.R. A Simple Detection Platform Based on Molecularly Imprinted Polymer for AFB1 and FuB1 Mycotoxins. Microchem. J. 2021, 171, 106730. [Google Scholar] [CrossRef]
- Afzali, Z.; Mohadesi, A.; Ali Karimi, M.; Fathirad, F. A Highly Selective and Sensitive Electrochemical Sensor Based on Graphene Oxide and Molecularly Imprinted Polymer Magnetic Nanocomposite for Patulin Determination. Microchem. J. 2022, 177, 107215. [Google Scholar] [CrossRef]
- Pacheco, J.G.; Castro, M.; Machado, S.; Barroso, M.F.; Nouws, H.P.A.; Delerue-Matos, C. Molecularly Imprinted Electrochemical Sensor for Ochratoxin A Detection in Food Samples. Sens. Actuators B Chem. 2015, 215, 107–112. [Google Scholar] [CrossRef]
- Farooq, S.; Xu, L.; Ostovan, A.; Qin, C.; Liu, Y.; Pan, Y.; Ping, J.; Ying, Y. Assessing the Greenification Potential of Cyclodextrin-Based Molecularly Imprinted Polymers for Pesticides Detection. Food Chem. 2023, 429, 136822. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Kukkar, D.; Brown, R.J.C.; Kim, K.-H. Recent Advances in the Synthesis of and Sensing Applications for Metal-Organic Framework-Molecularly Imprinted Polymer (MOF-MIP) Composites. Crit. Rev. Environ. Sci. Technol. 2023, 53, 258–289. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A Wearable Electrochemical Biosensor for the Monitoring of Metabolites and Nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Mehmandoust, M.; Erk, N.; Naser, M.; Soylak, M. Molecularly Imprinted Polymer Film Loaded on the Metal-Organic Framework with Improved Performance Using Stabilized Gold-Doped Graphite Carbon Nitride Nanosheets for the Single-Step Detection of Fenamiphos. Food Chem. 2023, 404, 134627. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Yang, J.; Yu, X.; Peng, Z.; Zhang, G.; Li, Y. Wearable Molecularly Imprinted Electrochemical Sensor with Integrated Nanofiber-Based Microfluidic Chip for in Situ Monitoring of Cortisol in Sweat. Sens. Actuators B Chem. 2023, 381, 133451. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Surya, S.G.; Beduk, T.; Vijjapu, M.T.; Lamaoui, A.; Durmus, C.; Timur, S.; Shekhah, O.; Mani, V.; Amine, A.; et al. Metal–Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS Appl. Mater. Interfaces 2022, 14, 49399–49424. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Bottaro, C.S. A Critical Review of Molecularly Imprinted Polymers for the Analysis of Organic Pollutants in Environmental Water Samples. J. Chromatogr. A 2020, 1614, 460603. [Google Scholar] [CrossRef] [PubMed]
- Thimoonnee, S.; Somnet, K.; Ngaosri, P.; Chairam, S.; Karuwan, C.; Kamsong, W.; Tuantranont, A.; Amatatongchai, M. Fast, Sensitive and Selective Simultaneous Determination of Paraquat and Glyphosate Herbicides in Water Samples Using a Compact Electrochemical Sensor. Anal. Methods 2022, 14, 820–833. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Liu, G. A Fluorometric Sandwich Biosensor Based on Molecular Imprinted Polymer and Aptamer Modified CdTe/ZnS for Detection of Aflatoxin B1 in Edible Oil. LWT 2023, 180, 114726. [Google Scholar] [CrossRef]
- Kardani, F.; Mirzajani, R.; Tamsilian, Y.; Kiasat, A.; Bakhshandeh Farajpour, F. A Novel Immunoaffinity Column Based Metal–Organic Framework Deep Eutectic Solvents @ Molecularly Imprinted Polymers as a Sorbent for the Solid Phase Extraction of Aflatoxins AFB1, AFB2, AFG1 and AFG2 from Cereals Samples. Microchem. J. 2023, 187, 108366. [Google Scholar] [CrossRef]
- Chen, Q.; Meng, M.; Li, W.; Xiong, Y.; Fang, Y.; Lin, Q. Emerging Biosensors to Detect Aflatoxin M1 in Milk and Dairy Products. Food Chem. 2023, 398, 133848. [Google Scholar] [CrossRef] [PubMed]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. Development of Gold Nanoparticles Decorated Molecularly Imprinted–Based Plasmonic Sensor for the Detection of Aflatoxin M1 in Milk Samples. Chemosensors 2021, 9, 363. [Google Scholar] [CrossRef]
- Shadjou, R.; Hasanzadeh, M.; Heidar-Poor, M.; Shadjou, N. Electrochemical Monitoring of Aflatoxin M1 in Milk Samples Using Silver Nanoparticles Dispersed on α-Cyclodextrin-GQDs Nanocomposite. J. Mol. Recognit. 2018, 31, e2699. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, C.; Cerrato, A.; Laganà, A.; Montone, C.M.; Piovesana, S.; Taglioni, E.; Capriotti, A.L. Dispersive Solid Phase Extraction Using a Hydrophilic Molecularly Imprinted Polymer for the Selective Extraction of Patulin in Apple Juice Samples. Microchim. Acta 2023, 190, 485. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Guo, H.; Li, K.; Zhang, Y.; Guo, H.; Wang, Z. Simultaneous Detection of Patulin and Ochratoxin A Based on Enhanced Dual-Color AuNCs Modified Aptamers in Apple Juice. Talanta 2024, 266, 124949. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, N.; Khataee, A.; Habibi, B.; Hassanzadeh, J. Mimetic Ag Nanoparticle/Zn-Based MOF Nanocomposite (AgNPs@ZnMOF) Capped with Molecularly Imprinted Polymer for the Selective Detection of Patulin. Talanta 2018, 179, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhao, Z.; Nie, D.; Jiang, K.; Guo, W.; Fan, K.; Zhang, Z.; Meng, J.; Wu, Y.; Han, Z. Molecularly Imprinted Poly(Thionine)-Based Electrochemical Sensing Platform for Fast and Selective Ultratrace Determination of Patulin. Anal. Chem. 2019, 91, 4116–4123. [Google Scholar] [CrossRef] [PubMed]
- Petzinger; Ziegler. Ochratoxin A from a Toxicological Perspective. J. Vet. Pharmacol. Ther. 2000, 23, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xia, Y.; Liu, Y.; Chen, Y.; Zeng, B. An Effective Ratiometric Electrochemical Sensor for Highly Selective and Reproducible Detection of Ochratoxin A: Use of Magnetic Field Improved Molecularly Imprinted Polymer. Sens. Actuators B Chem. 2022, 359, 131582. [Google Scholar] [CrossRef]
- World Health Organization. Safety Evaluation of Certain Contaminants in Food. Prepared by the Sixty-Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); FAO Food Nutrition Paper 82; World Health Organization: Geneva, Switzerland, 2006; pp. 1–778. [Google Scholar]
- Gao, X.; Cao, W.; Chen, M.; Xiong, H.; Zhang, X.; Wang, S. A High Sensitivity Electrochemical Sensor Based on Fe3+-Ion Molecularly Imprinted Film for the Detection of T-2 Toxin. Electroanalysis 2014, 26, 2739–2746. [Google Scholar] [CrossRef]
- Zhong, H.; Yu, C.; Gao, R.; Chen, J.; Yu, Y.; Geng, Y.; Wen, Y.; He, J. A Novel Sandwich Aptasensor for Detecting T-2 Toxin Based on RGO-TEPA-Au@Pt Nanorods with a Dual Signal Amplification Strategy. Biosens. Bioelectron. 2019, 144, 111635. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Diao, K.; Qiu, D.; Zeng, Y.; Tang, K.; Zhu, Y.; Sheng, Y.; Wen, Y.; Li, M. A Highly-Sensitive and Selective Antibody-like Sensor Based on Molecularly Imprinted Poly(L-Arginine) on COOH-MWCNTs for Electrochemical Recognition and Detection of Deoxynivalenol. Food Chem. 2021, 350, 129229. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, B.; Xie, L.; Li, L.; Yang, J.; Liu, R.; Wei, M.; Jin, H.; Ren, W. Exonuclease III-Assisted Triple-Amplified Electrochemical Aptasensor Based on PtPd NPs/PEI-RGO for Deoxynivalenol Detection. Sens. Actuators B Chem. 2021, 349, 130767. [Google Scholar] [CrossRef]
- Wang, D.; Hu, W.; Xiong, Y.; Xu, Y.; Ming Li, C. Multifunctionalized Reduced Graphene Oxide-Doped Polypyrrole/Pyrrolepropylic Acid Nanocomposite Impedimetric Immunosensor to Ultra-Sensitively Detect Small Molecular Aflatoxin B1. Biosens. Bioelectron. 2015, 63, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Chu, Y.; Ma, H.; Li, Y.; Wu, D.; Du, B.; Wei, Q. Disposable Competitive-Type Immunoassay for Determination of Aflatoxin B1 via Detection of Copper Ions Released from Cu-Apatite. Talanta 2016, 147, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hou, L.; Tang, D.; Liu, B.; Li, J.; Chen, G. Simultaneous Multiplexed Stripping Voltammetric Monitoring of Marine Toxins in Seafood Based on Distinguishable Metal Nanocluster-Labeled Molecular Tags. J. Agric. Food Chem. 2012, 60, 8974–8982. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Braiek, M.; Florea, A.; Chrouda, A.; Farre, C.; Bonhomme, A.; Bessueille, F.; Vocanson, F.; Zhang, A.; Jaffrezic-Renault, N. Aflatoxin B1 Detection Using a Highly-Sensitive Molecularly-Imprinted Electrochemical Sensor Based on an Electropolymerized Metal Organic Framework. Toxins 2015, 7, 3540–3553. [Google Scholar] [CrossRef]
- Rahimpoor, R.; Firoozichahak, A.; Alizadeh, S.; Soleymani-Ghoozhdi, D.; Mehregan, F. Application of a Needle Trap Device Packed with a MIP@MOF Nano-Composite for Efficient Sampling and Determination of Airborne Diazinon Pesticide. RSC Adv. 2022, 12, 16267–16276. [Google Scholar] [CrossRef] [PubMed]
- Uka, B.; Kieninger, J.; Urban, G.A.; Weltin, A. Electrochemical Microsensor for Microfluidic Glyphosate Monitoring in Water Using MIP-Based Concentrators. ACS Sens. 2021, 6, 2738–2746. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Atar, N. Electrochemical Detection of Atrazine by Platinum Nanoparticles/Carbon Nitride Nanotubes with Molecularly Imprinted Polymer. Ind. Eng. Chem. Res. 2017, 56, 7631–7639. [Google Scholar] [CrossRef]
- Aghoutane, Y.; Diouf, A.; Österlund, L.; Bouchikhi, B.; El Bari, N. Development of a Molecularly Imprinted Polymer Electrochemical Sensor and Its Application for Sensitive Detection and Determination of Malathion in Olive Fruits and Oils. Bioelectrochemistry 2020, 132, 107404. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Li, Y.; Zhang, R.; Li, Y. A Novel Electrochemical Sensor Based on Molecularly Imprinted Polymer Modified Hollow N, S-Mo2C/C Spheres for Highly Sensitive and Selective Carbendazim Determination. Biosens. Bioelectron. 2019, 142, 111491. [Google Scholar] [CrossRef] [PubMed]
- Somnet, K.; Thimoonnee, S.; Karuwan, C.; Kamsong, W.; Tuantranont, A.; Amatatongchai, M. Ready-to-Use Paraquat Sensor Using a Graphene-Screen Printed Electrode Modified with a Molecularly Imprinted Polymer Coating on a Platinum Core. Analyst 2021, 146, 6270–6280. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Thimoonnee, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Novel Amino-Containing Molecularly-Imprinted Polymer Coating on Magnetite-Gold Core for Sensitive and Selective Carbofuran Detection in Food. Microchem. J. 2020, 158, 105298. [Google Scholar] [CrossRef]
- Abdel-Ghany, M.F.; Hussein, L.A.; El Azab, N.F. Novel Potentiometric Sensors for the Determination of the Dinotefuran Insecticide Residue Levels in Cucumber and Soil Samples. Talanta 2017, 164, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chu, H.; Mei, Z.; Deng, Y.; Xue, F.; Zheng, L.; Chen, W. Ultrasensitive One-Step Rapid Detection of Ochratoxin A by the Folding-Based Electrochemical Aptasensor. Anal. Chim. Acta 2012, 753, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wei, X.; Zhang, Y.; Wang, P.; Qiu, B.; Guo, L.; Lin, Z.; Yang, H.H. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-Free Electrochemical Aptasensor. Anal. Chem. 2015, 87, 11826–11831. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, J.; Zheng, L.; Qian, H.; Xue, F.; Wu, Y.; Pan, D.; Adeloju, S.B.; Chen, W. Rolling Chain Amplification Based Signal-Enhanced Electrochemical Aptasensor for Ultrasensitive Detection of Ochratoxin A. Anal. Chem. 2013, 85, 10842–10849. [Google Scholar] [CrossRef] [PubMed]
- Evtugyn, G.; Porfireva, A.; Sitdikov, R.; Evtugyn, V.; Stoikov, I.; Antipin, I.; Hianik, T. Electrochemical Aptasensor for the Determination of Ochratoxin A at the Au Electrode Modified with Ag Nanoparticles Decorated with Macrocyclic Ligand. Electroanalysis 2013, 25, 1847–1854. [Google Scholar] [CrossRef]
- Yang, X.; Qian, J.; Jiang, L.; Yan, Y.; Wang, K.; Liu, Q.; Wang, K. Ultrasensitive Electrochemical Aptasensor for Ochratoxin A Based on Two-Level Cascaded Signal Amplification Strategy. Bioelectrochemistry 2014, 96, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Duan, N.; Hun, X.; Wu, S. Electrochemiluminescent Aptamer Biosensor for the Determination of Ochratoxin A at a Gold-Nanoparticles-Modified Gold Electrode Using N-(Aminobutyl)-N-Ethylisoluminol as a Luminescent Label. Anal. Bioanal. Chem. 2010, 398, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.H.; Tran, L.D.; Do, Q.P.; Nguyen, H.L.; Tran, N.H.; Nguyen, P.X. Label-Free Detection of Aflatoxin M1 with Electrochemical Fe3O4/Polyaniline-Based Aptasensor. Mater. Sci. Eng. C 2013, 33, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, X.J.; Liu, Y.Q.; Yang, H.M.; Guo, Q.L. Determination of Aflatoxin M1 in Milk by Triple Quadrupole Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Hayat, A.; Andreescu, S. Biomolecular Detection at SsDNA-Conjugated Nanoparticles by Nano-Impact Electrochemistry. Biosens. Bioelectron. 2017, 87, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Muthamizh, S.; Ribes, À.; Anusuyajanakiraman, M.; Narayanan, V.; Soto, J.; Martínez-Máñez, R.; Aznar, E. Implementation of Oligonucleotide-Gated Supports for the Electrochemical Detection of Ochratoxin A. Supramol. Chem. 2017, 29, 776–783. [Google Scholar] [CrossRef]
- Jiang, L.; Qian, J.; Yang, X.; Yan, Y.; Liu, Q.; Wang, K.; Wang, K. Amplified Impedimetric Aptasensor Based on Gold Nanoparticles Covalently Bound Graphene Sheet for the Picomolar Detection of Ochratoxin A. Anal. Chim. Acta 2014, 806, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Schmitteckert, E.M.; Schlicht, H.J. Detection of the Human Hepatitis B Virus X-Protein in Transgenic Mice after Radioactive Labelling at a Newly Introduced Phosphorylation Site. J. Gen. Virol. 1999, 80, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, Y.; Marty, J.-L.; Yang, X. Aptamer-Based Colorimetric Biosensing of Ochratoxin A Using Unmodified Gold Nanoparticles Indicator. Biosens. Bioelectron. 2011, 26, 2724–2727. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.S.; Pourmand, N. Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis 2007, 19, 1239–1257. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Kerman, K.; Tamiya, E. An Overview of Label-Free Electrochemical Protein Sensors. Sensors 2007, 7, 3442–3458. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhao, F.; Zhang, Y.; Xiong, Y.; Han, S. Recent Advances in Aptamer-Based Optical and Electrochemical Biosensors for Detection of Pesticides and Veterinary Drugs. Food Control 2022, 131, 108399. [Google Scholar] [CrossRef]
- Goud, K.Y.; Catanante, G.; Hayat, A.; Satyanarayana, M.; Gobi, K.V.; Louis, J. Disposable and Portable Electrochemical Aptasensor for Label Free Detection of Aflatoxin B1 in Alcoholic Beverages. Sens. Actuators B Chem. 2016, 235, 466–473. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Q. A Reagentless Electrochemical Sensor for Aflatoxin B1 with Sensitive Signal-on Responses Using Aptamer with Methylene Blue Label at Specific Internal Thymine. Biosens. Bioelectron. 2020, 167, 112478. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, D.; Li, Y.; Ma, S.; Wang, M.; You, T. Hairpin DNA Assisted Dual-Ratiometric Electrochemical Aptasensor with High Reliability and Anti-Interference Ability for Simultaneous Detection of Aflatoxin B1 and Ochratoxin A. Biosens. Bioelectron. 2021, 174, 112654. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri-Dehaghani, F.; Zare, H.R.; Shekari, Z. Simultaneous Measurement of Ochratoxin A and Aflatoxin B1 Using a Duplexed-Electrochemical Aptasensor Based on Carbon Nanodots Decorated with Gold Nanoparticles and Two Redox Probes Hemin@HKUST-1 and Ferrocene@HKUST-1. Talanta 2024, 266, 124947. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.K.; Armani, A.M. Label-Free Biological and Chemical Sensors. Nanoscale 2010, 2, 1544–1559. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Li, H.; Lu, X.; Qian, J.; Zhu, M.; Chen, W.; Liu, Q.; Hao, N.; Li, H.; Wang, K. A Disposable Aptasensing Device for Label-Free Detection of Fumonisin B1 by Integrating PDMS Film-Based Micro-Cell and Screen-Printed Carbon Electrode. Sens. Actuators B Chem. 2017, 251, 192–199. [Google Scholar] [CrossRef]
- Zhong, T.; Li, S.; Li, X.; JiYe, Y.; Mo, Y.; Chen, L.; Zhang, Z.; Wu, H.; Li, M.; Luo, Q. A Label-Free Electrochemical Aptasensor Based on AuNPs-Loaded Zeolitic Imidazolate Framework-8 for Sensitive Determination of Aflatoxin B1. Food Chem. 2022, 384, 132495. [Google Scholar] [CrossRef]
- Rahimi, F.; Roshanfekr, H.; Peyman, H. Ultra-Sensitive Electrochemical Aptasensor for Label-Free Detection of Aflatoxin B1 in Wheat Flour Sample Using Factorial Design Experiments. Food Chem. 2021, 343, 128436. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Qiao, X.; Zhao, H.; He, Y.; Sheng, Q.; Yue, T. Ultrasensitive and Label-Free Electrochemical Aptasensor Based on Carbon Dots-Black Phosphorus Nanohybrid for the Detection of Ochratoxins A. Microchem. J. 2021, 168, 106378. [Google Scholar] [CrossRef]
- Fei, A.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.; Qiu, B.; Mao, H.; Wang, K. Label-Free Impedimetric Aptasensor for Detection of Femtomole Level Acetamiprid Using Gold Nanoparticles Decorated Multiwalled Carbon Nanotube-Reduced Graphene Oxide Nanoribbon Composites. Biosens. Bioelectron. 2015, 70, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Watts, M.A.; Poison, S.; Sorrow, R. Pesticides: Sowing Poison, Growing Hunger, Reaping Sorrow; PAN Asia and the Pacific: Penang, Malaysia, 2010; pp. 51–59. [Google Scholar]
- Lee, J.S.; Tanabe, S.; Takemoto, N.; Kubodera, T. Organochlorine Residues in Deep-Sea Organisms from Suruga Bay, Japan. Mar. Pollut. Bull. 1997, 34, 250–258. [Google Scholar] [CrossRef]
- Kotagiri, Y.G.; Sandhu, S.S.; Morales, J.F.; Fernando, P.U.A.I.; Tostado, N.; Harvey, S.P.; Moores, L.C.; Wang, J. Sensor Array Chip for Real-Time Field Detection and Discrimination of Organophosphorus Neurotoxins. ChemElectroChem 2022, 9, e202200349. [Google Scholar] [CrossRef]
- Senanayake, N. Organophosphorus Insecticide Poisoning. Ceylon Med. J. 1998, 43, 22–29. [Google Scholar] [PubMed]
- Liang, Y.; Wang, H.; Xu, Y.; Pan, H.; Guo, K.; Zhang, Y.; Chen, Y.; Liu, D.; Zhang, Y.; Yao, C.; et al. A Novel Molecularly Imprinted Polymer Composite Based on Polyaniline Nanoparticles as Sensitive Sensors for Parathion Detection in the Field. Food Control 2022, 133, 108638. [Google Scholar] [CrossRef]
- Seebunrueng, K.; Tamuang, S.; Jarujamrus, P.; Saengsuwan, S.; Patdhanagul, N.; Areerob, Y.; Sansuk, S.; Srijaranai, S. Eco-Friendly Thermosensitive Magnetic-Molecularly-Imprinted Polymer Adsorbent in Dispersive Solid-Phase Microextraction for Gas Chromatographic Determination of Organophosphorus Pesticides in Fruit Samples. Food Chem. 2024, 430, 137069. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, N.; Mohammadi, R.; Ghassemzadeh, H.R.; Heris, S.S.S. Design and Synthesis of a New Magnetic Molecularly Imprinted Polymer Nanocomposite for Specific Adsorption and Separation of Diazinon Insecticides from Aqueous Media. Microchem. J. 2022, 175, 107087. [Google Scholar] [CrossRef]
- Saha, C.; Bhushan, M.; Singh, L.R. Pesticide Sensing Using Electrochemical Techniques: A Comprehensive Review. J. Iran. Chem. Soc. 2023, 20, 243–256. [Google Scholar] [CrossRef]
- Duan, S.; Wu, X.; Shu, Z.; Xiao, A.; Chai, B.; Pi, F.; Wang, J.; Dai, H.; Liu, X. Curcumin-Enhanced MOF Electrochemical Sensor for Sensitive Detection of Methyl Parathion in Vegetables and Fruits. Microchem. J. 2023, 184, 108182. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Zhao, F.; Zhang, W.; Ye, Z. Molecularly Imprinted Polymer-Based Sensors for Atrazine Detection by Electropolymerization of o-Phenylenediamine. RSC Adv. 2015, 5, 56534–56540. [Google Scholar] [CrossRef]
- Salahshoor, Z.; Ho, K.-V.; Hsu, S.-Y.; Hossain, A.H.; Trauth, K.; Lin, C.-H.; Fidalgo, M. Detection of Atrazine and Its Metabolites in Natural Water Samples Using Photonic Molecularly Imprinted Sensors. Molecules 2022, 27, 5075. [Google Scholar] [CrossRef] [PubMed]
- Albarghouthi, N.; Eisnor, M.M.; Pye, C.C.; Brosseau, C.L. Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) and Computational Study of Atrazine: Toward Point-of-Need Detection of Prevalent Herbicides. J. Phys. Chem. C 2022, 126, 9836–9842. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, M.; Jia, M.; She, Y.; Wang, J.; Zheng, L.; Abd El-Aty, A.M. Development of a Specific and Sensitive Method for the Detection of Glyphosate Pesticide and Its Metabolite in Tea Using Dummy Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Quadrupole Mass Spectrometry. J. Chromatogr. A 2023, 1705, 464209. [Google Scholar] [CrossRef] [PubMed]
- Kimani, M.; Kislenko, E.; Gawlitza, K.; Rurack, K. Fluorescent Molecularly Imprinted Polymer Particles for Glyphosate Detection Using Phase Transfer Agents. Sci. Rep. 2022, 12, 14151. [Google Scholar] [CrossRef] [PubMed]
- Aghoutane, Y.; Burhan, H.; Sen, F.; Bouchikhi, B.; El Bari, N. Glyphosate Detection via a Nanomaterial-Enhanced Electrochemical Molecularly Imprinted Polymer Sensor. J. Anal. Sci. Technol. 2024, 15, 3. [Google Scholar] [CrossRef]
- Shu, Y.; Li, J.; Bai, H.; Liang, A.; Wen, G.; Jiang, Z. A New SERS Quantitative Analysis Method for Trace Malathion with Recognition and Catalytic Amplification Difunctional MOFTb@Au@MIP Nanoprobe. Talanta 2024, 267, 125166. [Google Scholar] [CrossRef]
- Wang, X.; Xu, R.; Wang, X.; Zhang, J.; Wang, N.; Fang, Y.; Cui, B. Molecularly Imprinted Electrochemiluminescence Sensor Based on Flake-like Au@Cu:ZIF-8 Nanocomposites for Ultrasensitive Detection of Malathion. Sens. Actuators B Chem. 2024, 399, 134837. [Google Scholar] [CrossRef]
- Khosropour, H.; Keramat, M.; Laiwattanapaisal, W. A Dual Action Electrochemical Molecularly Imprinted Aptasensor for Ultra-Trace Detection of Carbendazim. Biosens. Bioelectron. 2024, 243, 115754. [Google Scholar] [CrossRef] [PubMed]
- Neto, D.M.A.; da Costa, L.S.; Sousa, C.P.; Becker, H.; Casciano, P.N.S.; Nascimento, H.O.; Neto, J.R.B.; de Lima-Neto, P.; Nascimento, R.F.; Guedes, J.A.C.; et al. Functionalized Fe3O4 Nanoparticles for Electrochemical Sensing of Carbendazim. Electrochim. Acta 2022, 432, 141193. [Google Scholar] [CrossRef]
- Beigmoradi, F.; Rohani Moghadam, M.; Bazmandegan-Shamili, A.; Masoodi, H.R. Electrochemical Sensor Based on Molecularly Imprinted Polymer Coating on Metal–Organic Frameworks for the Selective and Sensitive Determination of Carbendazim. Microchem. J. 2022, 179, 107633. [Google Scholar] [CrossRef]
Analyte | Electrode Interface | Detection Range | Limit of Detection | Sample | Reference |
---|---|---|---|---|---|
MYCOTOXINS | |||||
AFB1/FuB1 | ITO/PANI-MIP-AFB1 and FuB1 | 1 pg/mL to 500 ng/mL | 0.313 and 0.322 pg/mL for AFB1 and FuB1 | corn extract | [41] |
Patulin | MIP-capped AgNPs@ZnMOF/patulin | 0.1–10 μmol/L | 0.06 μmol/L | water and apple juice | [58] |
AFM1 | AuNP/allay mercaptan/plasmonic chip/MIP film/AFM1 | 0.0003–20.0 ng/mL | 0.4 pg/mL | milk | [55] |
OTA | GCE-MWCNT-Nafion-Ru(bpy)3 | 10 fg/mL to 10 pg/mL | 0.03 ng/mL | corn | [67] |
OTA | GCE-MWCNT-MIP | 0.050 and 1.0 µM | 1.7 µg/L | beer and wine | [43] |
OTA | GCE-Ru Se NPs-MIP | 0.001 to 100 ng/mL | 0.2 pg/mL | milk and peanut Oil | [68] |
FuB1 | GCE-AuNPs-Ru@SiO2 NPs-MIP | 0.005–5 ng/mL | 0.35 pg/mL | seafood | [69] |
AFB1 | Au electrode-PATP-MOF | 3.2 fM and 3.2 µM | 3 fM | spiked rice samples | [70] |
PESTICIDES | |||||
Diazinon | MOF/MIP/NTD/Dia | 0.002–0.03 mg/m3 | 0.02 mg/m3 | air | [71] |
GLY | SPCE/AuNP/MIP/Gly | 273–1200 pg/mL | 0.8 pg/mL (DPV) and 0.001 pg/mL (EIS) | agri-food sample | [72] |
ATR | Pt NPs/C3N4NTs/MIP/ATR | 1.0 × 10−12–1.0 × 10−10 M | 1.5 × 10−13 M | wastewater | [73] |
MAL | Au-SPE/MIP/MAL | 0.1–1000 pg/mL | 0.06 pg/mL | olive fruits and oils | [74] |
CBD | N, S–Mo2C/MIP/CBD | 1 × 10−12∼8 × 10−9 M | 6.7 × 10−13 M | fruits and vegetables | [75] |
Paraquat | SPCE-PtNPs@SiO2-vinyl NPs | 0.05 to 1000 μM | 0.02 nM | vegetable samples | [76] |
Carbofuran | Fe3O4@Au-MIP-NH2/GCE | 0.01 to 100 mM | 1.7 nM | fruits and vegetables | [77] |
Dinotefuran | GCE/MIP/PVC | 10−7 to 10−2 M | 0.35 mg/L | cucumber | [78] |
Mycotoxins | Electrode Interface | Detection Range | Limit of Detection | Sample | Reference |
---|---|---|---|---|---|
OTA | MB and thiol dual-labelled modified gold electrode with aptamer | 0.1–1000 pg/mL | 0.095 pg/mL | red wine | [79] |
OTA | On the ITO electrode surface, MB-labelled electroactive mononucleotide diffuses. | 0.01–1.0 ng/mL | 0.004 ng/mL | oats | [80] |
OTA | Au electrode is used to immobilize rolling circle amplification products. | 0.065 pg/mL | red wine | [81] | |
OTA | Ag NPs/Au electrode | 0.3–30 nM | 0.05 nM | beer | [82] |
OTA | AuNPs with DNA functionalization were fixed on the electrode. | 2.5 pM–2.5 nM | 0.75 ± 0.12 pM | red wine | [83] |
OTA | AuNPs altered tags: N-(4-aminobutyl)-N-ethylisoluminol; Au electrode | 0.02–3.0 ng/mL | 0.007 ng/mL | wheat | [84] |
AFB1 | GO-based aptamer | 0.05–6.0 ng/mL | 0.05 ng/mL | milk | [20] |
AFM1 | Pt microelectrode-Fe3O4 NPs-PANI-APT | 6–60 ng/L | 1.98 ng/L | milk | [85] |
AFB1 | SPCE-FGO-HMDA-MB-APT | 006 and 0.02 ng/mL | 0.05 ng/mL | milk | [86] |
OTA | CFME-Ag NPs-APT | 0.07 to 10 nM | 0.05 nM | [87] | |
OTA | GCE-mesoporous silica NPs-APT | 0.003 nM | wheat | [88] | |
OTA | Nitrogen-doped GR QDs-SiO2-APT | 10 fg/mL to 10 pg/mL | 0.5 pg/mL | corn | [67] |
OTA | AuE-rGO-Au NPs-APT | 1 pg/mL to 50 ng/mL | 0.3 pg/mL | red wine | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakavath, K.; Kafley, C.; Sajeevan, A.; Jana, S.; Marty, J.L.; Kotagiri, Y.G. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins 2024, 16, 244. https://doi.org/10.3390/toxins16060244
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins. 2024; 16(6):244. https://doi.org/10.3390/toxins16060244
Chicago/Turabian StyleLakavath, Kavitha, Chandan Kafley, Anjana Sajeevan, Soumyajit Jana, Jean Louis Marty, and Yugender Goud Kotagiri. 2024. "Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides" Toxins 16, no. 6: 244. https://doi.org/10.3390/toxins16060244
APA StyleLakavath, K., Kafley, C., Sajeevan, A., Jana, S., Marty, J. L., & Kotagiri, Y. G. (2024). Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins, 16(6), 244. https://doi.org/10.3390/toxins16060244