Assessment of Natural Occurrence and Risk of the Emerging Mycotoxin Moniliformin in South Korea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Performance of the Analytical Method
2.2. Natural Occurrence of MON
2.3. Risk Assessment of MON
3. Conclusions
4. Materials and Methods
4.1. Sample Collection
4.2. Chemicals and Reagents
4.3. UPLC–ESI–QqQ MS Equipment Conditions
4.4. Sample Preparation and Method Validation
4.5. Risk Assessment
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekwomadu, T.I.; Akinola, S.A.; Mwanza, M. Fusarium mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. Int. J. Environ. Res. Public Health 2021, 18, 11741. [Google Scholar] [CrossRef]
- Gutema, T.; Munimbazi, C.; Bullerman, L.B. Occurrence of fumonisins and moniliformin in corn and corn-based food products of US origin. J. Food Prot. 2000, 63, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Waskiewicz, A.; Golinski, P.; Karolewski, Z.; Irzykowska, L.; Bocianowski, J.; Kostecki, M.; Weber, Z. Formation of fumonisins and other secondary metabolites by Fusarium oxysporum and F. proliferatum: A comparative study. Food Addit. Contam. 2010, 27, 608–615. [Google Scholar] [CrossRef]
- Radić, B.; Janić Hajnal, E.; Mandić, A.; Krulj, J.; Stojanović, Z.; Kos, J. Development and validation of an HPLC–DAD method for the determination of moniliformin in maize. J. Food Process. Preserv. 2022, 46, e16008. [Google Scholar] [CrossRef]
- Sørensen, J.L.; Nielsen, K.F.; Thrane, U. Analysis of moniliformin in maize plants using hydrophilic interaction chromatography. J. Agric. Food Chem. 2007, 55, 9764–9768. [Google Scholar] [CrossRef]
- von Bargen, K.W.; Lohrey, L.; Cramer, B.; Humpf, H.-U. Analysis of the Fusarium mycotoxin moniliformin in cereal samples using 13C2-moniliformin and high-resolution mass spectrometry. J. Agric. Food Chem. 2012, 60, 3586–3591. [Google Scholar] [CrossRef] [PubMed]
- Jestoi, M. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Rastelli, S.; Mulazzi, A.; Pietri, A. LC-MS/MS and LC-UV determination of moniliformin by adding lanthanide ions to the mobile phase. Toxins 2019, 11, 570. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C. A Critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin J. 2018, 11, 73–100. [Google Scholar] [CrossRef]
- Pena, G.A.; Sulyok, M.; Chulze, S.N. Effect of interacting conditions of water activity, temperature and incubation time on Fusarium thapsinum and Fusarium andiyazi growth and toxin production on sorghum grains. Int. J. Food Microbiol. 2020, 318, 108468. [Google Scholar] [CrossRef] [PubMed]
- Čonková, E.; Laciakova, A.; Kováč, G.; Seidel, H. Fusarial toxins and their role in animal diseases. Vet. J. 2003, 165, 214–220. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA J. 2018, 16, e05367. [Google Scholar] [CrossRef]
- Pirrung, M.C.; Nauhaus, S.K.; Singh, B. Cofactor-directed, time-dependent inhibition of thiamine enzymes by the fungal toxin moniliformin. J. Org. Chem. 1996, 61, 2592–2593. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Tian, X.-L.; Yang, B. A study on the inhibition of rat myocardium glutathione peroxidase and glutathione reductase by moniliformin. Mycopathologia 1990, 110, 119–124. [Google Scholar] [CrossRef]
- Bottalico, A. Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. J. Plant Pathol. 1998, 80, 85–103. [Google Scholar]
- Parich, A.; Boeira, L.S.; Castro, S.P.; Krska, R. Determination of moniliformin using SAX column clean-up and HPLC/DAD-detection. Mycotoxin Res. 2003, 19, 203–206. [Google Scholar] [CrossRef]
- Labuda, R.; Parich, A.; Vekiru, E.; Tancinová, D. Incidence of fumonisins, moniliformin and Fusarium species in poultry feed mixtures from Slovakia. Ann. Agric. Environ. Med. 2005, 12, 81–86. [Google Scholar]
- Mol, H.G.J.; Van Dam, R.C.J.; Steijger, O.M. Determination of polar organophosphorus pesticides in vegetables and fruits using liquid chromatography with tandem mass spectrometry: Selection of extraction solvent. J. Chromatogr. A 2003, 1015, 119–127. [Google Scholar] [CrossRef]
- Herrera, M.; van Dam, R.; Spanjer, M.; de Stoppelaar, J.; Mol, H.; de Nijs, M.; López, P. Survey of moniliformin in wheat-and corn-based products using a straightforward analytical method. Mycotoxin Res. 2017, 33, 333–341. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) No 519/2014 of 16 May 2014 Amending Regulation (EC) No 401/2006 as Regards Methods of Sampling of Large Lots, Spices and Food Supplements, Performance Criteria for T-2, HT-2 Toxin and Citrinin and Screening Methods of Analysis. Off. J. Eur. Union 2014, 147, 29–43. Available online: https://eur-lex.europa.eu/eli/reg/2014/519/oj (accessed on 16 December 2024).
- Little, C.R.; Perumal, R.; Tesso, T.T.; Prom, L.K.; Odvody, G.N.; Magill, C.W. Sorghum pathology and biotechnology-a fungal disease perspective: Part I. grain mold, head smut, and ergot. Eur. J. Plant Sci. Biotechnol. 2011, 6, 10–30. [Google Scholar]
- Awika, J.M. Sorghum: Its unique nutritional and health-promoting attributes. In Gluten-Free Ancient Grains, 1st ed.; Taylor, J.R.N., Awika, J.M., Eds.; Woodhead Publishing: Oxford, UK, 2017; pp. 21–54. [Google Scholar]
- Lombard, M.J. Mycotoxin exposure and infant and young child growth in africa: What do we know? Ann. Nutr. Metab. 2014, 64, 42–52. [Google Scholar] [CrossRef]
- Barthel, J.; Rapp, M.; Holtmannspötter, H.; Gottschalk, C. A Rapid LC-MS/MS method for the determination of moniliformin and occurrence of this mycotoxin in maize products from the Bavarian market. Mycotoxin Res. 2018, 34, 9–13. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Appendix F: Guidelines for Standard Method Performance Requirements; AOAC International: Rockville, MD, USA, 2012; pp. 1–18. Available online: https://www.aoac.org/wp-content/uploads/2019/08/app_f.pdf (accessed on 16 December 2024).
- European Commission. Report on the Relationship between Analytical Results, Measurement Uncertainty, Recovery Factors and the Provisions of EU Food and Feed Legislation. 2004. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_sampling_analysis-report_2004_en.pdf (accessed on 16 December 2024).
- Radić, B.; Radović, R.; Janić Hajnal, E.; Mandić, A.; Đekić, S.; Stojanović, Z.; Kos, J. Moniliformin occurrence in Serbian maize over four years: Understanding weather-dependent variability. Toxins 2023, 15, 634. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, T.; Giorni, P.; Rastelli, S.; Vaccino, P.; Lanzanova, C.; Locatelli, S. Co-occurrence of moniliformin and regulated Fusarium toxins in maize and wheat grown in Italy. Molecules 2020, 25, 2440. [Google Scholar] [CrossRef]
- Jajić, I.; Dudaš, T.; Krstović, S.; Krska, R.; Sulyok, M.; Bagi, F.; Savić, Z.; Guljaš, D.; Stankov, A. Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin in Serbian maize. Toxins 2019, 11, 357. [Google Scholar] [CrossRef]
- Pena, G.A.; Cavaglieri, L.R.; Chulze, S.N. Fusarium species and moniliformin occurrence in sorghum grains used as ingredient for animal feed in Argentina. J. Sci. Food Agric. 2019, 99, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Bekeko, Z.; Yusufe, M.; Sulyok, M.; Krska, R. Fungal species and multi-mycotoxin associated with post-harvest sorghum (Sorghum bicolor (L.) Moench) grain in Eastern Ethiopia. Toxins 2022, 14, 473. [Google Scholar] [CrossRef] [PubMed]
- EFSA Committee. Statement on the applicability of the margin of exposure approach for the safety assessment of impurities which are both genotoxic and carcinogenic in substances added to food/feed. EFSA J. 2012, 10, 2578. [Google Scholar] [CrossRef]
- Adaku Chilaka, C.; Mally, A. Mycotoxin occurrence, exposure and health implications in infants and young children in Sub-Saharan Africa: A review. Foods 2020, 9, 1585. [Google Scholar] [CrossRef] [PubMed]
- Ojuri, O.T.; Ezekiel, C.N.; Eskola, M.K.; Šarkanj, B.; Babalola, A.D.; Sulyok, M.; Hajšlová, J.; Elliott, C.T.; Krska, R. Mycotoxin co-exposures in infants and young children consuming household-and industrially-processed complementary foods in Nigeria and risk management advice. Food Control 2019, 98, 312–322. [Google Scholar] [CrossRef]
- Ellison, S.L.R.; Williams, A. EURACHEM/CITAC Guide CG 4. Quantifying Uncertainty in Analytical Measurement; Eurachem/CITAC: Teddington, UK, 2012. [Google Scholar] [CrossRef]
Matrix | Linearity (R2) | LOD (1) (μg/kg) | LOQ (2) (μg/kg) | Spiking Level (μg/kg) | Intra-Day (n = 9) (%) | Inter-Day (n = 9) (%) | RSDR (4) (%) | Uncertainty/ Results (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
Recovery | RSDr | Recovery | RSDr (3) | |||||||
White rice | 0.999 | 0.07 | 0.22 | 10 | 92.1 | 2.6 | 90.2 | 1.8 | 4.6 | 8.7 |
20 | 91.7 | 6.1 | 93.9 | 4.4 | 5.1 | 5.3 | ||||
50 | 95.9 | 5.6 | 96.3 | 7.3 | 6.9 | 6.7 | ||||
Sorghum | 1.000 | 0.05 | 0.16 | 10 | 93.4 | 14.1 | 99.2 | 11.1 | 11.7 | 5.6 |
20 | 101.7 | 8.6 | 102.6 | 6.2 | 10.1 | 6.2 | ||||
50 | 106.8 | 10.7 | 104.5 | 5.8 | 8.5 | 4.7 | ||||
Baby food | 0.999 | 0.04 | 0.11 | 10 | 104.7 | 2.2 | 98.3 | 9.4 | 7.2 | 6.9 |
20 | 109.6 | 2.1 | 106.1 | 5.9 | 5.0 | 6.4 | ||||
50 | 96.0 | 3.3 | 93.0 | 5.0 | 5.9 | 5.7 | ||||
Corn oil | 0.997 | 0.04 | 0.11 | 10 | 92.5 | 9.7 | 103.4 | 14.2 | 12.7 | 4.8 |
20 | 106.8 | 4.8 | 109.4 | 6.1 | 7.1 | 5.0 | ||||
50 | 104.1 | 8.9 | 104.2 | 9.7 | 8.5 | 4.3 |
Food Category | Food Commodity | Incidence of Positive Samples (1) | Occurrence (μg/kg) | ||||
---|---|---|---|---|---|---|---|
Mean | Positive Mean | Minimum | Median | Maximum | |||
Cereal grains | White rice | 67% | 1.16 | 1.74 | 1.02 | 1.67 | 3.52 |
Brown rice | 87% | 4.14 | 4.78 | 0.94 | 1.77 | 34.78 | |
Black rice | 33% | 2.67 | 8.01 | - | - | - | |
Barley | 0% | - (2) | - | - | - | - | |
Oats | 0% | - | - | - | - | - | |
Job’s tears | 100% | 97.19 | 97.19 | 18.40 | 85.74 | 248.47 | |
Sorghum | 93% | 153.31 | 164.26 | 0.99 | 131.83 | 374.10 | |
Maize | 80% | 100.80 | 126.00 | 12.74 | 123.30 | 256.50 | |
Foxtail millet | 60% | 31.34 | 52.24 | 1.08 | 22.50 | 192.45 | |
Processed grain products | Wheat flour | 100% | 1.62 | 1.62 | 0.94 | 1.41 | 3.30 |
Canned maize | 0% | - | - | - | - | - | |
Popcorn maize | 80% | 12.57 | 15.71 | 7.89 | 16.10 | 22.76 | |
Baby foods | 0% | - | - | - | - | - | |
Sunsik | 82% | 11.63 | 14.22 | 1.76 | 5.61 | 38.72 | |
Pulses | Red bean | 0% | - | - | - | - | - |
Mung bean | 33% | 0.48 | 1.45 | 1.45 | - | - | |
Black bean | 20% | 1.53 | 7.63 | 7.63 | - | - | |
Seasoning foods | Red pepper powder | 0% | - | - | - | - | - |
Curry powder | 20% | 0.07 | 0.33 | 0.33 | 0.00 | 0.33 | |
Turmeric | 40% | 0.17 | 0.42 | 0.41 | 0.42 | 0.44 | |
Nutmeg | 60% | 1.28 | 2.14 | 0.06 | 2.18 | 4.18 | |
Nuts and seeds | Peanut | 13% | 1.24 | 9.93 | 9.93 | - | - |
Walnut | 0% | - | - | - | - | - | |
Almond | 0% | - | - | - | - | - | |
Sesame seed | 0% | - | - | - | - | - | |
Perilla seed | 60% | 67.66 | 112.76 | 6.04 | 47.09 | 285.15 | |
Edible oils | Corn oil | 0% | - | - | - | - | - |
Sesame oil | 0% | - | - | - | - | - | |
Perilla oil | 0% | - | - | - | - | - | |
Red pepper seed oil | 0% | - | - | - | - | - | |
Grapeseed oil | 0% | - | - | - | - | - | |
Rapeseed oil | 0% | - | - | - | - | - | |
Olive oil | 0% | - | - | - | - | - | |
Soybean oil | 0% | - | - | - | - | - | |
Total | 41% | 23.07 | 56.66 | 0.06 | 12.13 | 374.10 |
Age Group | Scenario | Cereal Grains | Edible Oils | Nut and Seeds | Processed Grain Products | Pulses | Seasoning Foods | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EDI (1) | MOE | EDI | MOE | EDI | MOE | EDI | MOE | EDI | MOE | EDI | MOE | |||
All ages | Mean | LB | 1.2902 | 1.6 × 105 | - (1) | - | 0.0608 | 3.3 × 106 | 0.1015 | 2.0 × 106 | 0.0682 | 2.9 × 106 | 0.0001 | 1.4 × 109 |
Dietary | UB | 1.2986 | 1.5 × 105 | 0.0004 | 5.5 × 108 | 0.0611 | 3.3 × 106 | 0.1016 | 2.0 × 106 | 0.0701 | 2.9 × 106 | 0.0007 | 3.0 × 108 | |
Extreme | LB | 1.8869 | 1.1 × 105 | - | - | 0.2388 | 8.4 × 105 | 0.2909 | 6.9 × 105 | 0.1655 | 1.2 × 106 | NA (2) | NA (2) | |
Dietary | UB | 1.9087 | 1.0 × 105 | 0.0015 | 1.4 × 108 | 0.2397 | 8.3 × 105 | 0.2909 | 6.9 × 105 | 0.1699 | 1.2 × 106 | 0.0017 | 1.2 × 108 | |
0 to 2 years | Mean | LB | 5.0925 | 3.9 × 104 | - | - | 0.1188 | 1.7 × 106 | 0.1255 | 1.6 × 106 | 0.1111 | 1.8 × 106 | 0.0004 | 4.7 × 108 |
Dietary | UB | 5.1208 | 3.9 × 104 | 0.0009 | 2.1 × 108 | 0.1192 | 1.7 × 106 | 0.1259 | 1.6 × 106 | 0.1142 | 1.8 × 106 | 0.0008 | 2.4 × 108 | |
Extreme | LB | 13.1299 | 1.5 × 104 | - | - | 0.2346 | 8.5 × 105 | 0.4472 | 4.5 × 105 | 0.2038 | 9.8 × 105 | 0.0001 | 2.2 × 109 | |
Dietary | UB | 13.1955 | 1.5 × 104 | 0.0039 | 5.1 × 107 | 0.2353 | 8.5 × 105 | 0.4475 | 4.5 × 105 | 0.2095 | 9.5 × 105 | 0.0008 | 2.6 × 108 | |
3 to 6 years | Mean | LB | 3.9888 | 5.0 × 104 | - | - | 0.1713 | 1.2 × 106 | 0.1525 | 1.3 × 106 | 0.0483 | 4.1 × 106 | 0.0006 | 3.4 × 108 |
Dietary | UB | 4.0097 | 5.0 × 104 | 0.0008 | 2.5 × 108 | 0.1716 | 1.2 × 106 | 0.1529 | 1.3 × 106 | 0.0496 | 4.0 × 106 | 0.0012 | 1.7 × 108 | |
Extreme | LB | 9.8413 | 2.0 × 104 | - | - | 0.3899 | 5.1 × 105 | 0.6568 | 3.0 × 105 | 0.1399 | 1.4 × 106 | 0.0058 | 3.5 × 107 | |
Dietary | UB | 9.8859 | 2.0 × 104 | 0.0030 | 6.6 × 107 | 0.3908 | 5.1 × 105 | 0.6570 | 3.0 × 105 | 0.1439 | 1.4 × 106 | 0.0106 | 1.9 × 107 | |
7 to 12 years | Mean | LB | 1.7607 | 1.1 × 105 | - | - | 0.0347 | 5.8 × 106 | 0.0945 | 2.1 × 106 | 0.0477 | 4.2 × 106 | 0.0004 | 5.4 × 108 |
Dietary | UB | 1.7738 | 1.1 × 105 | 0.0006 | 3.5 × 108 | 0.0349 | 5.7 × 106 | 0.0948 | 2.1 × 106 | 0.0491 | 4.1 × 106 | 0.0009 | 2.1 × 108 | |
Extreme | LB | 4.1957 | 4.8 × 104 | - | - | 0.1754 | 1.1 × 106 | 0.3508 | 5.7 × 105 | 0.0812 | 2.5 × 106 | 0.0030 | 6.6 × 107 | |
Dietary | UB | 4.2303 | 4.7 × 104 | 0.0022 | 9.2 × 107 | 0.1759 | 1.1 × 106 | 0.3510 | 5.7 × 105 | 0.0834 | 2.4 × 106 | 0.0064 | 3.1 × 107 | |
13 to 19 years | Mean | LB | 1.0089 | 2.0 × 105 | - | - | 0.0236 | 8.5 × 106 | 0.0961 | 2.1 × 106 | 0.0336 | 5.9 × 106 | 0.0002 | 1.1 × 109 |
Dietary | UB | 1.0173 | 2.0 × 105 | 0.0004 | 4.8 × 108 | 0.0237 | 8.4 × 106 | 0.0963 | 2.1 × 106 | 0.0346 | 5.8 × 106 | 0.0007 | 2.8 × 108 | |
Extreme | LB | 2.1918 | 9.1 × 104 | - | - | 0.0909 | 2.2 × 106 | 0.3108 | 6.4 × 105 | 0.0697 | 2.9 × 106 | NA | NA | |
Dietary | UB | 2.2144 | 9.0 × 104 | 0.0016 | 1.3 × 108 | 0.0913 | 2.2 × 106 | 0.3108 | 6.4 × 105 | 0.0717 | 2.8 × 106 | 0.0016 | 1.3 × 108 | |
20 to 64 years | Mean | LB | 1.1770 | 1.7 × 105 | - | - | 0.0516 | 3.9 × 106 | 0.1066 | 1.9 × 106 | 0.0578 | 3.5 × 106 | 0.0001 | 1.5 × 109 |
Dietary | UB | 1.1846 | 1.7 × 105 | 0.0004 | 5.6 × 108 | 0.0519 | 3.9 × 106 | 0.1068 | 1.9 × 106 | 0.0595 | 3.4 × 106 | 0.0007 | 2.9 × 108 | |
Extreme | LB | 1.4470 | 1.4 × 105 | - | - | 0.1995 | 1.0 × 106 | 0.2809 | 7.1 × 105 | 0.1222 | 1.6 × 106 | NA | NA | |
Dietary | UB | 1.4667 | 1.4 × 105 | 0.0014 | 1.4 × 108 | 0.2003 | 1.0 × 106 | 0.2809 | 7.1 × 105 | 0.1255 | 1.6 × 106 | 0.0017 | 1.2 × 108 | |
Over 65 years | Mean | LB | 1.5509 | 1.3 × 105 | - | - | 0.1158 | 1.7 × 106 | 0.0730 | 2.7 × 106 | 0.1343 | 1.5 × 106 | 0.0001 | 3.7 × 109 |
Dietary | UB | 1.5612 | 1.3 × 105 | 0.0003 | 7.4 × 108 | 0.1161 | 1.7 × 106 | 0.0731 | 2.7 × 106 | 0.1381 | 1.4 × 106 | 0.0004 | 4.8 × 108 | |
Extreme | LB | 2.1444 | 9.3 × 104 | - | - | 0.5716 | 3.5 × 105 | 0.1473 | 1.4 × 106 | 0.4206 | 4.8 × 105 | NA | NA | |
Dietary | UB | 2.1700 | 9.2 × 104 | 0.0012 | 1.6 × 108 | 0.5733 | 3.5 × 105 | 0.1473 | 1.4 × 106 | 0.4320 | 4.6 × 105 | 0.0013 | 1.5 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.Y.; Lee, S.Y.; Park, S.B.; Kim, S.E.; Kang, Y.W.; Chun, H.S. Assessment of Natural Occurrence and Risk of the Emerging Mycotoxin Moniliformin in South Korea. Toxins 2025, 17, 50. https://doi.org/10.3390/toxins17020050
Woo SY, Lee SY, Park SB, Kim SE, Kang YW, Chun HS. Assessment of Natural Occurrence and Risk of the Emerging Mycotoxin Moniliformin in South Korea. Toxins. 2025; 17(2):50. https://doi.org/10.3390/toxins17020050
Chicago/Turabian StyleWoo, So Young, Sang Yoo Lee, Su Been Park, Si Eun Kim, Young Woon Kang, and Hyang Sook Chun. 2025. "Assessment of Natural Occurrence and Risk of the Emerging Mycotoxin Moniliformin in South Korea" Toxins 17, no. 2: 50. https://doi.org/10.3390/toxins17020050
APA StyleWoo, S. Y., Lee, S. Y., Park, S. B., Kim, S. E., Kang, Y. W., & Chun, H. S. (2025). Assessment of Natural Occurrence and Risk of the Emerging Mycotoxin Moniliformin in South Korea. Toxins, 17(2), 50. https://doi.org/10.3390/toxins17020050