Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Venom on Mammalian Intracellular Signaling
Pathway reporters | FR TNFα-treated versus untreated | FR Venom-treated versus untreated | FR TNFα- and venom-treated versus TNFα-treated |
---|---|---|---|
AARE reporter | 1.601 | 4.081 | 4.555 |
AR reporter | −2.613 | (1.291) | 7.814 |
C/EBP reporter | (1.274) | 1.925 | 2.507 |
CRE reporter | 1.779 | (1.457) | 2.020 |
E2F reporter | 1.001 | (1.012) | 3.560 |
p53 reporter | (2.569) | (3.867) | 4.177 |
EGR1 reporter | (−0.911) | (1.548) | 2.228 |
HSR reporter | (−0.901) | (1.311) | 3.999 |
GLI reporter | −3.073 | (−0.240) | 7.556 |
IRF1 reporter | −1.188 | (1.287) | 2.568 |
LXR reporter | (−0.342) | 2.201 | 1.622 |
MEF2 reporter | −1.192 | 2.023 | 2.849 |
NF-κB reporter | 100.640 | (−1.272) | (1.145) |
Oct4 reporter | −2.336 | (−1.436) | 3.007 |
PR reporter | 10.676 | (−0.126) | (1.718) |
RARE reporter | (−0.702) | (−0.048) | 2.3887 |
RXR reporter | (−0.370) | 2.539 | (1.379) |
2.2. Effect of Venom on NF-κB Signaling Targets
NF-κB signaling target genes | Abb | FR LPS-treated versus untreated | FR venom-treated versus untreated | FR LPS- and venom-treated versus LPS-treated | ||||
---|---|---|---|---|---|---|---|---|
Cytokines/chemokines and their modulators | ||||||||
Chemokine (C–C motif) ligand 22 | Ccl22 | 917.635 | (1.032) | (−1.532) | ||||
Chemokine (C–C motif) ligand 5 | Ccl5 | 1254.881 | (2.107) | (1.750) | ||||
Chemokine (C–C motif) receptor 5 | Ccr5 | 1.625 | (1.875) | (2.346) | ||||
Chemokine (C–X–C motif) ligand 10 | Cxcl10 | 483.835 | (2.254) | (−1.025) | ||||
Chemokine (C–X–C motif) ligand 3 | Cxcl3 | 111.806 | (3.484) | (34.595) | ||||
Interleukin 15 | Il15 | (3.325) | (2.527) | 13.408 | ||||
Interleukin 1α | Il1a | 1273.082 | (2.414) | (−1.242) | ||||
Interleukin 1β | Il1b | 15,647.327 | 5.885 | −4.392 | ||||
Interleukin 1 receptor antagonist | Il1rn | 26.052 | (3.074) | (−1.145) | ||||
Interleukin 6 | Il6 | 525.452 | (2.419) | −1.472 | ||||
Lymphotoxin A | Lta | 25.056 | (3.037) | (1.094) | ||||
Tumor necrosis factor | Tnf | 36.399 | (−1.244) | −1.193 | ||||
Immunoreceptors | ||||||||
CD40 antigen | Cd40 | 68.505 | 9.933 | (4.098) | ||||
CD80 antigen | Cd80 | 3.113 | (2.621) | (2.723) | ||||
CD83 antigen | Cd83 | (3.545) | (2.949) | 29.395 | ||||
Tumor necrosis factor receptor superfamily, member 1b | Tnfrsf1b | 22.445 | (1.469) | (1.708) | ||||
Proteins involved in antigen presentation | ||||||||
Complement component 3 | C3 | 3.651 | (2.035) | (1.175) | ||||
Complement factor B | Cfb | 14.677 | −(1.007) | −4.199 | ||||
Cell adhesion molecules | ||||||||
Intercellular adhesion molecule 1 | Icam1 | (1.405) | (1.212) | 17.631 | ||||
Vascular cell adhesion molecule 1 | Vcam1 | (−1.148) | (1.387) | 3.481 | ||||
Acute phase proteins | ||||||||
Coagulation factor III | F3 | 41.407 | (4.466) | (−1.979) | ||||
Stress response genes | ||||||||
NAD(P)H dehydrogenase, quinone 1 | Nqo1 | (−1.247) | 24.637 | (3.014) | ||||
Prostaglandin-endoperoxide synthase 2 | Ptgs2 | 698.790 | (1.715) | (−1.605) | ||||
Superoxide dismutase 2, mitochondrial | Sod2 | 4.919 | −1.052 | (1.301) | ||||
Regulators of apoptosis | ||||||||
B-cell leukemia/lymphoma 2 related protein A1a | Bcl2a1a | 33.896 | 5.027 | (3.713) | ||||
Bcl2-like 1 | Bcl2l1 | 2.677 | (1.255) | (1.275) | ||||
Baculoviral IAP repeat-containing 2 | Birc2 | (−1.428) | (1.513) | 6.288 | ||||
Baculoviral IAP repeat-containing 3 | Birc3 | 1.874 | (1.558) | 3.599 | ||||
Fas (TNF receptor superfamily member 6) | Fas | 11.621 | 3.261 | 6.857 | ||||
Tnf receptor-associated factor 2 | Traf2 | (−1.056) | 1.983 | 5.107 | ||||
Growth factors, ligands and their modulators | ||||||||
Colony stimulating factor 1 (macrophage) | Csf1 | 35.675 | 55.854 | 117.792 | ||||
Colony stimulating factor 2 (granulocyte-macrophage) | Csf2 | 530 | (1.548) | (−1.436) | ||||
Colony stimulating factor 3 (granulocyte) | Csf3 | 15,821.676 | 5.486 | −31.724 | ||||
Platelet derived growth factor, B polypeptide | Pdgfb | 3.395 | (1.479) | (1.092) | ||||
Transcription factors and regulators | ||||||||
Interferon regulatory factor 1 | Irf1 | 2.945 | (2.039) | 13.953 | ||||
Microphthalmia-associated transcription factor | Mitf | (−1.549) | (1.434) | 7.247 | ||||
Myelocytomatosis oncogene | Myc | 25.814 | 17.898 | (8.083) | ||||
Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, p105 | Nfkb1 | 4.526 | (1.599) | 3.399 | ||||
Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2, p49/p100 | Nfkb2 | (1.368) | (1.001) | 10.255 | ||||
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha | Nfkbia | 7.963 | (1.102) | (1.508) | ||||
Reticuloendotheliosis oncogene | Rel | 2.664 | (1.121) | 3.864 | ||||
Avian reticuloendotheliosis viral (v-rel) oncogene related B | Relb | (1.334) | 3.591 | 8.675 | ||||
Signal transducer and activator of transcription 1 | Stat1 | 2.855 | −1.257 | (1.111) | ||||
Signal transducer and activator of transcription 3 | Stat3 | 1.517 | −1.104 | −1.444 | ||||
Miscellaneous | ||||||||
Cyclin D1 | Ccnd1 | −5.051 | −2.667 | −7.439 | ||||
Growth arrest and DNA-damage-inducible 45 beta | Gadd45b | 8.330 | (2.325) | 10.985 | ||||
Matrix metallopeptidase 9 | Mmp9 | 17.819 | (1.635) | −5.805 |
NF-κB signaling target genes | Cd83 | Csf1 | IL15 | Irf1 | Icam1 | Il1b | Csf3 | Mmp9 | Ccnd1 |
---|---|---|---|---|---|---|---|---|---|
TF binding site | |||||||||
NF-Kap | x | x | x | x | x | x | x | x | x |
C/EBP | x | x | x | x | x | x | x | x | - |
C/EBPa | x | x | x | - | x | - | x | x | - |
AML-1a | x | x | x | x | x | x | x | x | x |
CdxA | x | x | x | x | x | x | x | x | x |
CRE-BP | x | x | x | x | x | x | - | - | - |
deltaE | x | x | x | x | x | x | x | x | x |
GATA-1 | x | x | x | x | x | x | x | x | x |
GATA-2 | x | x | x | x | x | x | x | x | x |
GATA-3 | x | x | x | x | x | - | x | x | x |
GATA-X | x | x | x | x | x | x | x | - | x |
HSF2 | x | x | x | x | x | x | - | x | - |
MZF1 | x | x | x | x | x | x | x | x | x |
Nkx-2. | x | x | x | x | x | x | x | x | x |
Oct-1 | x | x | x | x | x | x | x | x | - |
SRY | x | x | x | x | x | x | x | x | x |
TATA | x | x | x | x | x | x | - | x | x |
Fold regulation | |||||||||
venom- and LPS- vs. LPS-treated | 29.4 | 117.8 | 13.4 | 14.0 | 17.6 | −4.4 | −31.7 | −5.8 | −7.4 |
venom-treated vs. untreated | 3.0 | 55.9 | 2.5 | 2.0 | 1.2 | 5.9 | 5.5 | 1.6 | −2.7 |
Possible drug targets of venom | Abb | FR venom versus untreated | FR venom- and LPS- treated versus LPS-treated | FR LPS-treated versus untreated | Potential targeted diseases | Reference |
---|---|---|---|---|---|---|
NAD(P)H dehydrogenase, quinone 1 | Nqo1 | 24.64 | (3.014) | (−1.247) | acute leukemia | [52] |
Cyclin D1 | Ccnd1 | −2.67 | −7.44 | −5.05 | breast cancer | [53] |
Interferon regulatory factor 1 | Irf1 | (2.039) | 13.95 | 2.95 | breast cancer | [51] |
Matrix metallopeptidase 9 | Mmp9 | (1.635) | −5.80 | 17.82 | cancer | [54] |
Colony stimulating factor 3 (granulocyte) | Csf3 | 5.49 | −31.72 | 15,821.68 | inflammatory arthritis | [49] |
Interleukin 1 beta | Il1b | 5.88 | −4.39 | 15,647.33 | autoinflammatory diseases | [55] |
Complement factor B | Cfb | (−1.007) | −4.20 | 14.68 | complement mediated inflammatory diseases | [56] |
3. Experimental Section
3.1. Isolation of Crude Wasp Venom
3.2. Cell Culture and Treatments
3.3. Reporter Array Analysis
3.4. Total RNA Extraction and Reverse Transcription
3.5. Real-Time PCR-Based Array Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Graaf, D.C.; Aerts, M.; Brunain, M.; Desjardins, C.A.; Jacobs, F.J.; Werren, J.H.; Devreese, B. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol. Biol. 2010, 19, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.L.; Zhao, H.W.; Wang, H.J.; Bian, J.M.; Zheng, R.Q. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon 2010, 56, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Paterson, I.; Anderson, E.A. The renaissance of natural products as drug candidates. Science 2005, 310, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.A.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef] [PubMed]
- Vyas, V.K.; Brahmbhatt, K.; Bhatt, H.; Parmar, U.; Patidar, R. Therapeutic potential of snake venom in cancer therapy: Current perspectives. Asian Pac. J. Trop. Biomed. 2013, 3, 156–162. [Google Scholar] [CrossRef]
- Son, D.J.; Lee, J.W.; Lee, Y.H.; Song, H.S.; Lee, C.K.; Hong, J.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 2007, 115, 246–270. [Google Scholar] [CrossRef] [PubMed]
- Danneels, E.L.; Gerlo, S.; Heyninck, K.; van Craenenbroeck, C.K.; de Bosscher, B.K.; Haegeman, G.; de Graaf, D.C. How the venom from the ectoparasitoid wasp Nasonia vitripennis exhibits anti-inflammatory properties on mammalian cell lines. PLoS ONE 2014, 9, e96825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.M.; Schmidt, O.; Asgari, S. A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev. Comp. Immunol. 2006, 30, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, N.T.; Goecks, J.; Kacsoh, B.Z.; Mobley, J.A.; Bowersock, G.J.; Taylor, J.; Schlenke, T.A. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc. Natl. Acad. Sci. USA 2013, 110, 9427–9432. [Google Scholar] [CrossRef] [PubMed]
- Cherniack, E.P. Drugs from bugs, Part 1: The “new” alternative medicine for the 21st century? Altern. Med. Ref. 2010, 15, 124–135. [Google Scholar]
- Vallabhapurapu, S.; Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 2009, 27, 693–733. [Google Scholar] [CrossRef] [PubMed]
- D’Acquisto, F.; May, M.J.; Ghosh, S. Inhibition of nuclear factor κB (NF-B): An emerging theme in anti-inflammatory therapies. Mol. Interv. 2002, 2, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, C.; Celeghini, C.; Monasta, L.; Zauli, G. NF-κB pathways in hematological malignancies. Cell. Mol. Life Sci. 2014, 71, 2083–2102. [Google Scholar] [CrossRef] [PubMed]
- Pahl, H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999, 18, 6853–6866. [Google Scholar] [CrossRef] [PubMed]
- NF-κB Transcription Factors. Available online: http://www.bu.edu/nf-kb/gene-resources/target-genes/ (accessed on 1 June 2015).
- Wu, Z.; Miyamoto, S. Many faces of NF-κB signaling induced by genotoxic stress. J. Mol. Med. 2007, 85, 1187–1202. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Li, Y.; Zhang, L.; Xia, N.; Liu, Q.; Sun, H.; Guo, H. Augmenter of liver regeneration attenuates inflammation of renal ischemia/reperfusion injury throuth the NF-κB pathway in rats. Int. Urol. Nephrol. 2015, 47, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Maraslioglu, M.; Weber, R.; Korff, S.; Blattner, C.; Nauck, C.; Henrich, D.; Jobin, C.; Marzi, I.; Lehnert, M. Activation of NF-κB after chronic ethanol intake and haemorrhagic shock/resuscitation in mice. Br. J. Pharmacol. 2013, 170, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Halle, M.; Hall, P.; Tornvall, P. Cardiovascular disease associated with radiotherapy: Activation of nuclear factor kappa-B. J. Intern. Med. 2011, 269, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Samuel, T.; Fadlalla, K.; Gales, D.N.; Putcha, B.D.K.; Manne, U. Variable NF-κB pathway responses in colon cancer cells treated with chemotherapeutic drugs. BMC Cancer 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Kaltschmidt, B.; Kaltschmidt, C.; Hofmann, T.G.; Hehner, S.P.; Droge, W.; Schmitz, M.L. The pro- or anti-apoptotic function of NF-kappa B is determined by the nature of the apoptotic stimulus. Eur. J. Biochem. 2000, 267, 3828–3835. [Google Scholar] [CrossRef] [PubMed]
- Bednarski, B.K.; Baldwin, A.S.; Kim, H.J. Addressing reported pro-apoptotic functions of NF-κB: Targeted inhibition of canonical NF-κB enhances the apoptotic effects of doxorubicin. PLoS ONE 2009, 4, e6992. [Google Scholar] [CrossRef] [PubMed]
- Kilberg, M.S.; Pan, Y.X.; Chen, H.; Leung-Pineda, V. Nutritional control of gene expression: How mammalian cells respond to amino acid limitation. Annu. Rev. Nutr. 2005, 25, 59–85. [Google Scholar] [CrossRef] [PubMed]
- Chaveroux, C.; Jousse, C.; Cherasse, Y.; Maurin, A.C.; Parry, L.; Carraro, V.; Derijard, B.; Bruhat, A.; Fafournoux, P. Identification of a novel amino acid response pathway triggering ATF2 phosphorylation in mammals. Mol. Cell. Biol. 2009, 29, 6515–6526. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Lin, Y.; Huang, Q.; Shi, J.; Qiu, L.; Kang, M.; Chen, Y.; Fang, C.; Ye, T.; Dong, S.; et al. Di(2-ethylhexyl) phthalate-induced apoptosis in rat INS-1 cells is dependent on activation of endoplasmic reticulum stress and suppression of antioxidant protection. J. Cell. Mol. Med. 2015, 19, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Mrinalini; Siebert, A.; Wright, J.; Martinson, E.; Wheeler, D.; Werren, J. Parasitoid venom induces metabolic cascades in fly hosts. Metabolomics 2015, 11, 350–366. [Google Scholar] [CrossRef]
- Ronci, M.; Catanzaro, G.; Pieroni, L.; Po, A.; Besherat, Z.M.; Greco, V.; Mortera, S.L.; Screpanti, I.; Ferretti, E.; Urbani, A.; et al. Proteomic analysis of human sonic hedgehog (SHH) medulloblastoma stem-like cells. Mol. BioSyst. 2015. [Google Scholar] [CrossRef] [PubMed]
- Danneels, E.L.; Formesyn, E.M.; Hahn, D.A.; Denlinger, D.L.; Cardoen, D.; Wenseleers, T.; Schoofs, L.; de Graaf, D.C. Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Insect Biochem. Mol. Biol. 2013, 43, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Danneels, E.L.; Rivers, D.B.; de Graaf, D.C. Venom proteins of the parasitoid wasp Nasonia vitripennis: Recent discovery of an untapped pharmacopee. Toxins 2010, 2, 494–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, J.; Jenner, R.G.; Murray, H.L.; Gerber, G.K.; Gifford, D.K.; Young, R.A. Coordinated binding of NF-kappaB family members in the response of human cells to lipopolysaccharide. Proc. Natl. Acad. Sci. USA 2006, 103, 5899–5904. [Google Scholar] [CrossRef] [PubMed]
- Dinkova-Kostova, A.T.; Talalay, P. Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic. Biol. Med. 2000, 29, 231–240. [Google Scholar] [CrossRef]
- Falabella, P.; Riviello, L.; Caccialupi, P.; Rossodivita, T.; Teresa, V.M.; de Luisa, S.M.; Tranfaglia, A.; Varricchio, P.; Gigliotti, S.; Graziani, F.; et al. A gamma-glutamyl transpeptidase of Aphidius ervi venom induces apoptosis in the ovaries of host aphids. Insect Biochem. Mol. Biol. 2007, 37, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Katkar, G.D.; Sundaram, M.S.; Hemshekhar, M.; Sharma, D.R.; Santhosh, M.S.; Sunitha, K.; Rangappa, K.S.; Girish, K.S.; Kemparaju, K. Melatonin alleviates Echis carinatus venom-induced toxicities by modulating inflammatory mediators and oxidative stress. J. Pineal Res. 2014, 56, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Naito, M.; Takeya, M. Development and heterogeneity of macrophages and their related cells through their differentiation pathways. Pathol. Int. 1996, 46, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu. Rev. Immunol. 2000, 18, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Harhaj, E.W.; Sun, S.C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 2001, 7, 401–409. [Google Scholar] [CrossRef]
- Mordmuller, B.; Krappmann, D.; Esen, M.; Wegener, E.; Scheidereit, C. Lymphotoxin and lipopolysaccharide induce NF-kappaB-p52 generation by a co-translational mechanism. EMBO Rep. 2003, 4, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Bonizzi, G.; Bebien, M.; Otero, D.C.; Johnson-Vroom, K.E.; Cao, Y.X.; Vu, D.; Jegga, A.G.; Aronow, B.J.; Ghosh, G.; Rickert, R.C.; et al. Activation of IKK alpha target genes depends on recognition of specific kappa B binding sites by RelB:p52 dimers. EMBO J. 2004, 23, 4202–4210. [Google Scholar] [CrossRef] [PubMed]
- Formesyn, E.M.; Heyninck, K.; de Graaf, D.C. The role of serine- and metalloproteases in Nasonia vitripennis venom in cell death related processes towards a Spodoptera frugiperda Sf21 cell line. J. Insect Physiol. 2013, 59, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.C.; Hahne, M.; Schroeter, M.; Frei, K.; Fontana, A.; Villunger, A.; Newton, K.; Tschopp, J.; Strasser, A. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc. Natl. Acad. Sci. USA 1999, 96, 14871–14876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, X.; Yu, B.; Gu, Y.; Yuan, Y.; Yao, D.; Ding, F.; Gu, X. Gene network revealed involvements of Birc2, Birc3 and Tnfrsf1a in anti-apoptosis of injured peripheral nerves. PLoS ONE 2012, 7, e43436. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ryan, J.; Lewis, J.; Wani, M.A.; Lingrel, J.B.; Liu, Z.G. TRAF2 exerts its antiapoptotic effect by regulating the expression of Kruppel-like factor LKLF. Mol. Cell. Biol. 2003, 23, 5849–5856. [Google Scholar] [CrossRef] [PubMed]
- Saccani, S.; Pantano, S.; Natoli, G. Two waves of nuclear factor kappa B recruitment to target promoters. J. Exp. Med. 2001, 193, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Dooher, J.E.; Paz-Priel, I.; Houng, S.; Baldwin, A.S., Jr.; Friedman, A.D. C/EBPalpha, C/EBPalpha oncoproteins, or C/EBPbeta preferentially bind NF-κB p50 compared with p65, focusing therapeutic targeting on the C/EBP:p50 interaction. Mol. Cancer Res. 2011, 9, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Cannell, I.G.; Kong, Y.W.; Bushell, M. How do microRNAs regulate gene expression? Biochem. Soc. Trans. 2008, 36, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, S245–S254. [Google Scholar] [CrossRef] [PubMed]
- Dziadziuszko, R.; Jassem, J. Epidermal growth factor receptor (EGFR) inhibitors and derived treatments. Ann. Oncol. 2012, 23, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, K.E.; Campbell, I.K.; Metcalf, D.; O’Donnell, K.; van Nieuwenhuijze, A.; Roberts, A.W.; Wicks, I.P. Critical role for granulocyte colony-stimulating factor in inflammatory arthritis. Proc. Natl. Acad. Sci. USA 2004, 101, 11398–11403. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.W. Interferon-gamma and host antimicrobial defense—Current and future clinical-applications. Am. J. Med. 1994, 97, 459–467. [Google Scholar] [CrossRef]
- Bouker, K.B.; Skaar, T.C.; Riggins, R.B.; Harburger, D.S.; Fernandez, D.R.; Zwart, A.; Wang, A.; Clarke, R. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis 2005, 26, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Wang, Y.X.; Kane, E.; Rollinson, S.; Wiemels, J.L.; Roman, E.; Roddam, P.; Cartwright, R.; Morgan, G. Low NAD(P)H: Quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood 2001, 97, 1422–1426. [Google Scholar] [CrossRef] [PubMed]
- Grillo, M.; Bott, M.J.; Khandke, N.; McGinnis, J.P.; Miranda, M.; Meyyappan, M.; Rosfjord, E.C.; Rabindran, S.K. Validation of cyclin D1/CDK4 as an anticancer drug target in MCF-7 breast cancer cells: Effect of regulated overexpression of cyclin D1 and siRNA-mediated inhibition of endogenous cyclin D1 and CDK4 expression. Breast Cancer Res. Treat. 2006, 95, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Hua, H.; Li, M.J.; Luo, T.; Yin, Y.C.; Jiang, Y.F. Matrix metalloproteinases in tumorigenesis: An evolving paradigm. Cell. Mol. Life Sci. 2011, 68, 3853–3868. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell 2010, 140, 935–950. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gomez, G.; Lim, J.; Halili, M.A.; Le, G.T.; Madala, P.K.; Abbenante, G.; Fairlie, D.P. Structure-activity relationships for substrate-based inhibitors of human complement factor B. J. Med. Chem. 2009, 52, 6042–6052. [Google Scholar] [CrossRef] [PubMed]
- Ellrichmann, G.; Thone, J.; Lee, D.H.; Rupec, R.A.; Gold, R.; Linker, R.A. Constitutive activity of NF-κB in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation. J. Neuroinflamm. 2012, 9. [Google Scholar] [CrossRef]
- Voboril, R.; Weberova-Voborilova, J. Constitutive NF-kappaB activity in colorectal cancer cells: Impact on radiation-induced NF-κB activity, radiosensitivity, and apoptosis. Neoplasma 2006, 53, 518–523. [Google Scholar] [PubMed]
- Formesyn, E.M.; Danneels, E.L.; de Graaf, D.C. Proteomics of the venom of the parasitoid Nasonia vitripennis. In Parasitoid Viruses: Symbionts and Pathogens, 19th ed.; Beckage, N.E., Drezen, J., Eds.; Academic Press, Elsevier: London, UK, 2013; pp. 233–246. [Google Scholar]
- De Bosscher, K.; Vanden Berghe, W.; Beck, I.M.E.; van Molle, W.; Hennuyer, N.; Hapgood, J.; Libert, C.; Staels, B.; Louw, A.; Haegeman, G.; et al. A fully dissociated compound of plant origin for inflammatory gene repression. Proc. Natl. Acad. Sci. USA 2005, 102, 15827–15832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danneels, E.L.; Formesyn, E.M.; De Graaf, D.C. Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools. Toxins 2015, 7, 2051-2070. https://doi.org/10.3390/toxins7062051
Danneels EL, Formesyn EM, De Graaf DC. Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools. Toxins. 2015; 7(6):2051-2070. https://doi.org/10.3390/toxins7062051
Chicago/Turabian StyleDanneels, Ellen L., Ellen M. Formesyn, and Dirk C. De Graaf. 2015. "Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools" Toxins 7, no. 6: 2051-2070. https://doi.org/10.3390/toxins7062051
APA StyleDanneels, E. L., Formesyn, E. M., & De Graaf, D. C. (2015). Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools. Toxins, 7(6), 2051-2070. https://doi.org/10.3390/toxins7062051