Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple Mycotoxins and Exposure Assessment for Aflatoxins B1 and G1 in Humans
Abstract
:1. Introduction
2. Results
2.1. Occurrence of Fungal and Bacterial Metabolites in Sugarcane Grass and Juice Samples
2.2. Exposure Assessment
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Collection
5.2. Sample Treatment, Extraction and Mycotoxins Analysis
5.2.1. Chemicals and Reagents
5.2.2. Extraction and Estimation of Apparent Recoveries
5.3. LC-MS/MS Parameters
5.4. Sugarcane Juice Consumption Data
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tarimo, A.J.P.; Takamura, Y.T. Sugarcane Production, Processing and Marketing in Tanzania. Afr. Study Monogr. 1998, 19, 1–11. [Google Scholar]
- Center for Agriculture Research, Egyptian Ministry of Agriculture and Land Reclamation. Available online: http://www.vercon.sci.eg/indexUI/uploaded/kasbalsoker946/kasbalsoker.htm (accessed on 7 September 2016). (In Arabic)
- Food and Agriculture Organization of the United Nations (FAO). Statistics Division, FAOSTAT, 2014. Available online: http://www.faostat3.fao.org/compare/E (accessed on 8 September 2016).
- Lee, T.S.G.; Bressan, E.A. The potential of ethanol production from sugarcane in Brazil. Sugar Tech 2006, 8, 195–198. [Google Scholar] [CrossRef]
- El-Kholi, M.M.A. Sugar Crops Research Institute, Giza (Egypt): A Profile. Sugar Tech 2008, 10, 189–196. [Google Scholar] [CrossRef]
- Solomon, S. Sugarcane By-Products Based Industries in India. Sugar Tech 2011, 13, 408–416. [Google Scholar] [CrossRef]
- Center for Sugarcane Agriculture Services, Central Administration of Agricultural and Environmental Guidance. Available online: http://www.caae-eg.com/index.php/2012-12-25-10-49-19/2010-09-18-17-00-51/2011-01-10-19-57-23/604-2012-03-12-10-26-32.html (accessed on 7 September 2016). (In Arabic)
- European Commission. Agriculture and Rural Development, Sugar. 2016. Available online: http://www.ec.europa.eu/agriculture/sugar/index_en.htm (accessed on 7 September 2016).
- Ahmed, A.; Dawar, S.; Tariq, M. Mycoflora associated with sugar cane juice in Karachi city. Pak. J. Bot. 2010, 42, 2955–2962. [Google Scholar]
- Abbas, S.R.; Sabir, S.M.; Ahmad, S.D.; Boligon, A.A.; Athayde, M.L. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem. 2014, 147, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kadam, U.S.; Ghosh, S.B.; De, S.; Suprasanna, P.; Devasagayam, T.P.A.; Bapat, V.A. Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chem. 2008, 106, 1154–1160. [Google Scholar] [CrossRef]
- Reddy, K.R.N.; Salleh, B.; Saad, B.; Abbas, H.K.; Abel, C.A.; Shier, W.T. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010, 29, 3–26. [Google Scholar] [CrossRef]
- Kumeda, Y.; Asao, T.; Takahashi, H.; Ichinoe, M. High prevalence of B and G aflatoxin-producing fungi in sugarcane field soil in Japan: Heteroduplex panel analysis identifies a new genotype within Aspergillus Section Flavi and Aspergillus nomius. FEMS Microbiol. Ecol. 2003, 45, 229–238. [Google Scholar] [CrossRef]
- Steyn, P.S. Mycotoxins, general view, chemistry and structure. Toxicol. Lett. 1995, 82–83, 843–851. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Girgin, G.; Baydar, T. Occurrence, prevention and limitation of mycotoxins in feeds. Anim. Nutr. Feed Technol. 2015, 15, 471–490. [Google Scholar] [CrossRef]
- Peraica, M.; Radic, B.; Lucic, A.; Pavlovic, M. Toxic effects of mycotoxins in humans. Bull. World Health Org. 1999, 77, 754–763. [Google Scholar] [PubMed]
- World Health Organization. Evaluation of Certain Mycotoxins in Food; WHO Technical Report Series, 906; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Milićević, D.R.; Škrinjar, M.; Baltić, T. Real and perceived risks for mycotoxin contamination in foods and feeds: Challenges for food safety control. Toxins 2010, 2, 572–592. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Ediage, E.N.; Di Mavungu, J.D.; Song, S.; Wu, A.; Van Peteghem, C.; De Saeger, S. A direct assessment of mycotoxin biomarkers in human urine samples by liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 2012, 741, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warth, B.; Sulyok, M.; Fruhmann, P.; Mikula, H.; Berthiller, F.; Schuhmacher, R.; Hametner, C.; Abia, W.A.; Adam, G.; Fröhlich, J.; et al. Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Commun. Mass Spectrom. 2012, 26, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Warth, B.; Sulyok, M.; Krska, R. LC-MS/MS based multi-biomarker approaches for the assessment of human exposure to mycotoxins. Anal. Bioanal. Chem. 2013, 405, 5687–5695. [Google Scholar] [CrossRef] [PubMed]
- Heyndrickx, E.; Sioen, I.; Bellemans, M.; De Maeyer, M.; Callebaut, A.; De Henauw, S.; De Saeger, S. Assessment of mycotoxin exposure in the Belgian population using biomarkers: Aim, design and methods of the BIOMYCO study. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Cano-Sancho, G.; Marín, S.; Ramos, A.J.; Peris-Vicente, J.; Sanchis, V. Occurrence and exposure assessment of aflatoxin M1 in Catalonia (Spain). Rev. Iberoam. Micol. 2010, 27, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, B.; Dick, R. Ochratoxin A in table wine and grape-juice: Occurrence and risk assessment. Food Addit. Contam. 1996, 13, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, E.K.; Kim, Y.B. Estimation of the daily exposure of Koreans to aflatoxin B1 through food consumption. Food Addit. Contam. 2004, 21, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.D.; de Mello, M.H.; França, J.A.; Caldas, E.D. Aflatoxins in food products consumed in Brazil: A preliminary dietary risk assessment. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Cano-Sancho, G.; Sanchis, V.; Marín, S.; Ramos, A.J. Occurrence and exposure assessment of aflatoxins in Catalonia (Spain). Food Chem. Toxicol. 2013, 51, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Jager, A.V.; Tedesco, M.P.; Souto, P.C.M.C.; Oliveira, C.A.F. Assessment of aflatoxin intake in São Paulo, Brazil. Food Control 2013, 33, 87–92. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Ruiz, M.J.; Font, G.; Berrada, H. Exposure estimates to Fusarium mycotoxins through cereals intake. Chemosphere 2013, 93, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Sugita-Konishi, Y.; Sato, T.; Saito, S.; Nakajima, M.; Tabata, S.; Tanaka, T.; Norizuki, H.; Itoh, Y.; Kai, S.; Sugiyama, K.; et al. Exposure to aflatoxins in Japan: Risk assessment for aflatoxin B1. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 3, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elaah, A.G.; Soliman, A.S. Occurrence of fungal species and mycotoxins from decayed sugarcane (Saccharrum officinarum) in Egypt. Mycobiology 2005, 33, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Hariprasad, P.; Vipin, A.V.; Karuna, S.; Raksha, R.K.; Venkateswaran, G. Natural aflatoxin uptake by sugarcane (Saccharum officinaurum L.) and its persistence in jiggery. Environ. Sci. Pollut. Res. Int. 2015, 22, 6246–6253. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 82; International Agency for Research on Cancer: Lyon, France, 2002. [Google Scholar]
- Hassan, S.F.; Nasr, M.I. Sugar industry in Egypt. Sugar Tech 2008, 10, 204–209. [Google Scholar] [CrossRef]
- Watt, D.A.; Cramer, M.D. Post-harvest biology of sugarcane. Sugar Tech 2009, 11, 142–145. [Google Scholar] [CrossRef]
- Sengar, A.S.; Thind, K.S.; Kumar, B.; Pallavi, M.; Gosal, S.S. In vitro selection at cellular level for red rot resistance in sugarcane (Saccharum sp.). Plant Growth Regul. 2009, 58, 201–209. [Google Scholar] [CrossRef]
- Viswanathan, R.; Rao, G.P. Disease scenario and management of major sugarcane diseases in India. Sugar Tech 2011, 13, 336–353. [Google Scholar] [CrossRef]
- Bhuiyan, S.A.; Croft, B.J.; James, R.S.; Cox, M.C. Laboratory and field evaluation of fungicides for the management of sugarcane smut caused by Sporisorium scitamineum in seedcane. Australas. Plant Pathol. 2012, 41, 591–599. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 165/2010 of February 2010 amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J. Eur. Union 2010, 50, 8–12. [Google Scholar]
- The Egyptian Organization for Standardization and Quality Control. Egyptian Standard Maximum Levels for Mycotoxin in Food and Feed. Alfatoxins Part 1. 1990, No. 1875-1. Available online: http://www.eos.org.eg/en/standard/6007 (accessed on 7 September 2016).
- Kolo, I.N.; Adesiyun, A.A.; Misari, S.M.; Wayagari, W.J. Economic losses in chewing canes caused by stem borers in Nigeria. Sugar Tech 1999, 1, 148–152. [Google Scholar] [CrossRef]
- Karunakar, G.; Easwaramoorthy, S.; David, H. Host—Parasite interaction between two species of white grubs infesting sugarcane and two species of entomopathogenic nematodes. Sugar Tech 2000, 2, 12–16. [Google Scholar] [CrossRef]
- Suman, A.; Solomon, S.; Yadav, D.V.; Gaur, A.; Singh, M. Post-harvest loss in sugarcane quality due to endophytic microorganisms. Sugar Tech 2000, 2, 21–25. [Google Scholar] [CrossRef]
- Osman, M.A.; EL Badry, N.; Shreif, R.M.; Youssef, M. Safety of commercial fruit juices available on the Egyptian markets with regards their content from determined by heavy metal and aflatoxins residues. Curr. Sci. Int. 2014, 3, 159–171. [Google Scholar]
- Abdel-Sater, M.A.; Zohri, A.A.; Ismail, M.A. Natural contamination of some Egyptian fruit juices and beverages by mycoflora and mycotoxins. J. Food Sci. Technol. 2001, 38, 407–411. [Google Scholar]
- Ming, L. Moldy sugarcane poisoning—A case report with a brief review. J. Toxicol. Clin. Toxicol. 1995, 33, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Luo, X.; Hu, W. Studies on epidemiology and etiology of moldy sugarcane poisoning in China. Biomed. Environ. Sci. 1992, 5, 161–177. [Google Scholar] [PubMed]
- Kumar, P.; Kumar, A. Protective effect of rivastigmine against 3-nitropropionic acid-induced Huntington’s disease like symptoms: Possible behavioural, biochemical and cellular alterations. Eur. J. Pharmacol. 2009, 615, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Nichea, M.J.; Palacios, S.A.; Chiacchiera, S.M.; Sulyok, M.; Krska, R.; Chulze, S.N.; Torres, A.M.; Ramirez, M.L. Presence of multiple mycotoxins and other fungal metabolites in native grasses from a wetland ecosystem in Argentina intended for grazing cattle. Toxins 2015, 7, 3309–3329. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, C.N.; Bandyopadhyay, R.; Sulyok, M.; Warth, B.; Krska, R. Fungal and bacterial metabolites in commercial poultry feed from Nigeria. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1288–1299. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.K.; Abdullah, A.; Sugita-Konishi, Y. Dietary intake of aflatoxins in the adult Malaysian population—An assessment of risk. Food Addit. Contam. Part B Surveill. 2012, 5, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Embaby, E.M.; Awni, N.M.; Abdel-Galil, M.M.; El-Gendy, H.I. Mycoflora and mycotoxin contaminated some juices. J. Agric. Technol. 2015, 11, 693–712. [Google Scholar]
- Amin, A.A.; Abo-Ghalia, H.H.; Hamed, A.A. Aflatoxin B1 and B2 in cereal–based baby foods and corn based snacks from Egypt markets: Occurrence and estimation of the daily intake of AFB1. Afr. J. Mycol. Biotechnol. 2010, 15, 1–11. [Google Scholar]
- El-Sawi, M.A.M.; El-Sawi, S.A.M. Monitoring of fungi producing aflatoxins, and dietary intake of aflatoxins in food consumed by Egyptian infants and young children. Acta Hortic. 2012, 963, 221–230. [Google Scholar] [CrossRef]
- El-Sawi, A.M.M. Monitoring of aflatoxins and ochratoxin A in cereals and evaluation the health risk to consumer due to their dietary intake. J. Biol. Chem. Environ. Sci. 2006, 1, 721–734. [Google Scholar]
- Raad, F.; Nasreddine, L.; Hilan, C.; Bartosik, M.; Parent-Massin, D. Dietary exposure to aflatoxins, ochratoxin A and deoxynivalenol from a total diet study in an adult urban Lebanese population. Food Chem. Toxicol. 2014, 73, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Mohawed, S.M.; Abdel Hafez, S.I.I.; EL-Said, A.H.M.; Gherbawy, Y.A.M.H. Seasonal fluctuations of soil and root surface fungi of sugarcane (Saccharum officinarum L.) in Upper Egypt. Egypt. J. Microbiol. 2001, 34, 595–611. [Google Scholar]
- Steciow, M.M. Seasonal fluctuation of the oomycetes in a polluted environment: Santigo River and affluents (Buenos Aires, Argentina). Rev. Iberoam. Micol. 1998, 15, 40–43. [Google Scholar] [PubMed]
- Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [PubMed]
Metabolites in Both | Metabolites only in Cane Grass | Metabolites only in Cane Juice |
---|---|---|
3-Nitropropionic acid | Alternariolmethylether | Aspinolid B |
Aflatoxin B1 | Brevianamid F | Chlorocitreorosein |
Aflatoxin G1 | Cyclo (L-Pro-L-Tyr) | Fusapyron |
Agroclavine | Cyclo (L-Pro-L-Val) | Fusaric acid |
Ascochlorin | Cytochalasin D | Gibberellic acid |
Asperglaucide | Ilicicolin E | Griseofulvin |
Asperphenamate | Macrosporin | Integracin A |
Averufin | N-Benzoyl-Phenylalanine | Integracin B |
Berkedrimane B | Physcion | Monocerin |
Citreorosein | - | Nidurufin |
Emodin | - | Versicolorin A |
Ilicicolin B | - | Versicolorin C |
Iso-Rhodoptilometrin | - | Xanthotoxin |
Kojic acid | - | - |
Norlichexanthone | - | - |
Oxaline | - | - |
Penicillic acid | - | - |
Quinolactacin A | - | - |
Skyrin | - | - |
Tryptophol | - | - |
Concentration of Positive Samples (μg/kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Detected Analytes | P/N | Prevalence | Median | Mean | Minimum | Maximum | Ra | LOD a | LOQ b |
3-Nitropropionic acid | 13/21 | 62% | 5.48 | 27.5 | <LOQ | 193 | 81.4% | 0.9 | 2.8 |
Aflatoxin B1 | 10/21 | 48% | 11.7 | 13.6 | <LOQ | 30.6 | 53.4% | 2.8 | 9.2 |
Aflatoxin G1 | 2/21 | 10% | 5.10 | 5.10 | <LOQ | 7.76 | 41.6% | 2.2 | 7.4 |
Agroclavine | 2/21 | 10% | 161 | 161 | <LOQ | 300 | 71.4% | 13 | 44 |
Alternariolmethylether | 9/21 | 43% | 0.23 | 0.45 | <LOQ | 1.26 | 60% | 0.05 | 0.2 |
Ascochlorin | 6/21 | 29% | 2.63 | 11.5 | 0.8 | 55.4 | 80.2% | 0.1 | 0.4 |
Asperglaucide | 9/21 | 43% | 0.41 | 0.66 | <LOQ | 2.07 | 54.6% | 0.1 | 0.4 |
Asperphenamate | 21/21 | 100% | 17.2 | 283 | 1.81 | 3998 | 87% | 0.08 | 0.3 |
Averufin | 11/21 | 52% | 0.36 | 0.48 | <LOQ | 1.91 | 85.6% | 0.05 | 0.2 |
Berkedrimane B | 4/21 | 19% | 4.39 | 18.3 | <LOQ | 64.2 | 54.2% | 0.2 | 0.7 |
Brevianamid F | 4/21 | 19% | 13.8 | 13.5 | 6.30 | 20.0 | 45% | 0.8 | 2.7 |
Citreorosein | 18/21 | 86% | 8.33 | 22.1 | <LOQ | 229 | 163% | 0.8 | 2.7 |
Cyclo (L-Pro-L-Tyr) | 14/21 | 67% | 7.99 | 15.4 | <LOQ | 55.3 | 90.4% | 1.7 | 5.6 |
Cyclo (L-Pro-L-Val) | 21/21 | 100% | 16.1 | 31.6 | <LOQ | 198 | 94.6% | 1 | 3.4 |
Cytochalasin D | 2/21 | 10% | 71.5 | 71.5 | 5.40 | 137 | 80.4% | 0.5 | 1.8 |
Emodin | 21/21 | 100% | 4.31 | 7.37 | <LOQ | 34.1 | 121% | 0.2 | 0.8 |
Ilicicolin B | 14/21 | 67% | 28.8 | 43.6 | 5.44 | 141 | 42.2% | 1.3 | 4.2 |
Ilicicolin E | 1/21 | 5% | 0.39 | 0.39 | 0.39 | 0.39 | 76.8% | 0.1 | 0.3 |
Kojic acid | 16/21 | 76% | 4160 | 20,176 | 617 | 117,815 | 99.6% | 75.8 | 250 |
Iso-Rhodoptilometrin | 17/21 | 81% | 0.89 | 6.00 | 0.19 | 72.9 | 110% | 0.04 | 0.1 |
Macrosporin | 5/21 | 24% | 0.08 | 5.91 | <LOQ | 29.2 | 94.2% | 0.02 | 0.05 |
N-Benzoyl-Phenylalanine | 17/21 | 81% | 8.29 | 66.1 | <LOQ | 856 | 93.6% | 2.3 | 7.4 |
Norlichexanthone | 8/21 | 38% | 26.6 | 149.7 | <LOQ | 1025 | 65% | 1.1 | 3.6 |
Oxaline | 2/21 | 10% | 13.0 | 13.0 | <LOQ | 25.7 | 70% | 0.17 | 0.57 |
Penicillic acid | 10/21 | 48% | 70.5 | 333 | 13.2 | 2683 | 97% | 2.5 | 8.1 |
Physcion | 17/21 | 81% | 60.4 | 58.2 | <LOQ | 73.5 | 98.4% | 39 | 130 |
Quinolactacin A | 7/21 | 33% | 0.51 | 0.74 | 0.12 | 2.33 | 64% | 0.03 | 0.1 |
Skyrin | 4/21 | 19% | 2.50 | 2.67 | <LOQ | 4.71 | 79.4% | 0.8 | 2.7 |
Tryptophol | 20/21 | 95% | 318 | 887 | 27.6 | 4370 | 64.4% | 7.08 | 23 |
Concentration of Positive Samples (μg/kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Detected Analytes | P/N | Prevalence | Median | Mean | Minimum | Maximum | Ra | LOD a | LOQ b |
3-Nitropropionic acid | 12/40 | 30% | 2.84 | 3.58 | <LOQ | 13.6 | 67.6% | 0.2 | 0.7 |
Aflatoxin B1 | 23/40 | 58% | 0.56 | 0.72 | <LOQ | 2.10 | 73.9% | 0.14 | 0.4 |
Aflatoxin G1 | 7/40 | 18% | 0.10 | 0.30 | <LOQ | 1.34 | 62.4% | 0.06 | 0.2 |
Agroclavine | 8/40 | 20% | 3.05 | 3.96 | <LOQ | 9.49 | 68% | 0.004 | 0.01 |
Ascochlorin | 18/40 | 45% | 0.22 | 0.28 | <LOQ | 0.63 | 78.4% | 0.1 | 0.3 |
Asperglaucide | 7/40 | 18% | 0.03 | 0.21 | <LOQ | 0.83 | 93.6% | 0.01 | 0.02 |
Asperphenamate | 40/40 | 100% | 5.23 | 12.5 | 0.65 | 91.4 | 96.7% | 0.2 | 0.6 |
Aspinolid B | 1/40 | 3% | 7.92 | 7.92 | 7.92 | 7.92 | 96.5% | 0.04 | 0.13 |
Averufin | 27/40 | 68% | 0.12 | 0.13 | <LOQ | 0.32 | 85.2% | 0.06 | 0.2 |
Berkedrimane B | 26/40 | 65% | 0.41 | 5.75 | <LOQ | 41.9 | 100% | 0.004 | 0.01 |
Chlorocitreorosein | 19/40 | 48% | 3.26 | 8.65 | <LOQ | 51.9 | 102% | 0.8 | 1.2 |
Citreorosein | 35/40 | 88% | 1.28 | 1.99 | <LOQ | 12.6 | 107% | 0.1 | 0.4 |
Emodin | 38/40 | 95% | 0.45 | 0.82 | <LOQ | 3.90 | 92.9% | 0.01 | 0.02 |
Fusapyron | 7/40 | 18% | 0.98 | 7.49 | <LOQ | 44.4 | 71.3% | 0.1 | 0.4 |
Fusaric acid | 12/40 | 30% | 67.9 | 258 | 25.4 | 2214 | 92.4% | 1.33 | 4.39 |
Gibberellic acid | 10/40 | 25% | 2.30 | 18.7 | <LOQ | 134 | 128% | 0.2 | 0.7 |
Griseofulvin | 2/40 | 5% | 0.36 | 0.36 | 0.20 | 0.51 | 97.5% | 0.05 | 0.17 |
Ilicicolin B | 35/40 | 88% | 0.59 | 2.44 | <LOQ | 17.6 | 52.6% | 0.07 | 0.2 |
Kojic acid | 1/40 | 3% | 208 | 208 | 208 | 208 | 62.7% | 13.8 | 45.6 |
Integracin A | 2/40 | 5% | 1.73 | 1.73 | 1.60 | 1.87 | 67.1% | 0.3 | 0.9 |
Integracin B | 2/40 | 5% | 1.12 | 1.19 | <LOQ | 1.97 | 64.2% | 0.2 | 0.6 |
Iso-Rhodoptilometrin | 27/40 | 68% | 0.03 | 0.06 | <LOQ | 0.36 | 103% | 0.01 | 0.02 |
Monocerin | 5/40 | 13% | 0.28 | 1.26 | <LOQ | 4.97 | 100% | 0.02 | 0.08 |
Nidurufin c | 14/40 | 35% | 0.10 | 0.15 | 0.001 | 0.61 | n.d e | - | - |
Norlichexanthone | 11/40 | 28% | 0.84 | 1.67 | <LOQ | 6.05 | 82.5% | 0.03 | 0.10 |
Oxaline | 1/40 | 3% | 1.61 | 1.61 | 1.61 | 1.61 | 64.6% | 0.10 | 0.32 |
Penicillic acid | 16/40 | 40% | 19.9 | 45.7 | 3.02 | 212 | 77.2% | 0.2 | 0.7 |
Quinolactacin A | 22/40 | 55% | 0.03 | 0.14 | 0.005 | 1.40 | 80.2% | 0.001 | 0.004 |
Skyrin | 7/40 | 18% | 0.17 | 0.35 | 0.05 | 1.60 | 79.8% | 0.03 | 0.1 |
Tryptophol | 40/40 | 100% | 58.4 | 110 | <LOQ | 581 | 54.9% | 0.5 | 1.8 |
Versicolorin A | 17/40 | 43% | 0.05 | 0.06 | <LOQ | 0.23 | 80.7% | 0.02 | 0.06 |
Versicolorin C d | 29/40 | 73% | 7.74 | 11.31 | 1.55 | 53.2 | n.d e | - | - |
Xanthotoxin | 4/40 | 10% | 2.28 | 1.99 | <LOQ | 3.32 | 94.6% | 0.03 | 0.1 |
Season | Winter | Summer | ||
---|---|---|---|---|
Mycotoxin/Gender | Females | Males | Females | Males |
AFB1 (ng/kg) | 0.20 | 0.38 | 0.40 | 0.90 |
AFG1 (ng/kg) | 0.02 | 0.05 | 0.05 | 0.11 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, M.F.; Krska, R.; Sulyok, M. Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple Mycotoxins and Exposure Assessment for Aflatoxins B1 and G1 in Humans. Toxins 2016, 8, 343. https://doi.org/10.3390/toxins8110343
Abdallah MF, Krska R, Sulyok M. Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple Mycotoxins and Exposure Assessment for Aflatoxins B1 and G1 in Humans. Toxins. 2016; 8(11):343. https://doi.org/10.3390/toxins8110343
Chicago/Turabian StyleAbdallah, Mohamed F., Rudolf Krska, and Michael Sulyok. 2016. "Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple Mycotoxins and Exposure Assessment for Aflatoxins B1 and G1 in Humans" Toxins 8, no. 11: 343. https://doi.org/10.3390/toxins8110343
APA StyleAbdallah, M. F., Krska, R., & Sulyok, M. (2016). Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple Mycotoxins and Exposure Assessment for Aflatoxins B1 and G1 in Humans. Toxins, 8(11), 343. https://doi.org/10.3390/toxins8110343