Fungal Laccases and Fumonisin Decontamination in Co-Products of Bioethanol from Maize
Abstract
:1. Introduction
2. Results
2.1. Production of Ligninolytic Enzyme by Basidiomycota
2.2. Molecular Identification of Laccase Producer Strains
2.3. Specific Activity of Laccases
2.4. Fumonisin B1 Decontamination
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Fungal Collection and Isolation
5.2. Analysis of Ligninolytic Enzyme Production
5.3. Enzymatic Production and Laccase Activity Determination
5.3.1. Laccase Enzymatic and Specific Activities
5.3.2. Electrophoresis in Polyacrylamide Gels
5.4. Molecular Identification of the Fungal Species
5.4.1. DNA Extraction
5.4.2. PCR Amplification and Sequencing
5.5. Fumonisin Decontamination by Enzymatic Extracts Containing Laccases
5.5.1. In Vitro Assay in Buffer Medium
5.5.2. In Vitro Assay in Maize Steep Liquor
Enzymatic Stability
Decontamination Assay
5.6. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolsa de Comercio de Rosario (BCR). Maíz: Balance de Oferta y Demanda en Argentina. Available online: https://www.bcr.com.ar/es/mercados/investigacion-y-desarrollo/informativo-semanal/estadisticas-informativo-semanal/maiz-23 (accessed on 4 July 2024).
- Ministerio de Agricultura, Ganadería y Pesca de la Argentina (MAGyP). Estimaciones agrícolas. Informe Mensual. 17 August 2023. Available online: https://www.magyp.gob.ar/sitio/areas/estimaciones/_archivos/estimaciones/230000_2023/230800_Agosto/230817_Informe%20Mensual%20al%2017_08_2023.pdf (accessed on 8 August 2024).
- Buenavista, R.M.E.; Siliveru, K.; Zheng, Y. Utilization of Distiller’s Dried Grains with Solubles: A review. J. Agric. Food Res. 2021, 5, 100195. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Dinolfo, M.I.; Martínez, M.; Castañares, E.; Arata, A.F. Fusarium in maize during harvest and storage: A review of species involved, mycotoxins, and management strategies to reduce contamination. Eur. J. Plant Pathol. 2022, 164, 151–166. [Google Scholar] [CrossRef]
- Logrieco, A.; Battilani, P.; Leggieri, M.C.; Jiang, Y.; Haesaert, G.; Lanubile, A.; Mahuku, G.; Mesterhazy, A.; Ortega-Beltran, A.; Pasti, M.; et al. Perspectives on global mycotoxin issues and management from the mycokey maize working group. Plant Dis. 2021, 105, 525–537. [Google Scholar] [CrossRef]
- Wigmann, É.F.; Meyer, K.; Cendoya, E.; Maul, R.; Vogel, R.F.; Niessen, L. A Loop-Mediated Isothermal Amplification (LAMP) based assay for the rapid and sensitive group-specific detection of fumonisin producing Fusarium spp. Int. J. Food Microbiol. 2020, 325, 108627. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, H.-K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; EFSA Panel on Contaminants in the Food Chain (CONTAM); et al. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, e04851. [Google Scholar] [CrossRef]
- Alaniz Zanon, M.S.; Clemente, M.P.; Chulze, S.N. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Int. J. Food Microbiol. 2018, 277, 58–63. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Monographs on the evaluation of carcinogenetic risks to humans. In Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; International Agency for Research on Cancer: Lyon, France, 1993; Volume 82. [Google Scholar]
- Stracquadanio, C.; Luz, C.; La Spada, F.; Meca, G.; Cacciola, S.O. Inhibition of mycotoxigenic fungi in different vegetable matrices by extracts of Trichoderma species. J. Fungi 2021, 7, 445. [Google Scholar] [CrossRef]
- Dzuman, Z.; Stranska-Zachariasova, M.; Vaclavikova, M.; Tomaniova, M.; Veprikova, Z.; Slavikova, P.; Hajslova, J. Fate of free and conjugated mycotoxins within the production of Distiller’s Dried Grains with Solubles (DDGS). J. Agric. Food Chem. 2016, 64, 5085–5092. [Google Scholar] [CrossRef]
- Loi, M.; Glazunova, O.; Fedorova, T.; Logrieco, A.F.; Mulè, G. Fungal laccases: The forefront of enzymes for sustainability. J. Fungi 2021, 7, 1048. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mulè, G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Arias, S.; Taschl, I.; Gruber-Dorninger, C. Mycotoxins in corn: Occurrence, impacts, and management. In Corn: Chemistry and Technology, 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: Washington, DC, USA, 2019; pp. 235–287. [Google Scholar] [CrossRef]
- Bossa, M.; Alaniz-Zanon, M.S.; Monesterolo, N.E.; del Monge, M.P.; Coria, Y.M.; Chulze, S.N.; Chiotta, M.L. Aflatoxin decontamination in maize steep liquor obtained from bioethanol production using laccases from species within the basidiomycota phylum. Toxins 2024, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Fanelli, F.; Zucca, P.; Liuzzi, V.C.; Quintieri, L.; Cimmarusti, M.T.; Monaci, L.; Haidukowski, M.; Logrieco, A.F.; Sanjust, E.; et al. Aflatoxin B1 and M1 degradation by Lac2 from Pleurotus pulmonarius and redox mediators. Toxins 2016, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Fanelli, F.; Cimmarusti, M.T.; Mirabelli, V.; Haidukowski, M.; Logrieco, A.F.; Caliandro, R.; Mule, G. In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control 2018, 90, 401–406. [Google Scholar] [CrossRef]
- Loi, M.; De Leonardis, S.; Ciasca, B.; Paciolla, C.; Mulè, G.; Haidukowski, M. Aflatoxin B1 degradation by Ery4 laccase: From in vitro to contaminated corn. Toxins 2023, 15, 310. [Google Scholar] [CrossRef]
- Qin, X.; Xin, Y.; Su, X.; Wang, X.; Wang, Y.; Zhang, J.; Tu, T.; Yao, B.; Luo, H.; Huang, H. Efficient degradation of zearalenone by dye-decolorizing peroxidase from Streptomyces thermocarboxydus combining catalytic properties of manganese peroxidase and laccase. Toxins 2021, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Xin, Y.; Zou, J.; Su, X.; Wang, X.; Wang, Y.; Zhang, J.; Tu, T.; Yao, B.; Luo, H.; et al. Efficient degradation of aflatoxin B1 and zearalenone by laccase-like multicopper oxidase from Streptomyces thermocarboxydus in the presence of mediators. Toxins 2021, 13, 754. [Google Scholar] [CrossRef]
- Wang, X.; Bai, Y.; Huang, H.; Tu, T.; Wang, Y.; Wang, Y.; Luo, H.; Yao, B.; Su, X. Degradation of aflatoxin B1 and zearalenone by bacterial and fungal laccases in presence of structurally defined chemicals and complex natural mediators. Toxins 2019, 11, 609. [Google Scholar] [CrossRef]
- Aza, P.; Camarero, S. Fungal laccases: Fundamentals, engineering and classification update. Biomolecules 2023, 13, 1716. [Google Scholar] [CrossRef]
- Zhou, M.; Fakayode, O.A.; Ren, M.; Li, H.; Liang, J.; Yagoub, A.E.G.A.; Fan, Z.; Zhou, C. Laccase-Catalyzed lignin depolymerization in deep eutectic solvents: Challenges and prospects. Bioresour. Bioprocess. 2023, 10, 21. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Kaur, N.; Selvaraj, M.; Ghramh, H.A.; Al-Shehri, B.M.; Singh, G.; Arya, S.K.; Bhatt, K.; Ghotekar, S.; Mani, R.; et al. Laccase-Assisted degradation of emerging recalcitrant compounds—A review. Bioresour. Technol. 2022, 364, 128031. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.D.; Ibarra, D.; Eugenio, M.E.; Tomás-Pejó, E. Laccases as versatile enzymes: From industrial uses to novel applications. J. Chem. Technol. Biotechnol. 2020, 95, 481–494. [Google Scholar] [CrossRef]
- Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 2016, 6, 15. [Google Scholar] [CrossRef]
- Valls, C.; Roncero, M.B. Using both xylanase and laccase enzymes for pulp bleaching. Bioresour. Technol. 2009, 100, 2032–2039. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Shim, E.; Noro, J.; Fu, J.; Wang, Q.; Kim, H.R.; Silva, C.; Cavaco-Paulo, A. Conductive cotton by in situ laccase-polymerization of aniline. Polymers 2018, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Noro, J.; Silva, S.; Fu, J.; Wang, Q.; Ribeiro, A.; Silva, C.; Cavaco-Paulo, A. Antimicrobial coating of textiles by laccase in situ polymerization of catechol and p-phenylenediamine. React. Funct. Polym. 2019, 136, 25–33. [Google Scholar] [CrossRef]
- Pezzella, C.; Giacobbe, S.; Giacobelli, V.G.; Guarino, L.; Kylic, S.; Sener, M.; Sannia, G.; Piscitelli, A. Green routes towards industrial textile dyeing: A laccase based approach. J. Mol. Catal. B Enzym. 2016, 134, 274–279. [Google Scholar] [CrossRef]
- Pazarlioǧlu, N.K.; Sariişik, M.; Telefoncu, A. Laccase: Production by Trametes versicolor and application to denim washing. Process Biochem. 2005, 40, 1673–1678. [Google Scholar] [CrossRef]
- Sá, H.; Michelin, M.; Silvério, S.C.; de Polizeli, M.L.T.; Silva, A.R.; Pereira, L.; Tavares, T.; Silva, B. Pleurotus ostreatus and Lentinus sajor-caju laccases for sulfamethoxazole biotransformation: Enzymatic degradation, toxicity and cost analysis. J. Water Process Eng. 2024, 59, 104943. [Google Scholar] [CrossRef]
- Janusz, G.; Skwarek, E.; Pawlik, A. Potential of laccase as a tool for biodegradation of wastewater micropollutants. Water 2023, 15, 3770. [Google Scholar] [CrossRef]
- Vaithyanathan, V.K.; Vaidyanathan, V.K.; Cabana, H. Laccase-Driven transformation of high priority pesticides without redox mediators: Towards bioremediation of contaminated wastewaters. Front. Bioeng. Biotechnol. 2022, 9, 770435. [Google Scholar] [CrossRef]
- Vidal-Limon, A.; García Suárez, P.C.; Arellano-García, E.; Contreras, O.E.; Aguila, S.A. Enhanced degradation of pesticide dichlorophen by laccase immobilized on nanoporous materials: A cytotoxic and molecular simulation investigation. Bioconjug. Chem. 2018, 29, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, W.; Bun Ng, T.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Front. Microbiol. 2017, 8, 256920. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Yi, X.Y.; Zhang, M.; Liu, L.; Ma, W.J. Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int. J. Environ. Sci. Technol. 2010, 7, 359–366. [Google Scholar] [CrossRef]
- Cañas, A.I.; Alcalde, M.; Plou, F.; Martínez, M.J.; Martínez, Á.T.; Camarero, S. transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol. 2007, 41, 2964–2971. [Google Scholar] [CrossRef]
- López-Pérez, M.; Aguirre-Garrido, J.F.; Herrera-Zúñiga, L.; García-Arellano, H. Chapter 8—Structure, expression regulation, and applications of fungal laccases, an interesting prospective in biotechnology. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 80, pp. 227–267. [Google Scholar]
- Osma, J.F.; Toca-Herrera, J.L.; Rodríguez-Couto, S. Uses of laccases in the food industry. Enzyme Res. 2010, 2010, 918761. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.S.; Henrique, S.M.B.; Oliveira, L.S.; Macedo, G.A.; Fleuri, L.F. Enzymes in juice processing: A review. Int. J. Food Sci. Technol. 2010, 45, 635–641. [Google Scholar] [CrossRef]
- Minussi, R.C.; Pastore, G.M.; Durán, N. Potential applications of laccase in the food industry. Trends Food. Sci. Technol. 2002, 13, 205–216. [Google Scholar] [CrossRef]
- Rodríguez-Couto, S. Chapter 13—Fungal laccase: A versatile enzyme for biotechnological applications. In Recent Advancement in White Biotechnology through Fungi; Yadav, A., Mishra, S., Singh, S., Gupta, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 429–457. [Google Scholar]
- González-González, P.; Gómez-Manzo, S.; Tomasini, A.; Martínez y Pérez, J.L.; García Nieto, E.; Anaya-Hernández, A.; Ortiz Ortiz, E.; Castillo Rodríguez, R.A.; Marcial-Quino, J.; Montiel-González, A.M. Laccase production from Agrocybe pediades: Purification and functional characterization of a consistent laccase isoenzyme in liquid culture. Microorganisms 2023, 11, 568. [Google Scholar] [CrossRef]
- Bertrand, B.; Martínez-Morales, F.; Trejo-Hernández, M.R. Upgrading laccase production and biochemical properties: Strategies and challenges. Biotechnol. Prog. 2017, 33, 1015–1034. [Google Scholar] [CrossRef]
- Bertrand, B.; Martinez-Morales, F.; Trejo-Hernández, M.R. Fungal laccases: Induction and production. Rev. Mex. Ing. Chim. 2013, 12, 473–488. [Google Scholar]
- Malhotra, M.; Kumar Suman, S. Laccase-Mediated delignification and detoxification of lignocellulosic biomass: Removing obstacles in energy generation. Environ. Sci. Pollut. Res. 2021, 28, 58929–58944. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Parra-Saldivar, R.; Hu, H.; Wang, W.; Zhang, X.; Iqbal, H.M.N. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants—A review. Sci. Total Environ. 2017, 576, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, K.; Chaturvedi, V.; Verma, P. Fungal laccase discovered but yet undiscovered. Bioresour. Bioprocess. 2018, 5, 4. [Google Scholar] [CrossRef]
- Mani, P.; Kumar, V.T.F.; Keshavarz, T.; Sainathan Chandra, T.; Kyazze, G. The role of natural laccase redox mediators in simultaneous dye decolorization and power production in microbial fuel cells. Energies 2018, 11, 3455. [Google Scholar] [CrossRef]
- Ashe, B.; Nguyen, L.N.; Hai, F.I.; Lee, D.J.; van de Merwe, J.P.; Leusch, F.D.L.; Price, W.E.; Nghiem, L.D. Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. Int. Biodeterior. Biodegrad. 2016, 113, 169–176. [Google Scholar] [CrossRef]
- Khatami, S.H.; Vakili, O.; Movahedpour, A.; Ghesmati, Z.; Ghasemi, H.; Taheri-Anganeh, M. Laccase: Various types and applications. Biotechnol. Appl. Biochem. 2022, 69, 2658–2672. [Google Scholar] [CrossRef]
- Ang, T.N.; Ngoh, G.C.; Chua, A.S.M. A quantitative method for fungal ligninolytic enzyme screening studies. Asia-Pac. J. Chem. Eng. 2011, 6, 589–595. [Google Scholar] [CrossRef]
- Singh, A.K.; Iqbal, H.M.N.; Cardullo, N.; Muccilli, V.; Fernández-Lucas, J.; Schmidt, J.E.; Jesionowski, T.; Bilal, M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology. Int. J. Biol. Macromol. 2023, 242, 124968. [Google Scholar] [CrossRef]
- Cen, Q.; Wu, X.; Cao, L.; Lu, Y.; Lu, X.; Chen, J.; Fu, G.; Liu, Y.; Ruan, R. Green production of a yellow laccase by Coriolopsis gallica for phenolic pollutants removal. AMB Express 2022, 12, 96. [Google Scholar] [CrossRef]
- Liu, X.; Deng, W.; Yang, Y. Characterization of a novel laccase Lac-Yang1 from white-rot fungus Pleurotus ostreatus strain Yang1 with a strong ability to degrade and detoxify chlorophenols. Molecules 2021, 26, 473. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Yang, X.; Yang, E.; Xu, H.; Chen, Y.; Chagan, I.; Yan, J. Alternative splicing of heat shock Transcription Factor 2 regulates expression of the laccase gene family in response to copper in Trametes trogii. Appl. Environ. Microbiol. 2021, 87, e00055-21. [Google Scholar] [CrossRef]
- Zimbardi, A.L.R.L.; Camargo, P.F.; Carli, S.; Neto, S.A.; Meleiro, L.P.; Rosa, J.C.; De Andrade, A.R.; Jorge, J.A.; Furriel, R.P.M. A high redox potential laccase from Pycnoporus sanguineus RP15: Potential application for dye decolorization. Int. J. Mol. Sci. 2016, 17, 672. [Google Scholar] [CrossRef]
- He, J.B.; Feng, T.; Zhang, S.; Dong, Z.J.; Li, Z.H.; Zhu, H.J.; Liu, J.K. Seven new drimane-type sesquiterpenoids from cultures of fungus Phellinus tuberculosus. Nat. Prod. Bioprospect. 2014, 4, 21–25. [Google Scholar] [CrossRef]
- Ramírez-Cavazos, L.I.; Junghanns, C.; Ornelas-Soto, N.; Cárdenas-Chávez, D.L.; Hernández-Luna, C.; Demarche, P.; Enaud, E.; García-Morales, R.; Agathos, S.N.; Parra, R. Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J. Mol. Catal. B Enzym. 2014, 108, 32–42. [Google Scholar] [CrossRef]
- Lomascolo, A.; Uzan-Boukhris, E.; Herpoël-Gimbert, I.; Sigoillot, J.C.; Lesage-Meessen, L. Peculiarities of Pycnoporus species for applications in biotechnology. Appl. Microbiol. Biotechnol. 2011, 92, 1129–1149. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhao, M.; Zhang, B.B.; Yu, S.Y.; Bian, X.J.; Wang, W.; Wang, Y. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl. Microbiol. Biotechnol. 2007, 74, 1232–1239. [Google Scholar] [CrossRef]
- Singh, D.; Gupta, N. Microbial laccase: A robust enzyme and its industrial applications. Biologia 2020, 75, 1183–1193. [Google Scholar] [CrossRef]
- Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; RodrÍguez-Vázquez, R.; Delgado-Boada, J.M. Fungal laccases. Fungal Biol. Rev. 2013, 27, 67–82. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.K.; Kumar, P.; Ramchiary, N. Laccase isozymes from Ganoderma lucidum MDU-7: Isolation, characterization, catalytic properties and differential role during oxidative stress. J. Mol. Catal. B Enzym. 2015, 113, 68–75. [Google Scholar] [CrossRef]
- Moldes, D.; Lorenzo, M.; Sanromán, M.A. Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes. Biotechnol. Lett. 2004, 26, 327–330. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, B.; Martínez-Morales, F.; Tinoco-Valencia, R.; Rojas, S.; Acosta-Urdapilleta, L.; Trejo-Hernández, M.R. Biochemical and molecular characterization of laccase isoforms produced by the white-rot fungus Trametes versicolor under submerged culture conditions. J. Mol. Catal. B Enzym. 2015, 122, 339–347. [Google Scholar] [CrossRef]
- Ayodeji, F.D.; Shava, B.; Iqbal, H.M.N.; Ashraf, S.S.; Cui, J.; Franco, M.; Bilal, M. biocatalytic versatilities and biotechnological prospects of laccase for a sustainable industry. Catal. Lett. 2022, 153, 1932–1956. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, R.; Ng, T.B.; Lai, Y.; Yang, J.; Ye, X. A new laccase of Lac 2 from the white rot fungus Cerrena unicolor 6884 and Lac 2-Mediated degradation of aflatoxin B1. Toxins 2020, 12, 476. [Google Scholar] [CrossRef] [PubMed]
- Zeinvand-Lorestani, H.; Sabzevari, O.; Setayesh, N.; Amini, M.; Nili-Ahmadabadi, A.; Faramarzi, M.A. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products. Chemosphere 2015, 135, 1–6. [Google Scholar] [CrossRef]
- Scarpari, M.; Bello, C.; Pietricola, C.; Zaccaria, M.; Bertocchi, L.; Angelucci, A.; Ricciardi, M.R.; Scala, V.; Parroni, A.; Fabbri, A.A.; et al. Aflatoxin control in maize by Trametes versicolor. Toxins 2014, 6, 3426–3437. [Google Scholar] [CrossRef]
- Alberts, J.F.; Gelderblom, W.C.A.; Botha, A.; van Zyl, W.H. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 2009, 135, 47–52. [Google Scholar] [CrossRef]
- Banu, I.; Lupu, A. Degradation of zearalenone by laccase enzyme. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2013, 14, 79–84. [Google Scholar]
- Cabral Silva, A.C.; Venâncio, A. Application of laccases for mycotoxin decontamination. World Mycotoxin J. 2021, 14, 61–73. [Google Scholar] [CrossRef]
- Alberts, J.; Schatzmayr, G.; Moll, W.D.; Davids, I.; Rheeder, J.; Burger, H.M.; Shephard, G.; Gelderblom, W. Detoxification of the fumonisin mycotoxins in maize: An enzymatic approach. Toxins 2019, 11, 523. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.L.; Teng, T.C.; Fu, C.K.; Liu, C.H. Improving biodegradation of Bisphenol A by immobilization and inducer. Process. Saf. Environ. Prot. 2019, 128, 128–134. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Q.; Liu, Z.; Sha, L.; Chen, Z. Improved performance of immobilized laccase for catalytic degradation of synthetic dyes using redox mediators. New J. Chem. 2022, 46, 9792–9798. [Google Scholar] [CrossRef]
- Hu, R.; Wu, S.; Li, B.; Tan, J.; Yan, J.; Wang, Y.; Tang, Z.; Liu, M.; Fu, C.; Zhang, H.; et al. Dietary ferulic acid and vanillic acid on inflammation, gut barrier function and growth performance in lipopolysaccharide-challenged piglets. Anim. Nutr. 2022, 8, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Kumar, A.; Singh, H.; Kaur, S.; Arora, S.; Singh, B. Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF-ΚB, TNF-α and COX-2 proteins in rats. Phytother. Res. 2022, 36, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cho, S.Y.; Kang, J.; Park, W.Y.; Lee, S.; Jung, Y.; Kang, M.W.; Kwak, H.J.; Um, J.Y. Vanillic acid improves comorbidity of cancer and obesity through STAT3 regulation in high-fat-diet-induced obese and B16BL6 melanoma-injected mice. Biomolecules 2020, 10, 1098. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Tiwari, N.; Vyas, M.; Khurana, N.; Muthuraman, A.; Utreja, P. An overview of therapeutic effects of vanillic acid. Plant Arch. 2020, 20, 3053–3059. [Google Scholar]
- Zucca, P.; Rescigno, A.; Olianas, A.; MacCioni, S.; Sollai, F.A.; Sanjust, E. Induction, purification, and characterization of a laccase isozyme from Pleurotus sajor-caju and the potential in decolorization of textile dyes. J. Mol. Catal. B Enzym. 2011, 68, 216–222. [Google Scholar] [CrossRef]
- Hernández, C.A.; Sandoval, N.; Mallerman, J.; García-Pérez, J.A.; Farnet, A.M.; Perraud-Gaime, I.; Alarcón, E. Ethanol induction of laccase depends on nitrogen conditions of Pycnoporus sanguineus. Electron. J. Biotechnol. 2015, 18, 327–332. [Google Scholar] [CrossRef]
- Lomascolo, A.; Record, E.; Herpoël-Gimbert, I.; Delattre, M.; Robert, J.L.; Georis, J.; Dauvrin, T.; Sigoillot, J.C.; Asther, M. Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J. Appl. Microbiol. 2003, 94, 618–624. [Google Scholar] [CrossRef]
- Lee, I.Y.; Jung, K.H.; Lee, C.H.; Park, Y.H. Enhanced production of laccase in Trametes vesicolor by the addition of ethanol. Biotechnol. Lett. 1999, 21, 965–968. [Google Scholar] [CrossRef]
- Ahmed, P.M.; Pajot, H.F.; Fernández, P.M. Production of laccases from agricultural wastes: Strain isolation and selection, enzymatic profiling, and lab-scale production. In Mycorremediation Protocols; Udayanga, D., Bhatt, P., Manamgoda, D., Saez, J.M., Eds.; Springer Protocols: New York, NY, USA, 2022; pp. 139–159. [Google Scholar] [CrossRef]
- Kumar, R.; Kaur, J.; Jain, S.; Kumar, A. Optimization of laccase production from Aspergillus flavus by design of experiment technique: Partial purification and characterization. J. Genet. Eng. Biotechnol. 2016, 14, 125–131. [Google Scholar] [CrossRef]
- Pointing, S.B. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 1999, 2, 17–33. [Google Scholar]
- Baltierra-Trejo, E.; Márquez-Benavides, L.; Sánchez-Yáñez, J.M. Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. J. Microbiol. Methods 2015, 119, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Arndt, C.; Koristka, S.; Bartsch, H.; Bachmann, M. Native Polyacrylamide Gels. In Protein Electrophoresis. Methods in Molecular Biology; Kurien, B.T., Hal Scofield, R., Eds.; Humana Press: Totowa, NJ, USA, 2012; Volume 869, pp. 49–53. [Google Scholar] [CrossRef]
- Chiotta, M.L.; Susca, A.; Stea, G.; Mulè, G.; Perrone, G.; Logrieco, A.; Chulze, S.N. Phylogenetic characterization and ochratoxin a—Fumonisin profile of black Aspergillus isolated from grapes in argentina. Int. J. Food Microbiol. 2011, 149, 171–176. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; Volume 18, pp. 315–322. [Google Scholar]
- O’donnell, K. Fusarium and its near relatives. In The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics; Taylor, J.W., Reynolds, D.R., Eds.; CAB International: Wallingford, UK, 1993; pp. 225–233. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Cendoya, E.; Chiotta, M.L.; Zachetti, V.; Chulze, S.N.; Ramirez, M.L. Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by products: A review. J. Cereal Sci. 2018, 80, 158–166. [Google Scholar] [CrossRef]
- Dzuman, Z.; Zachariasova, M.; Veprikova, Z.; Godula, M.; Hajslova, J. Multi-Analyte High Performance Liquid Chromatography Coupled to High Resolution Tandem Mass Spectrometry Method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Anal. Chim. Acta 2015, 863, 29–40. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat, Versión 2018; Centro de Tranferencia InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2016; Available online: http://www.infostat.com.ar (accessed on 8 August 2024).
FB1 Reduction (%) * | ||||
---|---|---|---|---|
Strain | Enzymatic Activity (U/mL) | Vanillic Acid (1 mM) | Vanillic Acid (10 mM) | TEMPO (10 mM) |
Pycnoporus sanguineus B2-IMICO-RC | 10 | 4.5 ± 6.3 J | 0 | 0 |
20 | 0 | 0 | 5.2 ± 7.4 I | |
Pycnoporus sanguineus B3-IMICO-RC | 10 | 6.6 ± 9.3 I | 0 | 0 |
Trametes gallica B4-IMICO-RC | 5 | 50.9 ± 0.5 A | 0 | 0 |
10 | 34.4 ± 15.1 C | 0 | 0 | |
15 | 16.16 ± 22.9 E | 0 | 0 | |
Trametes gallica B6-IMICO-RC | 15 | 15.6 ± 21.0 F | 0 | 0 |
20 | 0 | 15.5 ± 22.0 F | 0 | |
Trametes gallica B7-IMICO-RC | 5 | 4.8 ± 9.7 I | 0 | 19.6 ± 10.4 D |
20 | 0 | 0 | 4.2 ± 5.9 J | |
Phellinus tuberculosus B9-IMICO-RC | 5 | 1.4 ± 2.9 K | 5.9 ± 8.2 I | 0 |
10 | 12.8 ± 4.3 G | 0 | 16.5 ± 9.8 E | |
15 | 3.7 ± 5.2 K | 0 | 3.4 ± 4.8 K | |
20 | 2.7 ± 1.1 K | 0 | 0 | |
Trametes gallica B10-IMICO-RC | 10 | 9.8 ± 13.9 H | 0 | 0 |
15 | 11.4 ± 1.2 H | 0 | 0 | |
Funalia trogii B1-IMICO-RC | 5 | 0 | 0 | 8.8 ± 5.7 H |
10 | 0 | 0 | 31.5 ± 1.4 C | |
15 | 0 | 0 | 37.1 ± 11.0 C | |
20 | 2.3 ± 3.3 K | 0 | 40.8 ± 12.7 B | |
Pleurotus ostreatus B31-IMICO-RC | 20 | 0 | 0 | 3.4 ± 4.8 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossa, M.; Monesterolo, N.E.; Monge, M.d.P.; Rhein, P.; Chulze, S.N.; Alaniz-Zanon, M.S.; Chiotta, M.L. Fungal Laccases and Fumonisin Decontamination in Co-Products of Bioethanol from Maize. Toxins 2024, 16, 350. https://doi.org/10.3390/toxins16080350
Bossa M, Monesterolo NE, Monge MdP, Rhein P, Chulze SN, Alaniz-Zanon MS, Chiotta ML. Fungal Laccases and Fumonisin Decontamination in Co-Products of Bioethanol from Maize. Toxins. 2024; 16(8):350. https://doi.org/10.3390/toxins16080350
Chicago/Turabian StyleBossa, Marianela, Noelia Edith Monesterolo, María del Pilar Monge, Paloma Rhein, Sofía Noemí Chulze, María Silvina Alaniz-Zanon, and María Laura Chiotta. 2024. "Fungal Laccases and Fumonisin Decontamination in Co-Products of Bioethanol from Maize" Toxins 16, no. 8: 350. https://doi.org/10.3390/toxins16080350
APA StyleBossa, M., Monesterolo, N. E., Monge, M. d. P., Rhein, P., Chulze, S. N., Alaniz-Zanon, M. S., & Chiotta, M. L. (2024). Fungal Laccases and Fumonisin Decontamination in Co-Products of Bioethanol from Maize. Toxins, 16(8), 350. https://doi.org/10.3390/toxins16080350