Development of a Quick and Highly Sensitive Amplified Luminescent Proximity Homogeneous Assay for Detection of Saxitoxin in Shellfish
Abstract
:1. Introduction
2. Results
2.1. Detection Principle of STX-AlphaLISA
2.2. Optimization of STX-AlphaLISA
2.3. Identification of STX-AlphaLISA
2.4. Application of STX-AlphaLISA
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Reagents and Instruments
5.2. Conjugated Microspheres
5.3. Optimization
5.4. Method Evaluation
5.5. Sample Processing
5.6. ELISA Detection Protocol for STX
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water, 2nd ed.; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Zhao, X.; Zeng, S.; Feng, H.; Wang, Y.; Li, S.; Zhou, X.; Wang, M.; Rei, L. Antifouling performance of in situ synthesized chitosan-zinc oxide hydrogel film against alga M. aeruginosa. Int. J. Biol. Macromol. 2022, 200, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.; Nieto-Sandoval, J.; Cirés, S.; de Pedro, Z.M.; Quesada, A.; Casas, J.A. Degradation of widespread cyanotoxins with high impact in drinking water (microcystins, cylindrospermopsin, anatoxin-a and saxitoxin) by CWPO. Water Res. 2019, 163, 114853. [Google Scholar] [CrossRef]
- Serrano, P.C.; Nunes, G.E.; Avila, L.B., Jr.; Reis, C.P.S.; Gomes, A.M.C.; Reis, F.T.; Sartorelli, M.L.; Melegari, S.P.; Matias, W.G.; Bechtold, I.H. Electrochemical impedance biosensor for detection of saxitoxin in aqueous solution. Anal. Bioanal. Chem. 2021, 413, 6393–6399. [Google Scholar] [CrossRef] [PubMed]
- Bratakou, S.; Nikoleli, G.P.; Siontorou, C.G.; Nikolelis, D.P.; Karapetis, S.; Tzamtzis, N. Development of an Electrochemical Biosensor for the Rapid Detection of Saxitoxin Based on Air Stable Lipid Films with Incorporated Anti-STX Using Graphene Electrodes. Electroanalysis 2017, 29, 990–997. [Google Scholar] [CrossRef]
- Hou, L.; Jiang, L.; Song, Y.; Ding, Y.; Zhang, J.; Wu, X.; Tang, D. Amperometric aptasensor for saxitoxin using a gold electrode modified with carbon nanotubes on a self-assembled monolayer, and methylene blue as an electrochemical indicator probe. Microchim. Acta 2016, 183, 1971–1980. [Google Scholar] [CrossRef]
- Cheng, S.; Zheng, B.; Yao, D.; Kuai, S.; Tian, J.; Liang, H.; Ding, Y. Study of the binding way between saxitoxin and its aptamer and a fluorescent aptasensor for detection of saxitoxin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zheng, X.; Wu, J. A biolayer interferometry-based competitive biosensor for rapid and sensitive detection of saxitoxin. Sens. Actuators B Chem. 2017, 246, 169–174. [Google Scholar] [CrossRef]
- O’Neill, K.; Musgrave, I.F.; Humpage, A. Low dose extended exposure to saxitoxin and its potential neurodevelopmental effects: A review. Environ. Toxicol. Pharmacol. 2016, 48, 7–16. [Google Scholar] [CrossRef]
- Woo, C.K.; Bahna, S.L. Not all shellfish “allergy” is allergy! Clin. Transl. Allergy 2011, 1, 3. [Google Scholar] [CrossRef]
- Zhang, W.; Dixon, M.B.; Saint, C.; Teng, K.S.; Furumai, H. Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art. ACS Sens. 2018, 3, 1233–1245. [Google Scholar] [CrossRef]
- Weng, Q.; Zhang, R.; Wu, P.; Chen, J.; Pan, X.; Zhao, D.; Wang, J.; Zhang, H.; Qi, X.; Wu, X.; et al. An Occurrence and Exposure Assessment of Paralytic Shellfish Toxins from Shellfish in Zhejiang Province, China. Toxins 2023, 15, 624. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Yang, Y.; Zhang, W.; Hua, Y. Contamination status of paralytic shellfish toxins in shellfish from Southeastern China in 2017–2021. Environ. Sci. Pollut. Res. Int. 2023, 30, 34728–34740. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.J.; Hao, L.L.; Ye, H.; Ma, P.F.; Wang, Z.P. Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins. Microchim. Acta 2021, 188, 118. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.P.; Pi, S.S.; Ye, S.F.; Gao, H.M.; Yao, L.; Jiang, Z.Y.; Song, Y.L.; Xi, L. A new simple screening method for the detection of paralytic shellfish poisoning toxins. Chin. J. Oceanol. Limnol. 2012, 30, 786–790. [Google Scholar] [CrossRef]
- Podduturi, R.; Schlüter, L.; Liu, T.T.; Osti, J.A.S.; Moraes, M.D.B.; Jorgensen, N.O.G. Monitoring of saxitoxin production in lakes in Denmark by molecular, chromatographic and microscopic approaches. Harmful Algae 2021, 101, 101966. [Google Scholar] [CrossRef]
- Coleman, R.; Lemire, S.W.; Bragg, W.; Garrett, A.; Ojeda-Torres, G.; Wharton, R.; Hamelin, E.; Thomas, J.; Johnson, R.C. Development and validation of a high-throughput online solid-phase extraction-liquid chromatography-tandem mass spectrometry method for the detection of gonyautoxins 1&4 and gonyautoxins 2&3 in human urine. Biomed. Chromatogr. BMC 2017, 31, e3954. [Google Scholar] [CrossRef]
- Handy, S.M.; Yakes, B.J.; DeGrasse, J.A.; Campbell, K.; Elliott, C.T.; Kanyuck, K.M.; Degrasse, S.L. First report of the use of a saxitoxin-protein conjugate to develop a DNA aptamer to a small molecule toxin. Toxicon 2013, 61, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Xiao, S.; Xie, C.; Wang, R.; Zeng, L.; Wang, K.; Zhang, D.; Li, X.; Wang, S. Preparation of Monoclonal Antibody for Brevetoxin 1 and Development of Ic-ELISA and Colloidal Gold Strip to Detect Brevetoxin 1. Toxins 2018, 10, 75. [Google Scholar] [CrossRef]
- Dhanji-Rapkova, M.; O’Neill, A.; Maskrey, B.H.; Coates, L.; Teixeira Alves, M.; Kelly, R.J.; Hatfield, R.G.; Rowland-Pilgrim, S.J.; Lewis, A.M.; Algoet, M.; et al. Variability and profiles of lipophilic toxins in bivalves from Great Britain during five and a half years of monitoring: Okadaic acid, dinophysis toxins and pectenotoxins. Harmful Algae 2018, 77, 66–80. [Google Scholar] [CrossRef]
- Eangoor, P.; Indapurkar, A.S.; Vakkalanka, M.D.; Knaack, J.S. Multiplexed ELISA screening assay for nine paralytic shellfish toxins in human plasma. Analyst 2019, 144, 4702–4707. [Google Scholar] [CrossRef]
- Li, J.; Persson, K.M. Quick detection method for paralytic shellfish toxins (PSTs) monitoring in freshwater—A review. Chemosphere 2021, 265, 128591. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.; Pöhlmann, C.; Dietrich, R.; Märtlbauer, E.; Elßner, T. Electrochemical Biochip Assays Based on Anti-idiotypic Antibodies for Rapid and Automated On-Site Detection of Low Molecular Weight Toxins. Front. Chem. 2019, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Humpage, A.R.; Magalhaes, V.F.; Froscio, S.M. Comparison of analytical tools and biological assays for detection of paralytic shellfish poisoning toxins. Anal. Bioanal. Chem. 2010, 397, 1655–1671. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lv, Q.; Liu, P.; Guo, L.; Zhang, L.; Zheng, Y.; Ming, L.; Kong, D.; Jiang, H.; Jiang, Y. AlphaLISA for detection of staphylococcal enterotoxin B free from interference by protein A. Toxicon 2019, 165, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.T.; Guan, H.; Cheung, M.K.; McHugh, W.M.; Cornell, T.T.; Shanley, T.P.; Kurabayashi, K.; Fu, J. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA. Sci. Rep. 2015, 5, 11339. [Google Scholar] [CrossRef]
- Xiang, Z.; Chen, X.; Zhou, X.; Qin, Y.; Zhao, X.; Wang, Y.; Li, Q.; Huang, B. Development and application of a novel aldehyde nanoparticle-based amplified luminescent proximity homogeneous assay for rapid quantitation of pancreatic stone protein. Clin. Chim. Acta 2022, 535, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lv, Q.; Zheng, Y.; Chen, X.; Kong, D.; Huang, W.; Liu, P.; Jiang, H.; Jiang, Y. A rapid and accurate method for screening T-2 toxin in food and feed using competitive AlphaLISA. FEMS Microbiol. Lett. 2021, 368, fnab029. [Google Scholar] [CrossRef]
- Zong, H.; Zhang, S.; Shang, X.; Jiang, H.; Zhao, Z.; Chen, S.; Wang, X.; Wang, Y.; Jiang, Y.; Li, X.; et al. Development of an AlphaLISA assay for sensitive and accurate detection of influenza B virus. Front. Med. 2023, 10, 1155551. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.M.; Ruth, L.E.; Capobianco, J.A.; Strobaugh, T.P., Jr.; Rubio, F.M.; Gehring, A.G. Detection of Shiga Toxin 2 Produced by Escherichia coli in Foods Using a Novel AlphaLISA. Toxins 2018, 10, 422. [Google Scholar] [CrossRef]
- Lassabe, G.; Kramer, K.; Hammock, B.D.; González-Sapienza, G.; González-Techera, A. Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling. Anal. Chem. 2018, 90, 6187–6192. [Google Scholar] [CrossRef]
- Qin, Y.; Li, J.; Kuang, J.; Shen, S.; Zhou, X.; Zhao, X.; Huang, B.; Han, B. Okadaic Acid Detection through a Rapid and Sensitive Amplified Luminescent Proximity Homogeneous Assay. Toxins 2023, 15, 501. [Google Scholar] [CrossRef] [PubMed]
- Vilariño, N.; Louzao, M.C.; Abal, P.; Cagide, E.; Carrera, C.; Vieytes, M.R.; Botana, L.M. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins 2018, 10, 324. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Zhang, F.; Dong, C.F.; Zheng, G.C.; Zhang, Z.H.; Zhang, Y.Y.; Tan, Z.J. Variations in the toxicity and condition index of five bivalve species throughout a red tide event caused by Alexandrium catenella: A field study. Environ. Res. 2022, 215, 114327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lv, Q.; Zheng, Y.; Gao, S.; Huang, W.; Liu, P.; Kong, D.; Wang, Y.; Yu, Y.; Jiang, Y.; et al. Rapid and sensitive detection of botulinum toxin type A in complex sample matrices by AlphaLISA. Front. Public Health 2022, 10, 987517. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Kanamori, M.; Yoshida, H.; Okumura, Y.; Uchida, H.; Matsushima, R.; Oikawa, H.; Suzuki, T. Development of Ultra-Performance Liquid Chromatography with Post-Column Fluorescent Derivatization for the Rapid Detection of Saxitoxin Analogues and Analysis of Bivalve Monitoring Samples. Toxins 2019, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Su, K.Q.; Qiu, X.X.; Fang, J.R.; Zou, Q.C.; Wang, P. An improved efficient biochemical detection method to marine toxins with a smartphone-based portable system-Bionic e-Eye. Sens. Actuators B-Chem. 2017, 238, 1165–1172. [Google Scholar] [CrossRef]
- Bai, X.; Gong, W.; Guo, Y.; Zhu, D.; Li, X. Detection of saxitoxin by a SERS aptamer sensor based on enzyme cycle amplification technology. Analyst 2023, 148, 2327–2334. [Google Scholar] [CrossRef]
- Wippermann, D.; Zonderman, A.; Zimmermann, T.; Pröfrock, D. Determination of technology-critical elements in seafood reference materials by inductively coupled plasma-tandem mass spectrometry. Anal. Bioanal. Chem. 2023, 416, 2797–2807. [Google Scholar] [CrossRef]
Samples | Average Concentration of STX (ng/mL) | Standard Deviation | Variable Coefficient/(%) | |
---|---|---|---|---|
intra-assay | oyster | 46.51 | 1.69 | 3.63 |
mussel | 28.57 | 0.75 | 2.61 | |
inter-assay | oyster | 42.43 | 3.52 | 8.30 |
mussel | 31.03 | 2.38 | 7.67 |
Toxin | Cross-Reactivity (100%) |
---|---|
MC | 0.96 |
AF | 0.25 |
OA | 0.75 |
DTX-1 | 0.57 |
Sample | Spiked Concentration (ng/mL) | AlphaLISA | |
---|---|---|---|
Mean ± SD (%) | RSD (%) | ||
1 | 10 | 91.51 ± 5.28 | 5.77 |
2 | 50 | 111.13 ± 8.69 | 7.82 |
3 | 100 | 102.82 ± 6.56 | 6.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Zhang, Z.; Li, J.; Lu, Y.; Ma, F.; Wang, Z.; Geng, J.; Huang, B.; Qin, Y. Development of a Quick and Highly Sensitive Amplified Luminescent Proximity Homogeneous Assay for Detection of Saxitoxin in Shellfish. Toxins 2024, 16, 341. https://doi.org/10.3390/toxins16080341
Zhao C, Zhang Z, Li J, Lu Y, Ma F, Wang Z, Geng J, Huang B, Qin Y. Development of a Quick and Highly Sensitive Amplified Luminescent Proximity Homogeneous Assay for Detection of Saxitoxin in Shellfish. Toxins. 2024; 16(8):341. https://doi.org/10.3390/toxins16080341
Chicago/Turabian StyleZhao, Chenhao, Zhi Zhang, Jiayu Li, Yaofan Lu, Fuyuan Ma, Zheng Wang, Jiaxin Geng, Biao Huang, and Yuan Qin. 2024. "Development of a Quick and Highly Sensitive Amplified Luminescent Proximity Homogeneous Assay for Detection of Saxitoxin in Shellfish" Toxins 16, no. 8: 341. https://doi.org/10.3390/toxins16080341
APA StyleZhao, C., Zhang, Z., Li, J., Lu, Y., Ma, F., Wang, Z., Geng, J., Huang, B., & Qin, Y. (2024). Development of a Quick and Highly Sensitive Amplified Luminescent Proximity Homogeneous Assay for Detection of Saxitoxin in Shellfish. Toxins, 16(8), 341. https://doi.org/10.3390/toxins16080341