Next Issue
Volume 3, November
Previous Issue
Volume 3, September
 
 

Toxins, Volume 3, Issue 10 (October 2011) – 7 articles , Pages 1233-1372

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
5690 KiB  
Review
Ricinus communis Intoxications in Human and Veterinary Medicine—A Summary of Real Cases
by Sylvia Worbs, Kernt Köhler, Diana Pauly, Marc-André Avondet, Martin Schaer, Martin B. Dorner and Brigitte G. Dorner
Toxins 2011, 3(10), 1332-1372; https://doi.org/10.3390/toxins3101332 - 24 Oct 2011
Cited by 166 | Viewed by 31084
Abstract
Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the [...] Read more.
Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the production of castor oil. As by-product in castor oil production ricin is mass produced above 1 million tons per year. On the basis of its availability, toxicity, ease of preparation and the current lack of medical countermeasures, ricin has gained attention as potential biological warfare agent. The seeds also contain the less toxic, but highly homologous Ricinus communis agglutinin and the alkaloid ricinine, and especially the latter can be used to track intoxications. After oil extraction and detoxification, the defatted press cake is used as organic fertilizer and as low-value feed. In this context there have been sporadic reports from different countries describing animal intoxications after uptake of obviously insufficiently detoxified fertilizer. Observations in Germany over several years, however, have led us to speculate that the detoxification process is not always performed thoroughly and controlled, calling for international regulations which clearly state a ricin threshold in fertilizer. In this review we summarize knowledge on intended and unintended poisoning with ricin or castor seeds both in humans and animals, with a particular emphasis on intoxications due to improperly detoxified castor bean meal and forensic analysis. Full article
(This article belongs to the Special Issue Ricin Toxin)
Show Figures

Figure 1

1746 KiB  
Article
Hydrogen-Bonding Interactions in T-2 Toxin Studied Using Solution and Solid-State NMR
by Praveen Chaudhary, Roxanne A. Shank, Tony Montina, James T. Goettel, Nora A. Foroud, Paul Hazendonk and François Eudes
Toxins 2011, 3(10), 1310-1331; https://doi.org/10.3390/toxins3101310 - 21 Oct 2011
Cited by 11 | Viewed by 8463
Abstract
The structure of T-2 toxin in the solid-state is limited to X-ray crystallographic studies, which lack sufficient resolution to provide direct evidence for hydrogen-bonding interactions. Furthermore, its solution-structure, despite extensive Nuclear Magnetic Resonance (NMR) studies, has provided little insight into its hydrogen-bonding behavior, [...] Read more.
The structure of T-2 toxin in the solid-state is limited to X-ray crystallographic studies, which lack sufficient resolution to provide direct evidence for hydrogen-bonding interactions. Furthermore, its solution-structure, despite extensive Nuclear Magnetic Resonance (NMR) studies, has provided little insight into its hydrogen-bonding behavior, thus far. Hydrogen-bonding interactions are often an important part of biological activity. In order to study these interactions, the structure of T-2 toxin was compared in both the solution- and solid-state using NMR Spectroscopy. It was determined that the solution- and solid-state structure differ dramatically, as indicated by differences in their carbon chemical shifts, these observations are further supported by solution proton spectral parameters and exchange behavior. The slow chemical exchange process and cross-relaxation dynamics with water observed between the hydroxyl hydrogen on C-3 and water supports the existence of a preferential hydrogen bonding interaction on the opposite side of the molecule from the epoxide ring, which is known to be essential for trichothecene toxicity. This result implies that these hydrogen-bonding interactions could play an important role in the biological function of T-2 toxin and posits towards a possible interaction for the trichothecene class of toxins and the ribosome. These findings clearly illustrate the importance of utilizing solid-state NMR for the study of biological compounds, and suggest that a more detailed study of this whole class of toxins, namely trichothecenes, should be pursued using this methodology. Full article
Show Figures

Figure 1

612 KiB  
Article
Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina
by Cora Lilia Alvarez, Stefania Somma, Robert H. Proctor, Gaetano Stea, Giuseppina Mulè, Antonio F. Logrieco, Virginia Fernandez Pinto and Antonio Moretti
Toxins 2011, 3(10), 1294-1309; https://doi.org/10.3390/toxins3101294 - 20 Oct 2011
Cited by 30 | Viewed by 8342
Abstract
The Fusarium graminearum species complex (FGSC) is a group of mycotoxigenic fungi that are the primary cause of Fusarium head blight (FHB) of wheat worldwide. The distribution, frequency of occurrence, and genetic diversity of FGSC species in cereal crops in South America is [...] Read more.
The Fusarium graminearum species complex (FGSC) is a group of mycotoxigenic fungi that are the primary cause of Fusarium head blight (FHB) of wheat worldwide. The distribution, frequency of occurrence, and genetic diversity of FGSC species in cereal crops in South America is not well understood compared to some regions of Asia, Europe and North America. Therefore, we examined the frequency and genetic diversity of a collection of 183 FGSC isolates recovered from wheat grown during multiple growing seasons and across a large area of eastern Argentina, a major wheat producing region in South America. Sequence analysis of the translation elongation factor 1−α and β-tubulin genes as well as Amplified Fragment Length Polymorphism (AFLP) analyses indicated that all isolates were the FGSC species F. graminearum sensu stricto. AFLP analysis resolved at least 11 subgroups, and all the isolates represented different AFLP haplotypes. AFLP profile and geographic origin were not correlated. Previously obtained trichothecene production profiles of the isolates revealed that the 15-acetyldeoxynivalenol chemotype was slightly more frequent than the 3-acetyldeoxynivalenol chemotype among the isolates. These data extend the current understanding of FGSC diversity and provide further evidence that F. graminearum sensu stricto is the predominant cause of FHB in the temperate main wheat-growing area of Argentina. Moreover, two isolates of F. crookwellense and four of F. pseudograminearum were also recovered from wheat samples and sequenced. The results also suggest that, although F. graminearum sensu stricto was the only FGSC species recovered in this study, the high level of genetic diversity within this species should be considered in plant breeding efforts and development of other disease management strategies aimed at reducing FHB. Full article
(This article belongs to the Special Issue Trichothecenes)
Show Figures

Figure 1

1317 KiB  
Article
Anthrax Lethal Toxin-Mediated Disruption of Endothelial VE-Cadherin Is Attenuated by Inhibition of the Rho-Associated Kinase Pathway
by Jason M. Warfel and Felice D’Agnillo
Toxins 2011, 3(10), 1278-1293; https://doi.org/10.3390/toxins3101278 - 20 Oct 2011
Cited by 21 | Viewed by 6936
Abstract
Systemic anthrax disease is characterized by vascular leakage pathologies. We previously reported that anthrax lethal toxin (LT) induces human endothelial barrier dysfunction in a cell death-independent manner with actin stress fiber formation and disruption of adherens junctions (AJs). In the present study, we [...] Read more.
Systemic anthrax disease is characterized by vascular leakage pathologies. We previously reported that anthrax lethal toxin (LT) induces human endothelial barrier dysfunction in a cell death-independent manner with actin stress fiber formation and disruption of adherens junctions (AJs). In the present study, we further characterize the molecular changes in the AJ complex and investigate whether AJ structure and barrier function can be preserved by modulating key cytoskeletal signaling pathways. Here, we show that LT reduces total VE-cadherin protein and gene expression but the expression of the key linker protein beta-catenin remained unchanged. The changes in VE-cadherin expression correlated temporally with the appearance of actin stress fibers and a two-fold increase in phosphorylation of the stress fiber-associated protein myosin light chain (p-MLC) and cleavage of Rho-associated kinase-1 (ROCK-1). Co-treatment with ROCK inhibitors (H-1152 and Y27632), but not an inhibitor of MLC kinase (ML-7), blocked LT-induced p-MLC enhancement and stress fiber formation. This was accompanied by the restoration of VE-cadherin expression and membrane localization, and attenuation of the LT-induced increase in monolayer permeability to albumin. Together, these findings suggest the ROCK pathway may be a relevant target for countering LT-mediated endothelial barrier dysfunction. Full article
(This article belongs to the Special Issue Anthrax Toxin)
Show Figures

Figure 1

322 KiB  
Review
Mucosal Injuries due to Ribosome-Inactivating Stress and the Compensatory Responses of the Intestinal Epithelial Barrier
by Yuseok Moon
Toxins 2011, 3(10), 1263-1277; https://doi.org/10.3390/toxins3101263 - 20 Oct 2011
Cited by 11 | Viewed by 7237
Abstract
Ribosome-inactivating (ribotoxic) xenobiotics are capable of using cleavage and modification to damage 28S ribosomal RNA, which leads to translational arrest. The blockage of global protein synthesis predisposes rapidly dividing tissues, including gut epithelia, to damage from various pathogenic processes, including epithelial inflammation and [...] Read more.
Ribosome-inactivating (ribotoxic) xenobiotics are capable of using cleavage and modification to damage 28S ribosomal RNA, which leads to translational arrest. The blockage of global protein synthesis predisposes rapidly dividing tissues, including gut epithelia, to damage from various pathogenic processes, including epithelial inflammation and carcinogenesis. In particular, mucosal exposure to ribotoxic stress triggers integrated processes that are important for barrier regulation and re-constitution to maintain gut homeostasis. In the present study, various experimental models of the mucosal barrier were evaluated for their response to acute and chronic exposure to ribotoxic agents. Specifically, this review focuses on the regulation of epithelial junctions, epithelial transporting systems, epithelial cytotoxicity, and compensatory responses to mucosal insults. The primary aim is to characterize the mechanisms associated with the intestinal epithelial responses induced by ribotoxic stress and to discuss the implications of ribotoxic stressors as chemical modulators of mucosa-associated diseases such as ulcerative colitis and epithelial cancers. Full article
(This article belongs to the Special Issue Novel Properties of Well-Characterized Toxins)
Show Figures

Figure 1

828 KiB  
Article
Toxic Marine Puffer Fish in Thailand Seas and Tetrodotoxin They Contained
by Monrat Chulanetra, Nitat Sookrung, Potjanee Srimanote, Nitaya Indrawattana, Jeeraphong Thanongsaksrikul, Yuwaporn Sakolvaree, Manas Chongsa-Nguan, Hisao Kurazono and Wanpen Chaicumpa
Toxins 2011, 3(10), 1249-1262; https://doi.org/10.3390/toxins3101249 - 18 Oct 2011
Cited by 47 | Viewed by 10755
Abstract
A total of 155 puffers caught from two of Thailand’s seas, the Gulf of Siam and the Andaman seas, during April to July 2010 were included in this study. Among 125 puffers from the Gulf of Siam, 18 were Lagocephalus lunaris and 107 [...] Read more.
A total of 155 puffers caught from two of Thailand’s seas, the Gulf of Siam and the Andaman seas, during April to July 2010 were included in this study. Among 125 puffers from the Gulf of Siam, 18 were Lagocephalus lunaris and 107 were L. spadiceus which were the same two species found previously in 2000–2001. Thirty puffers were collected from the Andaman seas, 28 Tetraodon nigroviridis and two juvenile Arothron reticularis; the two new species totally replaced the nine species found previously in 1992–1993. Conventional mouse bioassay was used to determine the toxicity in all fish tissue extracts, i.e., liver, reproductive tissue, digestive tissue and muscle. One of each of the species L. lunaris and L. spadiceus (5.56 and 0.93%, respectively) were toxic. All 28 T. nigroviridis and 2 A. reticularis (100%) from the Andaman seas were toxic. The toxicity scores in T. nigroviridis tissues were much higher than in the respective tissues of the other three fish species. Liquid chromatography/tandem mass spectrometry (LC-MS/MS) revealed that the main toxic principle was tetrodotoxin (TTX). This study is the first to report TTX in L. spadiceus. Our findings raised a concern for people, not only Thais but also inhabitants of other countries situated on the Andaman coast; consuming puffers of the Andaman seas is risky due to potential TTX intoxication. Full article
Show Figures

Figure 1

3329 KiB  
Review
Structure-Based Design of Ricin Inhibitors
by Karl Jasheway, Jeffrey Pruet, Eric V. Anslyn and Jon D. Robertus
Toxins 2011, 3(10), 1233-1248; https://doi.org/10.3390/toxins3101233 - 13 Oct 2011
Cited by 29 | Viewed by 13894
Abstract
Ricin is a potent cytotoxin easily purified in large quantities. It presents a significant public health concern due to its potential use as a bioterrorism agent. For this reason, extensive efforts have been underway to develop antidotes against this deadly poison. The catalytic [...] Read more.
Ricin is a potent cytotoxin easily purified in large quantities. It presents a significant public health concern due to its potential use as a bioterrorism agent. For this reason, extensive efforts have been underway to develop antidotes against this deadly poison. The catalytic A subunit of the heterodimeric toxin has been biochemically and structurally well characterized, and is an attractive target for structure-based drug design. Aided by computer docking simulations, several ricin toxin A chain (RTA) inhibitors have been identified; the most promising leads belonging to the pterin family. Development of these lead compounds into potent drug candidates is a challenging prospect for numerous reasons, including poor solubility of pterins, the large and highly polar secondary binding pocket of RTA, as well as the enzyme’s near perfect catalytic efficiency and tight binding affinity for its natural substrate, the eukaryotic ribosome. To date, the most potent RTA inhibitors developed using this approach are only modest inhibitors with apparent IC50 values in the 10−4 M range, leaving significant room for improvement. This review highlights the variety of techniques routinely employed in structure-based drug design projects, as well as the challenges faced in the design of RTA inhibitors. Full article
(This article belongs to the Special Issue Ricin Toxin)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop