Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina
Abstract
:1. Introduction
- deepen and broaden the genetic characterization of strains of the FGSC isolated in multiple seasons from wheat kernels in a wider wheat cropping area from Buenos Aires Province in Argentina than previously studied, by using Amplified Fragment Length Polymorphism (AFLP) and sequence analyses of translation elongation factor 1−α (TEF1) and β-tubulin (TUB2) genes;
- evaluate the genetic variability of a wide population of FGSC by using AFLP;
- assess the main FGSC species occurring on wheat in Argentina, comparing it to the contradictory data previously reported from different cereals.
2. Material and Methods
2.1. Isolation and Identification
Sample Fields * | Geographical Region | Year | Strains ITEM Number ** | |
---|---|---|---|---|
27-Pergamino | IIN | 2001 | 8544-8545-8546-8547-8548 | |
2-Arrecifes | IIS | 2001 | 8310-8311 | |
12-Coronel Villegas | IIS | 2001 | 8386-8387 | |
24-Nueve de Julio | IIS | 2001 | 8467-8468-8471-8473-8475-8476-8477-8478-8479-8480-8481-8482-8483-8485-8486-8487-8488-8492-8493-8497-8502-8504-8505-8510-8512-8513-8514-8516-8517-8526-8531-8538 | |
29-Saladillo | IIS | 2001 | 8552 | |
31-San Pedro | IIS | 2001 | 8559-8560-8561-8562-8563 | |
35-Salto | IIS | 2001 | 8602-8603-8604 | |
5-Belgrano | IIS | 2003 | 8325-8327-8329-8330-8334-8335 | |
8-Cardales | IIS | 2003 | 8339-8340-8341 | |
25-Pehuajo | IIS | 2003 | 8540 | |
1-Areco | IIS | 2004 | 8308 | |
6-Bolivar | IIS | 2004 | 8337 | |
7-Bragado | IIS | 2004 | 8338 | |
10-Carlos Casares | IIS | 2004 | 8357-8361-8362-8363 | |
11-25 de Mayo | IIS | 2004 | 8364-8365-8366-8367-8368-8369-8370-8371-8372-8373-8374-8375-8376-8377-8379-8380-8381-8382-8589 | |
15-General Pinto | IIS | 2004 | 8412-8413 | |
17-General Viamonte | IIS | 2004 | 8417 | |
19-H Yrigoyen | IIS | 2004 | 8420 | |
21-Lincoln | IIS | 2004 | 8425-8426 | |
33-Trenque Lauquen | IIS | 2004 | 8583-8585 | |
37-Suipacha | IIS | 2004 | 8564 *** | |
16-General Pueyrredon | IV | 2001 | 8414-8415-8416 | |
22-Loberia | IV | 2003 | 8427-8428-8429-8430-8432-8433 | |
3-Azul | IV | 2004 | 8313-8314-8315-8316-8318-8319-8320-8321 | |
4-Balcarce | IV | 2004 | 8322-8323-8324 | |
9-Cardenau | IV | 2004 | 8342-8343-8344-8345-8346-8347-8348-8349-8350-8351-8352-8353-8354-8355-8356 | |
13-General Alvarado | IV | 2004 | 8388-8393-8394-8395-8396-8397-8398-8399-8401-8402-8404-8405-8406-8407 | |
14-General Lamadrid | IV | 2004 | 8408-8409-8410 | |
20-Laprida | IV | 2004 | 8421-8422-8423-8424 | |
23-Necochea | IV | 2004 | 8435-8436-8438-8439-8440-8441-8444-8446-8447-8448-8453-8454-8456-8458-8460-8461-8462-8463-8464 | |
30-San Cayetano | IV | 2004 | 8555-8556-8558 | |
32-Tandil | IV | 2004 | 8574-8576-8581-8582-8566 ***-8567 ***-8569 *** | |
36-Coronel Suarez | VS | 2003 | 8383 ****-8384 **** | |
18-Guamini | VS | 2004 | 8418-8419 | |
26-Pellegrini | VS | 2004 | 8542 | |
28-Saavedra | VS | 2004 | 8549 | |
34-Conhello | VS | 2004 | 8591-8600-8601 |
2.2. DNA Extraction
2.3. Mating Type Analysis
2.4. DNA Sequencing
2.5. AFLP Analysis
3. Results
3.1. Strain Isolation and Identification
3.2. DNA Sequence-Base Phylogenetic Analysis
3.3. Nucleotide Sequence Accession Numbers
3.4. AFLP Analysis
4. Discussion
5. Conclusions
Acknowledgments
References
- Xu, X.M.; Berrie, A. Epidemiology of mycotoxigenic fungi associated with Fusarium ear blight and apple blue mould: A review. Food Addit. Contam. 2005, 22, 290–301. [Google Scholar] [CrossRef]
- Desjardins, A.E. Fusarium mycotoxins. Chemistry, Genetics and Biology; American Phythopathological Society Press: St. Paul, MN, USA, 2006. [Google Scholar]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar]
- Miller, J.D.; Greenhalgh, R.; Wang, Y.Z.; Lu, M. Trichothecene chemotype of three Fusarium species. Mycologia 1991, 83, 121–130. [Google Scholar] [CrossRef]
- Yli-Mattila, T. Ecology, and evolution of toxigenic Fusarium species in cereals in northern Europe and Asia. J. Plant Pathol. 2010, 92, 7–18. [Google Scholar]
- Schmale, D.G.; Wood-Jones, A.K.; Cowger, C.; Bergstrom, G.C.; Arellano, C. Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA. Plant Pathol. 2011, 60, 909–917. [Google Scholar] [CrossRef]
- Gale, L.R.; Harrison, S.A.; Ward, T.J.; O’Donnell, K.; Milus, E.A.; Gale, S.W.; Kistler, H.C. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 2011, 101, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.L.; Reynoso, M.M.; Farnochi, M.C.; Chulze, S. Vegetative compatibility and mycotoxin chemotypes among Fusarium graminearum (Gibberella zeae) isolates from wheat in Argentina. Eur. J. Plant Pathol. 2006, 115, 139–148. [Google Scholar] [CrossRef]
- Lori, G.A.; Carranza, M.R.; Violante, A.; Rizzo, I.; Alippi, H.E. Fusarium spp. en trigo, capacidad toxicogenica y quimiotaxonomia de las cepas aisladas en la Argentina. Agronomie 1992, 12, 459–467. [Google Scholar] [CrossRef]
- Fernández Pinto, V.; Terminiello, L.; Basilico, J.C.; Ritieni, A. Natural occurrence of nivalenol and mycotoxigenic potential of Fusarium graminearum strains in wheat affected by Head Blight in Argentina. Braz. J.Microbiol. 2008, 39, 157–162. [Google Scholar] [CrossRef]
- Alvarez, C.L.; Azcarate, P.M.; Fernández Pinto, V. Toxigenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. Int. J. Food Microbiol. 2009, 135, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Han, Y.-K.; Kim, K.-H.; Yun, S.-H.; Lee, Y.-W. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl. Environ. Microbiol. 2002, 68, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Alexander, N.J.; McCormick, S.P.; Waalwijk, C.; van der Lee, T.; Proctor, R.H. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet. Biol. 2011, 48, 485–495. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Kistler, H.C.; Tacke, B.K.; Caspar, H.H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 2000, 97, 7905–7910. [Google Scholar]
- O’Donnell, K.; Ward, T.J.; Geiser, D.M.; Kistler, H.C.; Aoki, T. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 2004, 41, 600–623. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Ward, T.J.; Aberra, D.; Kistler, H.C.; Aoki, T.; Orwig, N.; Kimura, M.; Bjørnstad, A.; Klemsdal, S.S. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet. Biol. 2008, 45, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Starkey, D.E.; Ward, T.J.; Aoki, T.; Gale, L.R.; Kistler, H.C.; Geiser, D.M.; Suga, H.; Tóth, B.; Varga, J.; O’Donnell, K. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 2007, 12, 1745–1776. [Google Scholar]
- Yli-Mattila, T.; Gagkaeva, T.; Ward, T.J.; Aoki, T.; Kistler, H.C.; O’Donnell, K. A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 2009, 101, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Laday, M.; Juhàsz, A.; Mulè, G.; Moretti, A.; Szècsi, A.; Logrieco, A. Mitochondrial DNA diversity and lineage determination of European isolates of Fusarium graminearum (Gibberella zeae). Eur. J. Plant Pathol. 2004, 110, 545–550. [Google Scholar] [CrossRef]
- Ramirez, M.L.; Reynoso, M.M.; Farnochi, M.C.; Torres, A.M.; Leslie, J.F.; Chulze, S.N. Population genetic structure of Gibberella zeae isolated from wheat in Argentina. Food Addit. Contam. 2007, 24, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Zeller, K.A.; Bowden, R.L.; Leslie, J.F. Diversity of epidemic populations of Gibberella zeae from small quadrats in Kansas and North Dakota. Phytopathology 2003, 93, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Zeller, K.A.; Bowden, R.L.; Leslie, J.F. Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Mol. Ecol. 2004, 13, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Scoz, L.B.; Astolfi, P.; Reartes, D.S.; Schmale, D.G., III; Moraes, M.G.; Del Ponte, E.M. Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil. Plant Pathol. 2009, 58, 344–351. [Google Scholar] [CrossRef]
- Trigo Argentino Home Page. Available online: www.trigoargentino.com.ar (accessed on 20 October 2011).
- Moschini, R.C.; Pioli, R.; Carmona, M.; Sacchi, O. Empirical predictions of wheat head blight in the Northern Argentinean Pampas Region. Crop Sci. 2001, 41, 1541–1545. [Google Scholar]
- Sampietro, D.A.; Díaz, C.G.; Gonzalez, V.; Vattuone, M.A.; Ploper, L.D.; Catalan, C.A.; Ward, T.J. Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. Int. J. Food Microbiol. 2011, 145, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Ames, IA, USA, 2006. [Google Scholar]
- ITEM Collection. Agri-Food Toxigenic Fungi Culture Collection. Available online: www.ispa.cnr.it/Collection (accessed on 20 October 2011).
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 1994, 22, 4673–4680. [Google Scholar]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar]
- NCBI Home Page. Available online: www.ncbi.nlm.nih.gov (accessed on 20 October 2011).
- Geiser, D.M.; del Mar Jimenez-Gasco, M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.; Kuldau, G.A.; O’Donnell, K. FUSARIUM-ID v.1.0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 2004, 110, 473–480. [Google Scholar] [CrossRef]
- Gagkaeva, T.Y.; Yli-Mattila, T. Genetic Diversity of Fusarium graminearum in Europe and Asia. Eur. J. Plant Pathol. 2004, 110, 551–562. [Google Scholar] [CrossRef]
- Ward, T.J.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.E.; Gilbert, J.; Geiger, D.M.; Nowicki, T.W. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Monds, R.D.; Cromey, G.; Lauren, D.R.; di Menna, M.; Marshall, J. Fusarium gramineraum, F cortaderiae and F pseudogramineraum in New Zealand: Molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of specie. Mycol. Res. 2005, 109, 410–420. [Google Scholar]
- Qu, B.; Li, H.P.; Zhang, J.B.; Huang, T.; Wu, A.B.; Zhao, C.S.; Caarter, J.; Nicholson, P.; Liao, Y.C. Geographic distribution and genetic diversity of Fusarium gramineraum and F. asiaticum on wheat spikes throughout China. Plant Pathol. 2007, 57, 15–24. [Google Scholar]
- Gale, L.R.; Chen, L.F.; Hernick, C.A.; Katamura, A.; Kistler, H.C. Population analysis of Fusarium graminearum from wheat fields in Eastern China. Phytopathology 2002, 92, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Schmale, D.G., III; Leslie, J.F.; Zeller, K.A.; Saleh, A.A.; Shields, E.J.; Bergstrom, G.C. Genetic structure of athmospheric populations of Gibberella zeae. Phytopathology 2006, 96, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Alvarez, C.L.; Somma, S.; Proctor, R.H.; Stea, G.; Mulè, G.; Logrieco, A.F.; Pinto, V.F.; Moretti, A. Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina. Toxins 2011, 3, 1294-1309. https://doi.org/10.3390/toxins3101294
Alvarez CL, Somma S, Proctor RH, Stea G, Mulè G, Logrieco AF, Pinto VF, Moretti A. Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina. Toxins. 2011; 3(10):1294-1309. https://doi.org/10.3390/toxins3101294
Chicago/Turabian StyleAlvarez, Cora Lilia, Stefania Somma, Robert H. Proctor, Gaetano Stea, Giuseppina Mulè, Antonio F. Logrieco, Virginia Fernandez Pinto, and Antonio Moretti. 2011. "Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina" Toxins 3, no. 10: 1294-1309. https://doi.org/10.3390/toxins3101294
APA StyleAlvarez, C. L., Somma, S., Proctor, R. H., Stea, G., Mulè, G., Logrieco, A. F., Pinto, V. F., & Moretti, A. (2011). Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina. Toxins, 3(10), 1294-1309. https://doi.org/10.3390/toxins3101294