Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices
Abstract
:1. Introduction
2. The Global Occurrence of Mycotoxins in Medicinal Herbs and Spices
Country of Origin | Sample Name | Type of Mycotoxin | Maximum Concentration of Mycotoxin (μg/kg) | Reference |
---|---|---|---|---|
India | Asparagus racemosus | AFB1 | 220 | [7] |
AFB2 | 50 | |||
ZEA | 100 | |||
Celery | AFB1 | 200 | ||
ZEA | 70 | |||
Cinnamomum zeylanicum | AFB1 | 140 | ||
Cuminum cyminum | AFB1 | 310 | ||
ZEA | 100 | |||
Elettaria cardamomum | AFB1 | 400 | ||
AFB2 | 210 | |||
OTA | 50 | |||
ZEA | 20 | |||
Emblica officinalis | AFB1 | 380 | ||
AFB2 | 80 | |||
AFG1 | 170 | |||
OTA | 120 | |||
ZEA | 190 | |||
Mesua ferrea | AFB1 | 270 | ||
AFB2 | 100 | |||
Long pepper | AFB1 | 570 | ||
AFB2 | 160 | |||
AFG1 | 190 | |||
OTA | 80 | |||
ZEA | 50 | |||
Black pepper | AFB1 | 510 | ||
AFB2 | 150 | |||
OTA | 200 | |||
ZEA | 100 | |||
Indica | AFB1 | 310 | ||
Baccala | AFB1 | 190 | ||
Ginger | AFB1 | 370 | ||
AFB2 | 220 | |||
AFG1 | 100 | |||
ZEA | 70 | |||
Black cumin | AFB1 | 30 | [8] | |
OTA | 35 | |||
Fennel | AFB1 | 160 | ||
OTA | 80 | |||
Lime tree | AFB1 | 75 | ||
Wormwood | AFB1 | 25 | ||
OTA | 20 | |||
Cinnamon | - | - | ||
Peppermint | AFB1 | 25 | ||
Carob tree | AFB1 | 10 | ||
Chamomile | AFB1 | 145 | ||
Saffron | - | - | ||
Curcuma longa | - | - | ||
Worm wood | AFB1 | 90 | ||
China | Rhizoma coptidis-1 | OTA | 0.4 | [9] |
Rhubarb | OTA | 0.2 | ||
Ephedra | OTA | 0.3 | ||
OTB | 0.4 | |||
Fructus mume | OTA | 1.5 | ||
OTB | 0.8 | |||
Baohe pills | DON | 50.5 | [16] | |
Sping Jujuba seed | AFB1 | 4.67 | [10] | |
AFB2 | 0.89 | |||
AFG1 | 2.14 | |||
Barley | AFB1 | 1.72 | ||
AFB2 | 0.95 | |||
Areca seeds | AFB1 | 32.03 | ||
AFB2 | 2.73 | |||
AFG1 | 15.89 | |||
Biota seed | AFB1 | 25.33 | ||
AFB2 | 7.71 | |||
AFG1 | 0.59 | |||
AFG2 | 0.21 | |||
Cassia seed | AFB1 | 5.69 | ||
AFB2 | 1.81 | |||
Nutmeg | AFB1 | 239.62 | ||
AFB2 | 13.5 | |||
AFG1 | 34.21 | |||
AFG2 | 3.5 | |||
Bitter orange | AFB1 | 0.15 | ||
AFB2 | 0.77 | |||
Pharbitis seed | AFB1 | 0.47 | ||
Bitter apricot seed | AFB1 | 0.14 | ||
AFB2 | 0.07 | |||
AFG1 | 0.08 | |||
AFG2 | 0.09 | |||
White Aractylodes rhizome | AFB1 | 0.47 | ||
AFB2 | 0.06 | |||
Groomwell root | AFB1 | 1.03 | ||
AFB2 | 0.48 | |||
Japanese knotweed rhizome | AFB1 | 0.77 | ||
AFB2 | 0.32 | |||
Aractylodes rhizome | AFB1 | 0.58 | ||
AFB2 | 0.93 | |||
Corydalis rhizome | AFB1 | 68.4 | ||
AFB2 | 1.71 | |||
AFG1 | 0.95 | |||
Coix seeds | AFB1 | 0.09 | ||
AFB2 | 0.05 | |||
ZEA | 211.4 | [17] | ||
South Africa | Uthuvana | FB1 | 40 | [11] |
Isica Katha | FB1 | 87 | ||
Umsila Wengwe | FB1 | 117 | ||
Sibindi | FB1 | 30 | ||
Mudhora | FB1 | 25 | ||
Matunga | FB1 | 139 | ||
Mredeni | FB1 | 21 | ||
Red carrot | FB1 | 30 | ||
Roselina | FB1 | 126 | ||
Seloka | FB1 | 67 | ||
Thepe | FB1 | 26 | ||
Saudi Arabia | Anise | AFB1, AFB2 | 38 | [18] |
Black cumin | AFB1, AFB2 | 35 | ||
Black pepper | ST | 40 | ||
Red pepper | AFB1, AFB2 | 25 | ||
Peppermint | AFB1, AFB2 | 17 | ||
Cumin | ST | 20 | ||
Marjoram | AFB1, AFB2 | 12 | ||
Cinnamon | AFs | 4.67 | [19] | |
Morocco | Pepper | AFs | 0.55 | [20] |
Cumin | AFs | 0.18 | ||
Ginger | AFs | 9.10 | ||
Red paprika | AFs | 9.68 | ||
USA | Ginger | AFs | 31 | [21] |
Ginseng products | AFs | 0.1 | ||
OTA | 10 | |||
Ginseng root | AFs | 16 | [22] | |
Kava-kava | AFB1 | 0.5 | [23] | |
Milk thistle | AFs | 2.0 | [24] | |
Spain | Sage leaves | AFs | 25.2 | [25] |
OTA | 17.3 | |||
FBs | 133.3 | |||
DON | 102.2 | |||
Citrinin | 273.2 | |||
Chamomile flower | AFs | 161 | ||
FBs | 90.0 | |||
ZEA | 12.5 | |||
DON | 191.5 | |||
Citrinin | 51.6 | |||
Valerian root | AFs | 15.8 | ||
FBs | 96.7 | |||
T2 | 13.3 | |||
DON | 64.7 | |||
Citrinin | 20.5 | |||
Senna leaves | AFs | 434.3 | ||
FBs | 86.7 | |||
DON | 35.2 | |||
Citrinin | 68.6 | |||
Rhubarb | AFs | 71.2 | ||
OTA | 13.9 | |||
ZEA | 24.4 | |||
T2 | 23.0 | |||
DON | 58.4 | |||
Citrinin | 42.9 | |||
Artichoke | AFs | 12.1 | ||
T2 | 29.8 | |||
DON | 200.2 | |||
Citrinin | 29.8 | |||
Boldus | AFs | 86.6 | ||
ZEA | 10.3 | |||
T2 | 26.7 | |||
DON | 343.5 | |||
Citrinin | 25.8 | |||
Burdock root | AFs | 10.3 | ||
ZEA | 10.9 | |||
Citrinin | 25.8 | |||
Dandelion | AFs | 21.7 | ||
OTA | 10.6 | |||
ZEA | 17.0 | |||
DON | 66.5 | |||
Citrinin | 96.0 | |||
Frangula | AFs | 64.7 | ||
ZEA | 44.1 | |||
T2 | 12.6 | |||
DON | 60.9 | |||
Citrinin | 38.4 | |||
Ginkgo | AFs | 23.3 | ||
T2 | 29.4 | |||
DON | 134 | |||
Citrinin | 354.8 | |||
Lemon verbena | AFs | 37.7 | ||
ZEA | 14.0 | |||
T2 | 28.6 | |||
DON | 143.7 | |||
Citrinin | 79.1 | |||
Olive leaves | AFs | 77.6 | ||
ZEA | 42.7 | |||
DON | 149.9 | |||
Citrinin | 14.9 | |||
Red tea | AFs | 853.4 | ||
ZEA | 11.2 | |||
T2 | 42.8 | |||
DON | 179.9 | |||
Citrinin | 22.3 | |||
Ribgrass | AFs | 16.1 | ||
T2 | 256.9 | |||
Spearmint | AFs | 29.7 | ||
DON | 91.1 | |||
Citrinin | 43.3 | |||
St Mary’s thistle | AFs | 11.5 | ||
FBs | 236.7 | |||
T2 | 35.6 | |||
Star anise | AFs | 104.2 | ||
FBs | 146.7 | |||
ZEA | 10.1 | |||
T2 | 60.5 | |||
DON | 321.2 | |||
Vervain | AFs | 104.5 | ||
T2 | 20.4 | |||
DON | 60.0 | |||
Citrinin | 31.2 | |||
White tea | AFs | 254.0 | ||
ZEA | 11.2 | |||
T2 | 42.8 | |||
DON | 259.1 | |||
Citrinin | 19.7 | |||
Red paprika | OTA | 73.8 | [26] | |
Licorice | OTA | 252.8 | [27] | |
Turkey | Chamomile | AFB1 | 38.9 | [15] |
Rose hip | AFB1 | 52.5 | ||
Dried figs | AFs | 278.04 | [28] | |
OTA | 15.31 | [29] | ||
FB1 | 3649 | [14] |
3. Regulation of Fungal Growth and Mycotoxin Production by Components from Medicinal Herbs and Spices
4. Regulation of Mammalian Toxicity of Mycotoxins by Components from Medicinal Herbs and Spices
Types of inhibition | Herbs and Spices | Effects on mycotoxicosis | References |
---|---|---|---|
fInhibition of fungal growth | Ajowain | A. flavus, A. parasiticus | [33] |
Basil | A. flavus, A. parasiticus, A. ochraceus, F. moniliforme | [40] | |
Cloves | Aspergillus, Penicillium | [35,36] | |
A. flavus, A. parasiticus | [33] | ||
Clove oil | A. flavus, A. parasiticus | [33] | |
Cinnamon | Aspergillus, Penicillium | [35,36] | |
A. flavus, A. parasiticus, A. ochraceus, F. moniliforme | [40] | ||
A. flavus, A. parasiticus | [33] | ||
Chinese cassia | Aspergillus, Penicillium | [35] | |
Coriander | A. flavus, A. parasiticus | [33] | |
Kalonji | A. flavus, A. parasiticus | [33] | |
Kalonji oil | A. flavus, A. parasiticus | [33] | |
Marigold | A. flavus, A. parasiticus, A. ochraceus, F. moniliforme | [31] | |
Neem oil | A. flavus, A. parasiticus | [33] | |
Quyssum | A. flavus, A. parasiticus, A. ochraceus, F. moniliforme | [40] | |
Spearmint | A. flavus, A. parasiticus, A. ochraceus, F. moniliforme | [40] | |
Thyme | Aspergillus, Penicillium | [35] | |
A. flavus, A. parasiticus, A. ochraceus, A. fumigatus, Fusarium spp. | [42,49] | ||
Thyme oil | A. flavus, A. parasiticus, A. ochraceus, F. moniliforme | [40] | |
Turmeric | A. flavus, A. parasiticus | [33] | |
Inhibition of mycotoxin production | Anise | Sterigmatocystin, citrinin | [18] |
Black cumin | AFB, sterigmatocystin, citrinin | ||
Black pepper | AF, sterigmatocystin | ||
Peppermint | AFB1, citrinin | ||
Cardamom | AFB1, sterigmatocystin, citrinin | ||
Clove | AF, sterigmatocystin, citrinin | ||
Cumin | AFB1, citrinin | ||
Ginger | Sterigmatocystin | ||
Marjoram | AFB1, citrinin | ||
Sweet basil leaves | AFB1 | [39] | |
Inhibition of mycotoxin actionn | Caffeic acid phenethyl ester | AFB1 | [49,59] |
Normalization of γGT, ALP, GST and NO | |||
Catechin | AFB1 | [59] | |
Attenuation of DNA adduct formation | |||
Chitosan | AFB1 | [50] | |
Normalization of AST and ALT levels | |||
Chlorogenic acid | AFB1 | [59] | |
Attenuation of DNA adduct formation | |||
Turmeric | AFB1 | [47,48] | |
Normalization of LDH and ALT | |||
Cyanidin | AFB1, OTA | [52,53,54,55] | |
Normalization of ROS, protein and DNA synthesis, and apoptosis in HepG2 and Caco-2 cells | |||
Diallyl sulfide | AFB1 | [61] | |
Reduction of DNA damage | |||
Epigallocatechin-3-gallate | Deoxynivalenol, HT-2 toxin | [73,74] | |
Suppression of inflammatory responses | |||
Eugenol | AFB1 | [59] | |
Attenuation of DNA adduct formation | |||
Fisetin | AFB1 | [59,67] | |
Prevention of carcinogenesis Attenuation of DNA adduct formation | |||
Genistein | AFB1 | [62] | |
Reduction of mutagenesis | |||
Indole-3-carbinol | AFB1 | [77] | |
Prevention of carcinogenesis in rat liver | |||
Kaempferol | AFB1 | [59] | |
Attenuation of DNA adduct formation | |||
Lycopene | AFB1, OTA ZEA | [56,57,58,75,76] | |
Protection effect on oxidative, inflammatory, endocrine and reproductive damage in mice | |||
Morin | AFB1 | [59,67] | |
Prevention of carcinogenesis Attenuation of DNA adduct formation | |||
Naringin | AFB1 | [59] | |
Attenuation of DNA adduct formation | |||
Quercetin | AFB1 | [67] | |
Prevention of carcinogenesis | |||
Robinetin | AFB1 | [67] | |
Prevention of carcinogenesis | |||
Sulforaphane | AFB1 | [63,64,65] | |
Induction of hepatic total GST activity. Attenuation of DNA adduct formation | |||
Thyme oil | AFB1 | [46,66] | |
Excretion of AFs Normalization of AST, ALP and γGT Ameliorative effect on oxidative stress and genotoxicity | |||
Vanillin | AFB1 | [59] | |
Attenuation of DNA adduct formation | |||
Gingerol | Patulin | [37] | |
Reduction of DNA damage in HepG2 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kosalec, I.; Cvek, J.; Tomic, S. Contaminants of medicinal herbs and herbal products. Arh. Hig. Rada Toksikol. 2009, 60, 485–501. [Google Scholar] [CrossRef] [PubMed]
- Posadzki, P.; Watson, L.; Ernst, E. Contamination and adulteration of herbal medicinal products (HMPs): An overview of systematic reviews. Eur. J. Clin. Pharmacol. 2013, 69, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Huang, H.; Xu, W.; Chen, D.; Yu, J.; Li, J.; Li, L. Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography-mass spectrometry. Anal. Chim. Acta 2011, 691, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Bucci, T.J.; Howard, P.C.; Tolleson, W.H.; Laborde, J.B.; Hansen, D.K. Renal effects of fumonisin mycotoxins in animals. Toxicol. Pathol. 1998, 26, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Petzinger, E.; Ziegler, K. Ochratoxin a from a toxicological perspective. J. Vet. Pharmacol. Ther. 2000, 23, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tassaneeyakul, W.; Razzazi-Fazeli, E.; Porasuphatana, S.; Bohm, J. Contamination of aflatoxins in herbal medicinal products in thailand. Mycopathologia 2004, 158, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Chourasia, H.K. Mycobiota and mycotoxins in herbal drugs of indian pharmaceutical industries in india. Mycol. Res. 1995, 99, 697–703. [Google Scholar] [CrossRef]
- Aziz, N.H.; Youssef, Y.A.; El-Fouly, M.Z.; Moussa, L.A. Contamination of some medicinal plant samples and spices by fungi and their mycotoxins. Bot. Bull. Acad. Sin. 1998, 39, 279–285. [Google Scholar]
- Han, Z.; Zheng, Y.; Luan, L.; Ren, Y.; Wu, Y. Analysis of ochratoxin A and ochratoxin B in traditional chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry using [13C20]-ochratoxin A as an internal standard. J. Chromatogr. A 2010, 1217, 4365–4374. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jin, H.; Sun, L.; Ma, S.; Lin, R. Determination of aflatoxins in medicinal herbs by high-performance liquid chromatography-tandem mass spectrometry. Phytochem. Anal. 2012, 23, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Katerere, D.R.; Stockenstrom, S.; Thembo, K.M.; Rheeder, J.P.; Shephard, G.S.; Vismer, H.F. A preliminary survey of mycological and fumonisin and aflatoxin contamination of african traditional herbal medicines sold in south africa. Hum. Exp. Toxicol. 2008, 27, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Zinedine, A.; Brera, C.; Elakhdari, S.; Catano, C.; Debegnach, F.; Angelini, S.; de Santis, B.; Faid, M.; Benlemlih, M.; Minardi, V.; et al. Natural occurrence of mycotoxins in cereals and spices commercialized in Morocco. Food Control 2006, 17, 868–874. [Google Scholar] [CrossRef]
- Boyacioglu, D.; Gonul, M. Survey of aflatoxin contamination of dried figs grown in Turkey in 1986. Food Addit. Contam. 1990, 7, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Karbancioglu-Guler, F.; Heperkan, D. Natural occurrence of fumonisin B1 in dried figs as an unexpected hazard. Food Chem. Toxicol. 2009, 47, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Arino, A.; Herrera, M.; Estopanan, G.; Juan, T. High levels of ochratoxin A in licorice and derived products. Int. J. Food Microbiol. 2007, 114, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zhang, X.; Pan, J.; Ou-Yang, Z.; Wu, J.; Yang, M. Determination of deoxynivalenol in medicinal herbs and related products by GC–ECD and confirmation by GC–MS. Chromatographia 2010, 71, 533–538. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Logrieco, A.F.; Yang, M.; Ou-Yang, Z.; Wang, X.; Guo, Q. Determination of zearalenone in traditional Chinese medicinal plants and related products by HPLC-FLD. J. Food Sci. 2011, 28, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, F.M. Spices mycobiota and mycotoxins available in saudi arabia and their abilities to inhibit growth of some toxigenic fungi. Mycobiology 2007, 35, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Al-juraifani, A.A. Natural occurrence of fungi and aflatoxins of cinnamon in the Saudi Arabia. Afr. J. Food Sci. 2011, 5, 460–465. [Google Scholar]
- Zinedine, A.; Mañes, J. Occurrence and legislation of mycotoxins in food and feed from Morocco. Food Control 2009, 20, 334–344. [Google Scholar] [CrossRef]
- Trucksess, M.W.; Weaver, C.M.; Oles, C.J.; Rump, L.V.; White, K.D.; Betz, J.M.; Rader, J.I. Use of multitoxin immunoaffinity columns for determination of aflatoxins and ochratoxin A in ginseng and ginger. J. AOAC Int. 2007, 90, 1042–1049. [Google Scholar] [PubMed]
- D’Ovidio, K.; Trucksess, M.; Weaver, C.; Horn, E.; McIntosh, M.; Bean, G. Aflatoxins in ginseng roots. Food Addit. Contam. 2006, 23, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Trucksess, M.W. Determination of aflatoxins in botanical roots by a modification of AOAC Official Method 991.31: Single-laboratory validation. J. AOAC Int. 2010, 93, 184–189. [Google Scholar] [PubMed]
- Tournas, V.H.; Sapp, C.; Trucksess, M.W. Occurrence of aflatoxins in milk thistle herbal supplements. Food Addit. Contam. 2012, 29, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Marín, S.; Sanchis, V.; Ramos, A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- Hernandez Hierro, J.M.; Garcia-Villanova, R.J.; Rodriguez Torrero, P.; Toruno Fonseca, I.M. Retail sale in Spain: Occurrence and evaluation of a simultaneous analytical method. J. Agric. Food Chem. 2008, 56, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Tosun, H.; Arslan, R. Determination of aflatoxin B1 levels in organic spices and herbs. Scientific World J. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Bircan, C.; Koç, M. Aflatoxins in dried figs in Turkey: A comparative survey on the exported and locally consumed dried figs for assessment of exposure. J. Agric. Sci. 2012, 14, 1265–1274. [Google Scholar]
- Karbancioglu-Guler, F.; Heperkan, D. Natural occurrence of ochratoxin A in dried figs. Anal. Chim. Acta 2008, 617, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; An, T.J.; Kim, J.; Park, S.H.; Kim, D.; Ahn, Y.S.; Moon, Y. Postharvest strategies for deoxynivalenol and zearalenone reduction in stored adlay (Coix lachryma-jobi L.) grains. J. Food Prot. 2014, 77, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Juglal, S.; Govinden, R.; Odhav, B. Spice oils for the control of co-occurring mycotoxin-producing fungi. J. Food Prot. 2002, 65, 683–687. [Google Scholar] [PubMed]
- Paranagama, P.A.; Abeysekera, K.H.; Abeywickrama, K.; Nugaliyadde, L. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from stored rice. Lett. Appl. Microbiol. 2003, 37, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Shafqatullah; Ali, J.; Zia-ur-Rehman. Inhibition of aflatoxin producing fungus growth using chemical, herbal compounds/spices and plants. Pure Appl. Biol. 2012, 1, 8–13. [Google Scholar]
- Azzouz, M.A. The Inhibitory Effects of Herbs, Spices and Other Plant Materials on Mycotoxigenic Moulds. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 1 January 1981. [Google Scholar]
- Mostafa, E.M. Mycoflora and Mycotoxins of Some Spices. Master Thesis, Botany Dept., Faculty of Science, Assiut University, Assiut, Egypt, 10 June 1990. [Google Scholar]
- Hitokoto, H.; Morozumi, S.; Wauke, T.; Sakai, S.; Kurata, H. Inhibitory effects of spices on growth and toxin production of toxigenic fungi. Appl. Environ. Microbiol. 1980, 39, 818–822. [Google Scholar] [PubMed]
- Mabrouk, S.S.; El-Shayeb, N.M. Inhibition of aflatoxin formation by some spices. Z. Lebensm. Unters. Forsch. 1980, 171, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Madhyastha, M.S.; Bhat, R.V. Aspergillus parasiticus growth and aflatoxin production on black and white pepper and the inhibitory action of their chemical constituents. Appl. Environ. Microbiol. 1984, 48, 376–379. [Google Scholar] [PubMed]
- Atanda, O.O.; Akpan, I.; Oluwafemi, F. The potential of some spice essential oils in the control of A. Parasiticus CFR 223 and aflatoxin production. Food Control 2007, 18, 601–607. [Google Scholar] [CrossRef]
- Soliman, K.M.; Badeaa, R.I. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol. 2002, 40, 1669–1675. [Google Scholar] [CrossRef]
- Montes-Belmont, R.; Carvajal, M. Control of aspergillus flavus in maize with plant essential oils and their components. J. Food Prot. 1998, 61, 616–619. [Google Scholar] [PubMed]
- Basilico, M.Z.; Basilico, J.C. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production. Lett. Appl. Microbiol. 1999, 29, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Bullerman, L.B. Inhibition of aflatoxin production by cinnamon. J. Food Sci. 1974, 39, 1163–1165. [Google Scholar] [CrossRef]
- Morozumi, S. Isolation, purification, and antibiotic activity of o-methoxycinnamaldehyde from cinnamon. Appl. Environ. Microbiol. 1978, 36, 577–583. [Google Scholar] [PubMed]
- Dwividi, S.A.; Dubey, B.L. Potentionial use of essential oil of the trachyepermum ammy against seed borne fungi of guar (Cyamopsis tetragonoloba L.). Mycopathologia 1993, 121, 101–104. [Google Scholar] [CrossRef]
- Abdel-Fattah, S.M.; Abosrea, Y.H.; Shehata, F.E.; Flourage, M.R.; Helal, A.D. The efficacy of thyme oil as antitoxicant of aflatoxin(s) toxicity in sheep. J. Am. Sci. 2010, 6, 948–960. [Google Scholar]
- Nayak, S.; Sashidhar, R.B. Metabolic intervention of aflatoxin B1 toxicity by curcumin. J. Ethnopharmacol. 2010, 127, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Gowda, N.K.; Ledoux, D.R.; Rottinghaus, G.E.; Bermudez, A.J.; Chen, Y.C. Efficacy of turmeric (Curcuma longa), containing a known level of curcumin, and a hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of aflatoxin in broiler chicks. Poult. Sci. 2008, 87, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Akcam, M.; Artan, R.; Yilmaz, A.; Ozdem, S.; Gelen, T.; Naziroglu, M. Caffeic acid phenethyl ester modulates aflatoxin B1-induced hepatotoxicity in rats. Cell Biochem. Funct. 2013, 31, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahhaba, M.A.; Aljawish, A.; El-Nekeety, A.A.; Abdel-Aiezm, S.H.; Abdel-Kader, H.A.M.; Rihn, B.H.; Joubert, O. Chitosan nanoparticles and quercetin modulate geneexpression and prevent the genotoxicity of aflatoxinB1in rat liver. Toxicol. Rep. 2015, 2, 737–747. [Google Scholar] [CrossRef]
- Subhapradha, N.; Saravanan, R.; Ramasamy, P.; Srinivasan, A.; Shanmugam, V.; Shanmugam, A. Hepatoprotective effect of β-Chitosan from Gladius of Sepioteuthis lessoniana against carbontetrachloride-induced oxidative stress in Wistar rats. Appl. Biochem. Biotechnol. 2014, 172, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Di Giacomo, C.; Acquaviva, R.; Bognanno, M.; Grilli, E.; D’Orazio, N.; Galvano, F. Dimethylarginine dimethylaminohydrolase/nitric oxide synthase pathway in liver and kidney: Protective effect of cyanidin 3-O-β-d-glucoside on ochratoxin-A toxicity. Toxins 2012, 4, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Di Giacomo, C.; Acquaviva, R.; Piva, A.; Sorrenti, V.; Vanella, L.; Piva, G.; Casadei, G.; la Fauci, L.; Ritieni, A.; Bognanno, M.; et al. Protective effect of cyanidin 3-O-β-d-glucoside on ochratoxin A-mediated damage in the rat. Br. J. Nutr. 2007, 98, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; La Fauci, L.; Acquaviva, R.; Campisi, A.; Raciti, G.; Scifo, C.; Renis, M.; Galvano, G.; Vanella, A.; Galvano, F. Ochratoxin A-induced DNA damage in human fibroblast: Protective effect of cyanidin 3-O-β-d-glucoside. J. Nutr. Biochem. 2005, 16, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.C.; Galvano, F.; Bonsi, L.; Speroni, E.; Costa, S.; Renzulli, C.; Cervellati, R. Cyanidin-3-O-β-glucopyranoside, a natural free-radical scavenger against aflatoxin B1- and ochratoxin A-induced cell damage in a human hepatoma cell line (Hep G2) and a human colonic adenocarcinoma cell line (CaCo-2). Br. J. Nutr. 2005, 94, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Palabiyik, S.S.; Erkekoglu, P.; Sahin, G.; Basaran, N.; Giray, B.K. The carotenoid lycopene protects rats against DNA damage induced by ochratoxin A. Toxicon 2013, 73, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Palabiyik, S.S.; Erkekoglu, P.; Zeybek, N.D.; Kizilgun, M.; Baydar, D.E.; Sahin, G.; Giray, B.K. Protective effect of lycopene against ochratoxin A induced renal oxidative stress and apoptosis in rats. Exp. Toxicol. Pathol. 2013, 65, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.; Odhav, B.; Bhoola, K. Aflatoxin B1-induced toxicity in HepG2 cells inhibited by carotenoids: Morphology, apoptosis and DNA damage. Biol. Chem. 2006, 387, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Aboobaker, V.S.; Balgi, A.D.; Bhattacharya, R.K. In vivo effect of dietary factors on the molecular action of aflatoxin B1: Role of non-nutrient phenolic compounds on the catalytic activity of liver fractions. In Vivo 1994, 8, 1095–1098. [Google Scholar] [PubMed]
- Singh, A.; Bhat, T.K.; Sharma, O.P. Clinical biochemistry of hepatotoxicity. J. Clin. Toxicol. 2011. [Google Scholar] [CrossRef]
- Sheen, L.Y.; Wu, C.C.; Lii, C.K.; Tsai, S.J. Effect of diallyl sulfide and diallyl disulfide, the active principles of garlic, on the aflatoxin B1-induced DNA damage in primary rat hepatocytes. Toxicol. Lett. 2001, 122, 45–52. [Google Scholar] [CrossRef]
- Polivkova, Z.; Langova, M.; Smerak, P.; Bartova, J.; Barta, I. Antimutagenic effect of genistein. Czech J. Food Sci. 2006, 24, 119–126. [Google Scholar]
- Gross-Steinmeyer, K.; Stapleton, P.L.; Tracy, J.H.; Bammler, T.K.; Strom, S.C.; Eaton, D.L. Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: Role of GSTM1 genotype and CYP3A4 gene expression. Toxicol. Sci. 2010, 116, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Fiala, J.L.; Egner, P.A.; Wiriyachan, N.; Ruchirawat, M.; Kensler, K.H.; Wogan, G.N.; Groopman, J.D.; Croy, R.G.; Essigmann, J.M. Sulforaphane-mediated reduction of aflatoxin B1-N7-guanine in rat liver DNA: Impacts of strain and sex. Toxicol. Sci. 2011, 121, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Chen, X.Y.; Zhu, R.Z.; Choi, B.M.; Kim, B.R. Sulforaphane induces glutathione S-transferase isozymes which detoxify aflatoxin B1-8,9-epoxide in AML 12 cells. BioFactors 2010, 36, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziem, S.H.; Hassan, A.M.; El-Denshary, E.S.; Hamzawy, M.A.; Mannaa, F.A.; Abdel-Wahhab, M.A. Ameliorative effects of thyme and calendula extracts alone or in combination against aflatoxins-induced oxidative stress and genotoxicity in rat liver. Cytotechnology 2014, 66, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.K.; Firozi, P.F. Effect of plant flavonoids on microsome catalyzed reactions of aflatoxin B1 leading to activation and DNA adduct formation. Cancer Lett. 1988, 39, 85–91. [Google Scholar] [CrossRef]
- Raghubeer, S.; Naqiah, S.; Phulukdaree, A.; Chuturgoon, A. The phytoalexin resveratrol ameliorates ochratoxin A toxicity in human embryonic kidney (HEK293) cells. J. Cell Biochem. 2015, in press. [Google Scholar]
- Sridhar, M.; Suganthi, R.U.; Thammiaha, V. Effect of dietary resveratrol in ameliorating aflatoxin B1-induced changes in broiler birds. J. Anim. Physiol. Anim. Nutr. 2014. [Google Scholar] [CrossRef] [PubMed]
- El-Agamy, D.S. Comparative effects of curcumin and resveratrol on aflatoxin B1-induced liver injury in rats. Arch. Toxicol. 2010, 84, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Cano-Sancho, G.; Gonzalez-Arias, C.A.; Ramos, A.J.; Sanchis, V.; Fernandez-Cruz, M.L. Cytotoxicity of the mycotoxins deoxynivalenol and ochratoxin A on CaCo-2 cell line in presence of resveratrol. Toxicol. Vitro 2015, 29, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhong, L.; Jiang, L.; Geng, C.; Cao, J.; Sun, X.; Liu, X.; Chen, M.; Ma, Y. 6-gingerol prevents patulin-induced genotoxicity in HepG2 cells. Phytother. Res. 2011, 25, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Kalaiselvi, P.; Rajashree, K.; Bharathi Priya, L.; Padma, V.V. Cytoprotective effect of epigallocatechin-3-gallate against deoxynivalenol-induced toxicity through anti-oxidative and anti-inflammatory mechanisms in HT-29 cells. Food Chem. Toxicol. 2013, 56, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.; Kinoshita, M.; Kamata, Y.; Minai, Y.; Sugita-Konishi, Y. (−)-Epigallocatechin gallate suppresses the cytotoxicity induced by trichothecene mycotoxins in mouse cultural macrophages. Mycotoxin Res. 2011, 27, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Boeira, S.P.; Funck, V.R.; Borges Filho, C.; del Fabbro, L.; de Gomes, M.G.; Donato, F.; Royes, L.F.; Oliveira, M.S.; Jesse, C.R.; Furian, A.F. Lycopene protects against acute zearalenone-induced oxidative, endocrine, inflammatory and reproductive damages in male mice. Chem. Biol. Interact. 2015, 230, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Boeira, S.P.; Filho, C.B.; Del’Fabbro, L.; Roman, S.S.; Royes, L.F.; Fighera, M.R.; Jesse, C.R.; Oliveira, M.S.; Furian, A.F. Lycopene treatment prevents hematological, reproductive and histopathological damage induced by acute zearalenone administration in male swiss mice. Exp. Toxicol. Pathol. 2014, 66, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Manson, M.M.; Hudson, E.A.; Ball, H.W.; Barrett, M.C.; Clark, H.L.; Judah, D.J.; Verschoyle, R.D.; Neal, G.E. Chemoprevention of aflatoxin B1-induced carcinogenesis by indole-3-carbinol in rat liver—Predicting the outcome using early biomarkers. Carcinogenesis 1998, 19, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, K.H.; An, T.J.; Oh, S.-K.; Moon, Y. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices. Toxins 2015, 7, 4111-4130. https://doi.org/10.3390/toxins7104111
Do KH, An TJ, Oh S-K, Moon Y. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices. Toxins. 2015; 7(10):4111-4130. https://doi.org/10.3390/toxins7104111
Chicago/Turabian StyleDo, Kee Hun, Tae Jin An, Sang-Keun Oh, and Yuseok Moon. 2015. "Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices" Toxins 7, no. 10: 4111-4130. https://doi.org/10.3390/toxins7104111
APA StyleDo, K. H., An, T. J., Oh, S. -K., & Moon, Y. (2015). Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices. Toxins, 7(10), 4111-4130. https://doi.org/10.3390/toxins7104111