Assessment of Within- and Inter-Patient Variability of Uremic Toxin Concentrations in Children with CKD
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Patients
5.2. Data Collection and Biochemical Measurements
5.3. Dietary Assessment
5.4. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argiles, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Vanholder, R.; Massy, Z.A.; Ortiz, A.; Sarafidis, P.; Dekker, F.W.; Fliser, D.; Fouque, D.; Heine, G.H.; Jager, K.J.; et al. The systemic nature of CKD. Nat. Rev. Nephrol. 2017, 13, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Kingra, K.; Curtis, S.; Mollard, R.C.; Shamloo, M.; Askin, N.; Tangri, N.; MacKay, D. The Effects of Resistant Starch Consumption in Adult Patients with Chronic Kidney Disease: A Systematic Review. Can. J. Kidney Health Dis. 2022, 9, 20543581221100023. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, C.; Ramos, C.I.; Johnson, D.W.; Campbell, K.L. Prebiotic, Probiotic, and Synbiotic Supplementation in Chronic Kidney Disease: A Systematic Review and Meta-analysis. J. Ren. Nutr. Off. J. Counc. Ren. Nutr. Natl. Kidney Found. 2019, 29, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, J.; Qin, Y.; Wang, Y.; Zhang, Y.; Sun, S. Probiotics, Prebiotics, and Synbiotics Improve Uremic, Inflammatory, and Gastrointestinal Symptoms in End-Stage Renal Disease with Dialysis: A Network Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022, 9, 850425. [Google Scholar] [CrossRef] [PubMed]
- March, D.S.; Jones, A.W.; Bishop, N.C.; Burton, J.O. The Efficacy of Prebiotic, Probiotic, and Synbiotic Supplementation in Modulating Gut-Derived Circulatory Particles Associated with Cardiovascular Disease in Individuals Receiving Dialysis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Ren. Nutr. Off. J. Counc. Ren. Nutr. Natl. Kidney Found. 2020, 30, 347–359. [Google Scholar] [CrossRef]
- Nguyen, T.T.U.; Kim, H.W.; Kim, W. Effects of Probiotics, Prebiotics, and Synbiotics on Uremic Toxins, Inflammation, and Oxidative Stress in Hemodialysis Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 4456. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Kaewput, W.; Hatch, S.T.; Bathini, T.; Sharma, K.; Wijarnpreecha, K.; Ungprasert, P.; D’Costa, M.; Mao, M.A.; Cheungpasitporn, W. Effects of Probiotics on Inflammation and Uremic Toxins among Patients on Dialysis: A Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2019, 64, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Takkavatakarn, K.; Wuttiputinun, T.; Phannajit, J.; Praditpornsilpa, K.; Eiam-Ong, S.; Susantitaphong, P. Protein-bound uremic toxin lowering strategies in chronic kidney disease: A systematic review and meta-analysis. J. Nephrol. 2021, 34, 1805–1817. [Google Scholar] [CrossRef]
- Kalim, S.; Wald, R.; Yan, A.T.; Goldstein, M.B.; Kiaii, M.; Xu, D.; Berg, A.H.; Clish, C.; Thadhani, R.; Rhee, E.P.; et al. Extended Duration Nocturnal Hemodialysis and Changes in Plasma Metabolite Profiles. Clin. J. Am. Soc. Nephrol. 2018, 13, 436–444. [Google Scholar] [CrossRef]
- Eloot, S.; Van Biesen, W.; Roels, S.; Delrue, W.; Schepers, E.; Dhondt, A.; Vanholder, R.; Glorieux, G. Spontaneous variability of pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients. PLoS ONE 2017, 12, e0186010. [Google Scholar] [CrossRef]
- Davis, E.C.; Wang, M.; Donovan, S.M. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes 2017, 8, 143–171. [Google Scholar] [CrossRef]
- Gryp, T.; De Paepe, K.; Vanholder, R.; Kerckhof, F.M.; Van Biesen, W.; Van de Wiele, T.; Verbeke, F.; Speeckaert, M.; Joossens, M.; Couttenye, M.M.; et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020, 97, 1230–1242. [Google Scholar] [CrossRef]
- El Amouri, A.; Snauwaert, E.; Foulon, A.; Vande Moortel, C.; Van Dyck, M.; Van Hoeck, K.; Godefroid, N.; Glorieux, G.; Van Biesen, W.; Vande Walle, J.; et al. Dietary Fibre Intake Is Associated with Serum Levels of Uraemic Toxins in Children with Chronic Kidney Disease. Toxins 2021, 13, 225. [Google Scholar] [CrossRef]
- Poesen, R.; Mutsaers, H.A.; Windey, K.; van den Broek, P.H.; Verweij, V.; Augustijns, P.; Kuypers, D.; Jansen, J.; Evenepoel, P.; Verbeke, K.; et al. The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites. PLoS ONE 2015, 10, e0140820. [Google Scholar] [CrossRef]
- Poesen, R.; Windey, K.; Neven, E.; Kuypers, D.; De Preter, V.; Augustijns, P.; D’Haese, P.; Evenepoel, P.; Verbeke, K.; Meijers, B. The Influence of CKD on Colonic Microbial Metabolism. J. Am. Soc. Nephrol. 2016, 27, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Behrens, F.; Bartolomaeus, H.; Wilck, N.; Holle, J. Gut-immune axis and cardiovascular risk in chronic kidney disease. Clin. Kidney J. 2024, 17, sfad303. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, S.; Zhao, L.; Hao, Y.; Qin, J.; Zhang, L.; Zhang, C.; Bian, W.; Zuo, L.; et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020, 69, 2131–2142. [Google Scholar] [CrossRef]
- Meijers, B.K.; De Loor, H.; Bammens, B.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Nazzal, L.; Roberts, J.; Singh, P.; Jhawar, S.; Matalon, A.; Gao, Z.; Holzman, R.; Liebes, L.; Blaser, M.J.; Lowenstein, J. Microbiome perturbation by oral vancomycin reduces plasma concentration of two gut-derived uremic solutes, indoxyl sulfate and p-cresyl sulfate, in end-stage renal disease. Nephrol. Dial. Transplant. 2017, 32, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Eloot, S.; Schepers, E.; Barreto, D.V.; Barreto, F.C.; Liabeuf, S.; Van Biesen, W.; Verbeke, F.; Glorieux, G.; Choukroun, G.; Massy, Z.; et al. Estimated glomerular filtration rate is a poor predictor of concentration for a broad range of uremic toxins. Clin. J. Am. Soc. Nephrol. 2011, 6, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Liabeuf, S.; Desjardins, L.; Massy, Z.A.; Brazier, F.; Westeel, P.F.; Mazouz, H.; Titeca-Beauport, D.; Diouf, M.; Glorieux, G.; Vanholder, R.; et al. Levels of Indoxyl Sulfate in Kidney Transplant Patients, and the Relationship with Hard Outcomes. Circ. J. Off. J. Jpn. Circ. Soc. 2016, 80, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Fricke, W.F.; Maddox, C.; Song, Y.; Bromberg, J.S. Human microbiota characterization in the course of renal transplantation. Am. J. Transplant. 2014, 14, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.R.; Muthukumar, T.; Dadhania, D.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut microbial community structure and complications after kidney transplantation: A pilot study. Transplantation 2014, 98, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.J.; Munoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Snauwaert, E.; De Buyser, S.; Van Biesen, W.; Raes, A.; Glorieux, G.; Collard, L.; Van Hoeck, K.; Van Dyck, M.; Godefroid, N.; Walle, J.V.; et al. Indoxyl Sulfate Contributes to Impaired Height Velocity in (Pre)School Children. Kidney Int. Rep. 2024, 9, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- El Amouri, A.; Delva, K.; Foulon, A.; Vande Moortel, C.; Van Hoeck, K.; Glorieux, G.; Van Biesen, W.; Vande Walle, J.; Raes, A.; Snauwaert, E.; et al. Potassium and fiber: A controversial couple in the nutritional management of children with chronic kidney disease. Pediatr. Nephrol. 2022, 37, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Bellemans, M.; De Mayer, M. Maten en gewichten: Handleiding voor een gestandardiseerde kwantificering van voedingsmiddelen; Hoge Gezondheidsraad: Brussels, Belgium, 2005. [Google Scholar]
- McAlister, L.; Pugh, P.; Greenbaum, L.; Haffner, D.; Rees, L.; Anderson, C.; Desloovere, A.; Nelms, C.; Oosterveld, M.; Paglialonga, F.; et al. The dietary management of calcium and phosphate in children with CKD stages 2-5 and on dialysis-clinical practice recommendation from the Pediatric Renal Nutrition Taskforce. Pediatr. Nephrol. 2020, 35, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, J.L. Analysis of data from multiclinic trials. Control. Clin. Trials 1986, 7, 267–275. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measurement error proportional to the mean. BMJ 1996, 313, 106. [Google Scholar] [CrossRef]
- Wang, J.; Haiyi, X.; Fisher, F.F. Multilevel Models: Applications Using SAS®; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
Sample size—n | 62 |
Total number of visits—n | 403 |
Number of visits per patient—n | 7 [5; 9] |
Gender (M/F)—n (%) | 42 (68%)/20 (32%) |
Age (years) | 9.4 ± 5.3 |
eGFR (mL/min/1.73 m2) | 38.5 [23.1; 64.0] |
CKD classes—n (%) | |
CKD stage 1 | 6 (10%) |
CKD stage 2 | 12 (19%) |
CKD stage 3 | 20 (32%) |
CKD stage 4 | 16 (26%) |
CKD stage 5 | 8 (13%) |
Renal Diagnosis—n (%) | |
Cystic disease | 4 (7%) |
CAKUT | 31 (50%) |
Glomerulonephritis | 10 (16%) |
Proximal Tubular Disease | 5 (8%) |
Other or unknown | 12 (19%) |
Transplantation—n (%) | 9 (15%) |
BSA (m2) | 1.0 ± 0.4 |
Prophylactic antibiotics—n (%) | |
No | 45 (73%) |
Trimethoprim | 8 (13%) |
(Nitro) furantoin | 6 (10%) |
Azithromycin | 1 (2%) |
Amoxicillin | 1 (2%) |
Other | 1 (2%) |
Nutrient intake | |
Protein intake (g/m2/day) | 52.8 [36.6; 67.3] |
Fiber intake (g/m2/day) | 11.7 [8.2; 15.8] |
Protein/fiber index ° | 4.4 [3.0; 6.4] |
Pediatric CKD Patients | Adult HD Patients [11] | |||
---|---|---|---|---|
Concentration at Baseline (mg/dL) | Within-Patient CV (%) | ICC | ICC | |
Small water-soluble solutes | ||||
Urea | 73.4 [40.5; 101] | 26 | 0.66 | 0.74 |
SDMA | 0.028 [0.021; 0.046] | 24 | 0.88 | 0.69 |
ADMA | 0.015 [0.013; 0.018] | 16 | 0.46 | 0.69 |
UA | 6.94 [5.64; 8.19] | 13 | 0.91 | 0.64 |
Protein-bound toxins | ||||
PCG | 0.007 [0.002; 0.017] | 61 | 0.75 | 0.86 |
HA | 0.110 [0.052; 0.166] | 79 | 0.63 | 0.50 |
IAA | 0.038 [0.027; 0.066] | 37 | 0.79 | 0.81 |
IxS | 0.235 [0.105; 0.479] | 46 | 0.64 | 0.63 |
PCS | 0.826 [0.355; 1.539] | 57 | 0.76 | 0.79 |
CMPF | 0.043 [0.014; 0.092] | 67 | 0.76 | 0.94 |
Middle molecules | ||||
β2M | 0.562 [0.342; 0.955] | 27 | 0.90 | 0.76 |
CfD | 0.657 [0.349; 0.914] | 15 | 0.60 | n.a. |
% of Explained Within-Patient Variance/% of Explained Inter-Patient Variance | ||||||
---|---|---|---|---|---|---|
Dietary Protein | Dietary Fiber | Antibiotic Use | BSA | eGFR | All 5 | |
Small water-soluble solutes | ||||||
Urea | - | - | - | - | 4.0/79 | 3.6/81 |
SDMA | - | - | - | - | −1.7/67 | −0.1/78 |
ADMA | - | - | - | - | - | - |
UA | - | - | - | 1.1/18 | 0.4/26 | 0.5/42 |
Protein-bound toxins | ||||||
pCG | - | - | - | - | 1.1/26 | 2.3/21 |
HA | - | - | - | - | −1.8/54 | −1.6/51 |
IAA | - | - | - | - | 5.1/44 | 4.7/47 |
IxS | - | - | - | - | 6.0/66 | 6.0/67 |
PCS | - | - | - | - | 2.1/21 | 3.2/15 |
CMPF | - | - | - | - | - | - |
Middle molecules | ||||||
β2M | - | - | - | - | 12/69 | 11/77 |
CfD | - | - | - | - | 6.3/74 | 4.7/81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snauwaert, E.; De Buyser, S.; Desloovere, A.; Van Biesen, W.; Raes, A.; Glorieux, G.; Collard, L.; Van Hoeck, K.; Van Dyck, M.; Godefroid, N.; et al. Assessment of Within- and Inter-Patient Variability of Uremic Toxin Concentrations in Children with CKD. Toxins 2024, 16, 349. https://doi.org/10.3390/toxins16080349
Snauwaert E, De Buyser S, Desloovere A, Van Biesen W, Raes A, Glorieux G, Collard L, Van Hoeck K, Van Dyck M, Godefroid N, et al. Assessment of Within- and Inter-Patient Variability of Uremic Toxin Concentrations in Children with CKD. Toxins. 2024; 16(8):349. https://doi.org/10.3390/toxins16080349
Chicago/Turabian StyleSnauwaert, Evelien, Stefanie De Buyser, An Desloovere, Wim Van Biesen, Ann Raes, Griet Glorieux, Laure Collard, Koen Van Hoeck, Maria Van Dyck, Nathalie Godefroid, and et al. 2024. "Assessment of Within- and Inter-Patient Variability of Uremic Toxin Concentrations in Children with CKD" Toxins 16, no. 8: 349. https://doi.org/10.3390/toxins16080349
APA StyleSnauwaert, E., De Buyser, S., Desloovere, A., Van Biesen, W., Raes, A., Glorieux, G., Collard, L., Van Hoeck, K., Van Dyck, M., Godefroid, N., Vande Walle, J., & Eloot, S. (2024). Assessment of Within- and Inter-Patient Variability of Uremic Toxin Concentrations in Children with CKD. Toxins, 16(8), 349. https://doi.org/10.3390/toxins16080349