Tetanus: Pathophysiology, Treatment, and the Possibility of Using Botulinum Toxin against Tetanus-Induced Rigidity and Spasms
Abstract
:1. Introduction
2. Pathophysiology of Tetanus Toxin
3. Symptomatology of Tetanus
4. Treatment of Tetanus
Reference | Age/sex | Cause/incubation time | Symptoms/Ablett grade | Botulinum toxin: treatment start a/dose and injection sites | Time to onset/time to maximal effect |
---|---|---|---|---|---|
[49] | 33/male | Nose wound/8 days | Trismus, dysphagia, ptosis. Cephalic tetanus/Ablett grade 3 | 15 days: Botox® 50 IU in each masseter. Two injection sites per muscle. | 3–4 days/2 weeks |
[50] | 28/male | I.v. drug abuse/unknown incubation time | Trismus, progressing to generalized tetanus/Ablett grade 3 | >3 weeks: Dysport® into left biceps + brachioradialis + both gastrocnemius muscles, total dose 1000 IU. | 1 day/1 day |
[45] | 64/female | Hand wound/unknown incubation time | Generalized tetanus, including diffuse rigidity and pain, trismus, risus sardonicus, dysphagia/Ablett grade 3 | 3 weeks: Botox® 30 IU into each cricopharyngeal muscle with EMG b | 2 days/1 week |
[45] | 68/female | Leg wound/3 days | Generalized tetanus, including rigidity, opistotonus, trismus, risus sardonicus, dysarthria, dysphagia/Ablett grade 3 | 3 weeks: Botox® 30 IU into each cricopharyngeal muscle with EMG b | 2 days/1 week |
[51] | 80/female | Unknown entry and incubation time | Throat pain, dysphonia, neck rigidity, trismus. Cephalic tetanus/ Ablett grade 3 | 8 weeks: Botox® 75 IU into each sternocleidomastoideus, 25 IU into right trapezius, 50 IU into each levator scapulae | “responded well” |
[9] | 82/female | Forehead wound/11 days | Bell’s paresis, facial pain, trismus, tongue spasms. Cephalic tetanus/Ablett grade 3 | 5 days: Botox® 25 IU into each masseter and 10 IU into each temporalis muscle | 3 days/3 weeks |
5. The Use of Botulinum Toxin against Tetanus-Induced Rigidity and Spasms
6. Advantages and Disadvantages of Botulinum Toxin Treatment in Tetanus
7. Conclusions
Conflict of Interest
References
- Bleck, T.P. Clostridium tetani (Tetanus). In Principles and Practice of Infectious Diseases, 6th; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 2817–2822. [Google Scholar]
- Thwaites, C.L.; Farrar, J.J. Preventing and treating tetanus. BMJ 2003, 326, 117–118. [Google Scholar] [CrossRef]
- Blencowe, H.; Lawn, J.; Vandelaer, J.; Roper, M.; Cousens, S. Tetanus toxoid immunization to reduce mortality from neonatal tetanus. Int. J. Epidemiol. 2010, 39, i102–i109. [Google Scholar] [CrossRef]
- Meyer, H.; Ransom, F. Researches on tetanus—Preliminary communication. Proc. Royal Soc. Lond. 1903, 72, 26–30. [Google Scholar] [CrossRef]
- Fishman, P.S.; Carrigan, D.R. Motoneuron uptake from the circulation of the binding fragment of tetanus toxin. Arch. Neurol. 1988, 45, 558–561. [Google Scholar] [CrossRef]
- Blum, F.C.; Chen, C.; Kroken, A.R.; Barbieri, J.T. Tetanus toxin and botulinum toxin A utilize unique mechanisms to enter neurons of the central nervous system. Infect. Immun. 2012, 80, 1662–1669. [Google Scholar] [CrossRef]
- Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000, 80, 717–766. [Google Scholar]
- Mayo, J.; Berciano, J. Cephalic tetanus presenting with Bell’s palsy. J. Neurol. Neurosurg. Psychiatry 1985, 48, 290. [Google Scholar] [CrossRef]
- Herrman, H.; Brækhus, A.; Aaserud, O.; Aukrust, P.; Stubhaug, A.; Hassel, B. Early treatment of tetanus-induced trismus with botulinum toxin A. Anesth. Analg. 2008, 106, 1591. [Google Scholar] [CrossRef]
- Schwab, M.E.; Thoenen, H. Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: An autoradiographic and morphometric study. Brain Res. 1976, 105, 213–227. [Google Scholar] [CrossRef]
- González-Forero, D.; Morcuende, S.; Alvarez, F.J.; de la Cruz, R.R.; Pastor, A.M. Transynaptic effects of tetanus neurotoxin in the oculomotor system. Brain 2005, 128, 2175–2188. [Google Scholar] [CrossRef]
- Brooks, V.B.; Curtis, D.R.; Eccles, J.C. The action of tetanus toxin on the inhibition of motoneurones. J. Physiol. 1957, 135, 655–672. [Google Scholar]
- Bergey, G.K.; Bigalke, H.; Nelson, P.G. Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture: A presynaptic locus of action for tetanus toxin. J. Neurophysiol. 1987, 57, 121–131. [Google Scholar]
- Gonzalez-Forero, D.; de la Cruz, R.R.; Delgado-Garcia, J.M.; Alvarez, F.J.; Pastor, A.M. Functional alterations of cat abducens neurons after peripheral tetanus neurotoxin injection. J. Neurophysiol. 2003, 89, 1878–1890. [Google Scholar]
- Shin, M.C.; Nonaka, K.; Wakita, M.; Yamaga, T.; Torii, Y.; Harakawa, T.; Ginnaga, A.; Ito, Y.; Akaike, N. Effects of tetanus toxin on spontaneous and evoked transmitter release at inhibitory and excitatory synapses in the rat SDCN neurons. Toxicon 2012, 59, 385–392. [Google Scholar] [CrossRef]
- González-Forero, D.; Pastor, A.M.; Delgado-García, J.M.; de la Cruz, R.R.; Alvarez, F.J. Synaptic structural modification following changes in activity induced by tetanus neurotoxin in cat abducens neurons. J. Comp. Neurol. 2004, 471, 201–218. [Google Scholar] [CrossRef]
- Weng, W.C.; Huang, W.Y.; Peng, T.I.; Chien, Y.Y.; Chang, K.H.; Ro, L.S.; Lyu, R.K.; Wu, C.L. Clinical characteristics of adult tetanus in a Taiwan medical center. J. Formos. Med. Assoc. 2011, 110, 705–710. [Google Scholar] [CrossRef]
- Amare, A.; Melkamu, Y.; Mekonnen, D. Tetanus in adults: Clinical presentation, treatment and predictors of mortality in a tertiary hospital in Ethiopia. J. Neurol. Sci. 2012, 317, 62–65. [Google Scholar] [CrossRef]
- Meienberg, O.; Burgunder, J.M. Saccadic eye movement disorder in cephalic tetanus. Eur. Neurol. 1985, 24, 182–190. [Google Scholar] [CrossRef]
- Orwitz, J.I.; Galetta, S.L.; Teener, J.W. Bilateral trochlear nerve palsy and downbeat nystagmus in a patient withcephalic tetanus. Neurology 1997, 49, 894–895. [Google Scholar] [CrossRef]
- Kagoya, R.; Iwasaki, S.; Chihara, Y.; Ushio, M.; Tsuji, S.; Murofushi, T.; Yamasoba, T. Cephalic tetanus presenting as acute vertigo with bilateral vestibulopathy. Acta Otolaryngol. 2011, 131, 334–336. [Google Scholar] [CrossRef]
- Kerr, J.H.; Corbett, J.L.; Prys-Roberts, C.; Smith, A.C.; Spalding, J.M. Involvement of the sympathetic nervous system in tetanus. Studies on 82 cases. Lancet 1968, 2, 236–241. [Google Scholar]
- Cook, T.M.; Protheroe, R.T.; Handel, J.M. Tetanus: A review of the literature. Br. J. Anaesth. 2001, 87, 477–487. [Google Scholar] [CrossRef]
- Freshwater-Turner, D.; Udy, A.; Lipman, J.; Deans, R.; Stuart, J.; Boots, R.; Hegde, R.; McWhinney, B.C. Autonomic dysfunction in tetanus—What lessons can be learnt with specific reference to α-2 agonists? Anaesthesia 2007, 62, 1066–1070. [Google Scholar] [CrossRef]
- Pomara, C.; Neri, M.; Riezzo, I.; Turillazzi, E.; Fineschi, V. Autonomic nervous system instability, tetanic necrosis of the heart and myocardial TNFα expression in a tetanus fatal case. Int. J. Cardiol. 2009, 136, e54–e57. [Google Scholar] [CrossRef]
- Meckler, R.L.; Baron, R.; McLachlan, E.M. Selective uptake of C-fragment of tetanus toxin by sympathetic preganglionic nerve terminals. Neuroscience 1990, 36, 823–829. [Google Scholar] [CrossRef]
- Burgess, J.A.; Wambaugh, G.W.; Koczarski, M.J. Report of case: Reviewing cephalic tetanus. J. Am. Dent. Assoc. 1992, 123, 67–70. [Google Scholar]
- Larsson, M.; Persson, S.; Ottersen, O.P.; Broman, J. Quantitative analysis of immunogold labeling indicates low levels and non-vesicular localization of L-aspartate in rat primary afferent terminals. J. Comp. Neurol. 2001, 430, 147–159. [Google Scholar] [CrossRef]
- Anlar, B.; Yalaz, K.; Dizmen, R. Long-term prognosis after neonatal tetanus. Dev. Med. Child Neurol. 1989, 31, 76–80. [Google Scholar]
- Barkmeier, D.T.; Loeb, J.A. An animal model to study the clinical significance of interictal spiking. Clin. EEG Neurosci. 2009, 40, 234–238. [Google Scholar]
- Ganesh Kumar, A.V.; Kothari, V.M.; Krishnan, A.; Karnad, D.R. Benzathine penicillin, metronidazole and benzyl penicillin in the treatment of tetanus: A randomized, controlled trial. Ann. Trop. Med. Parasitol. 2004, 98, 59–63. [Google Scholar] [CrossRef]
- Campbell, J.I.; Lam, T.M.; Huynh, T.L.; To, S.D.; Tran, T.T.; Nguyen, V.M.; Le, T.S.; Nguyen, V.C.; Parry, C.; Farrar, J.J.; Tran, T.H.; Baker, S. Microbiologic characterization and antimicrobial susceptibility of Clostridium tetani isolated from wounds of patients with clinically diagnosed tetanus. Am. J. Trop. Med. Hyg. 2009, 80, 827–831. [Google Scholar]
- Blake, P.A.; Feldman, R.A.; Buchanan, T.M.; Brooks, G.F.; Bennett, J.V. Serologic therapy of tetanus in the United States, 1965-1971. J. Am. Med. Assoc. 1976, 235, 42–44. [Google Scholar] [CrossRef]
- Kabura, L.; Ilibagiza, D.; Menten, J.; van den Ende, J. Intrathecal vs. intramuscular administration of human antitetanus immunoglobulin or equine tetanus antitoxin in the treatment of tetanus: A meta-analysis. Trop. Med. Int. Health 2006, 11, 1075–1081. [Google Scholar] [CrossRef]
- Okoromah, C.N.; Lesi, F.E. Diazepam for treating tetanus. Cochrane Database Syst. Rev. 2004. [Google Scholar] [CrossRef]
- Santos, M.L.; Mota-Miranda, A.; Alves-Pereira, A.; Gomes, A.; Correia, J.; Marçal, N. Intrathecal baclofen for the treatment of tetanus. Clin. Infect. Dis. 2004, 38, 321–328. [Google Scholar] [CrossRef]
- Orko, R.; Rosenberg, P.H.; Himberg, J.J. Intravenous infusion of midazolam, propofol and vecuronium in a patient with severe tetanus. Acta Anaesthesiol. Scand. 1988, 32, 590–592. [Google Scholar] [CrossRef]
- Dutta, T.K.; Das, A.K.; Sethuraman, K.R.; Swaminathan, R.P. Neuroparalysis and ventilatory support in severe tetanus. J. Indian Med. Assoc. 2006, 104, 63–66. [Google Scholar]
- Del Castillo, J.; Engbaek, L. The nature of the neuromuscular block produced by magnesium. J. Physiol. 1954, 124, 370–384. [Google Scholar]
- Lee, C.; Zhang, X.; Kwan, W.F. Electromyographic and mechanomyographic characteristics of neuromuscular block by magnesium sulphate in the pig. Br. J. Anaesth. 1996, 76, 278–283. [Google Scholar] [CrossRef]
- Grassi, F.; Degasperi, V. Modulation of fetal and adult acetylcholine receptors by Ca2+ and Mg2+ at developing mouse end-plates. Pflugers Arch. 2000, 440, 704–709. [Google Scholar] [CrossRef]
- Thwaites, C.L.; Yen, L.M.; Loan, H.T.; Thuy, T.T.; Thwaites, G.E.; Stepniewska, K.; Soni, N.; White, N.J.; Farrar, J.J. Magnesium sulphate for treatment of severe tetanus: A randomised controlled trial. Lancet 2006, 368, 1436–1443. [Google Scholar]
- Thwaites, C.L.; Yen, L.M.; Cordon, S.M.; Thwaites, G.E.; Loan, H.T.; Thuy, T.T.; White, N.J.; Soni, N.; Macdonald, I.A.; Farrar, J.J. Effect of magnesium sulphate on urinary catecholamine excretion in severe tetanus. Anaesthesia 2008, 63, 719–725. [Google Scholar] [CrossRef]
- Aguilar Bernal, O.R.; Bender, M.A.; Lacy, M.E. Efficacy of dantrolene sodium in management of tetanus in children. J. R. Soc. Med. 1986, 79, 277–281. [Google Scholar]
- Restivo, D.A.; Marchese-Ragona, R. Botulinum toxin treatment for oropharyngeal dysphagia due to tetanus. J. Neurol. 2006, 253, 388–389. [Google Scholar] [CrossRef]
- Sharma, A.; Malhotra, S.; Grover, S.; Jindal, S.K. Incidence, prevalence, risk factor and outcome of delirium in intensive care unit: A study from India. Gen. Hosp. Psychiatry 2012, 34, 639–646. [Google Scholar] [CrossRef]
- Lambo, J.; Khahro, Z.; Memon, M.; Lashari, M. Neonatal tetanus incidence in Dadu District, Pakistan, 1993-2003. Scand. J. Infect. Dis. 2011, 43, 175–180. [Google Scholar] [CrossRef]
- Van den Berg, J.P.; Westerbeek, E.A.; Berbers, G.A.; van Gageldonk, P.G.; van der Klis, F.R.; van Elburg, R.M. Transplacental transport of IgG antibodies specific for pertussis, diphtheria, tetanus, haemophilus influenzae type b, and Neisseria meningitidis serogroup C is lower in preterm compared with term infants. Pediatr. Infect. Dis. J. 2010, 29, 801–805. [Google Scholar] [CrossRef]
- Andrade, L.A.; Brucki, S.M. Botulinum toxin A for trismus in cephalic tetanus. Arq. Neuropsiquiatr. 1994, 52, 410–413. [Google Scholar] [CrossRef] [Green Version]
- Gaber, T.A.; Mannemela, S. Botulinum toxin for muscle spasm after tetanus. J. R. Soc. Med. 2005, 98, 554. [Google Scholar] [CrossRef]
- García-García, A.; Gandara-Rey, J.M.; Crespo-Abelleira, A.; Jorge-Barreiro, J. Botulinum toxin A for treating muscular contractures in cephalic tetanus. Br. J. Oral Maxillofac. Surg. 20 0745, 573–575. [Google Scholar]
- Hexsel, D.; Brum, C.; do Prado, D.Z.; Soirefmann, M.; Rotta, F.T.; Dal’forno, T.; Rodrigues, T.C. Field effect of two commercial preparations of botulinum toxin type A: A prospective, double-blind, randomized clinical trial. J. Am. Acad. Dermatol. 2012, 67, 226–232. [Google Scholar] [CrossRef]
- Antonucci, F.; Rossi, C.; Gianfranceschi, L.; Rossetto, O.; Caleo, M. Long-distance retrograde effects of botulinum neurotoxin A. J. Neurosci. 2008, 28, 3689–3696. [Google Scholar] [CrossRef]
- Matak, I.; Bach-Rojecky, L.; Filipović, B.; Lacković, Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience 2011, 186, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Hughes, R.; Whaler, BC. Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J. Physiol. 1962, 160, 221–233. [Google Scholar]
- Simpson, L.L. Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J. Pharmacol. Exp. Ther. 1980, 212, 16–21. [Google Scholar]
- Hanson, M. Use of chemodenervation in dystonic conditions. Cleve. Clin. J. Med. 2012, 79, S25–S29. [Google Scholar] [CrossRef]
- Geeta, M.G.; Krishnakumar, P.; Mathews, L. Intrathecal tetanus immunoglobulins in the management of tetanus. Indian J. Pediatr. 2007, 74, 43–45. [Google Scholar] [CrossRef]
- Chukwubike, O.A.; God’spower, A.E. A 10-year review of outcome of management of tetanus in adults at a Nigerian tertiary hospital. Ann. Afr. Med. 2009, 8, 168–172. [Google Scholar]
- Azher, S.N.; Jankovic, J. Camptocormia: Pathogenesis, classification, and response to therapy. Neurology 2005, 65, 355–359. [Google Scholar] [CrossRef]
- Lim, E.C.; Seet, R.C. Botulinum toxin injections to treat belly dancer’s dyskinesia. Mov. Disord. 2009, 24, 1401. [Google Scholar]
- Jabbari, B. Evidence based medicine in the use of botulinum toxin for back pain. J. Neural. Transm. 2008, 115, 637–640. [Google Scholar] [CrossRef]
- Marik, P.E. Propofol: Therapeutic indications and side-effects. Curr. Pharm. Des. 2004, 10, 3639–3649. [Google Scholar] [CrossRef]
- Blitzer, A. Botulinum toxin A and B: A comparative dosing study for spasmodic dysphonia. Otolaryngol. Head Neck Surg. 2005, 133, 836–838. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hassel, B. Tetanus: Pathophysiology, Treatment, and the Possibility of Using Botulinum Toxin against Tetanus-Induced Rigidity and Spasms. Toxins 2013, 5, 73-83. https://doi.org/10.3390/toxins5010073
Hassel B. Tetanus: Pathophysiology, Treatment, and the Possibility of Using Botulinum Toxin against Tetanus-Induced Rigidity and Spasms. Toxins. 2013; 5(1):73-83. https://doi.org/10.3390/toxins5010073
Chicago/Turabian StyleHassel, Bjørnar. 2013. "Tetanus: Pathophysiology, Treatment, and the Possibility of Using Botulinum Toxin against Tetanus-Induced Rigidity and Spasms" Toxins 5, no. 1: 73-83. https://doi.org/10.3390/toxins5010073
APA StyleHassel, B. (2013). Tetanus: Pathophysiology, Treatment, and the Possibility of Using Botulinum Toxin against Tetanus-Induced Rigidity and Spasms. Toxins, 5(1), 73-83. https://doi.org/10.3390/toxins5010073