Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Atmospheric Pressure Plasma System
4.3. Efficacy of Gas Mixtures on Aflatoxin Detoxification
4.4. Effect of Power and Exposure Time on Aflatoxin Detoxification in Vitro
4.5. Effect of Power and Exposure Time on Aflatoxin Detoxification in Hazelnut
4.6. Extraction, Clean-up and LC-MS/MS Conditions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAOSTAT. Crops. Production. Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed on 2 December 2015).
- USDA Foreign Agricultural Service. Tree Nuts Annual 2014; GAIN Report Number IT1483; USDA: Washington, DC, USA, 2015.
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Co-occurrence of aflatoxins and ochratoxin A in spices commercialized in Italy. Food Control. 2014, 39, 192–197. [Google Scholar] [CrossRef]
- Wogan, G.N. Chemical nature and biological effects of the aflatoxins. Bacteriol. Rev. 1966, 30, 460–470. [Google Scholar] [PubMed]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [PubMed]
- IARC. Monograph on the evaluation of carcinogenic risk to humans. In Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; IARC: Lyon, France, 2002; Volume 82. [Google Scholar]
- Wogan, G.N.; Edwards, G.S.; Newberne, P.N. Structure activity relationships in toxicity and carcinogenicity of aflatoxins and analogs. Cancer Res. 1971, 31, 1936–1941. [Google Scholar] [PubMed]
- Guengerich, F.P.; Shimada, T. Activation of procarcinogens by human cytochrome P450 enzymes. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1998, 400, 201–213. [Google Scholar] [CrossRef]
- Ricciardi, A.; Castagna, R.; Ferrante, I.; Frascella, F.; Marasso, S.L.; Ricci, A.; Canavese, G.; Lorè, A.; Prelle, A.; Gullino, M.L.; et al. Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosens. Bioelectron. 2013, 40, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) No 165/2010 of 26 February 2010 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Aflatoxins; European Union: Bruxelles, Belgium, 2010; pp. 8–12.
- Statement of the Scientific Panel on Contaminants in the Food Chain on a request from the European Commission on the effects on public health of an increase of the levels for aflatoxin total from 4 µg/kg to 10 µg/kg for tree nuts other than almonds, hazelnuts and pistachios. EFSA J. 2009, 1168, 1–11.
- Baltaci, C.; İlyasoğlu, H.; Cavrar, S. Aflatoxin levels in raw and processed hazelnuts in Turkey. Food Addit. Contam. B 2012, 5, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Takatori, K.; Sugita-Konishi, Y.; Kim, I.H.; Lee, M.H.; Han, D.W.; Chung, K.H.; Hyun, S.O.; Park, J.C. Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf. Coat. Technol. 2007, 201, 5733–5737. [Google Scholar] [CrossRef]
- Niemira, B.A. Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J. Food Sci. 2012, 77, M171–M175. [Google Scholar] [CrossRef] [PubMed]
- Moisan, M.; Barbeau, J.; Moreau, S.; Pelletier, J.; Tabrizian, M.; Yahia, L. Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 2001, 226, 1–21. [Google Scholar] [CrossRef]
- Moreau, M.; Orange, N.; Feuilloley, M.G.J. Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 2008, 26, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Boudam, M.K.; Moisan, M.; Saoudi, B.; Popovici, C.; Gherardi, N.; Massines, F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J. Phys. D Appl. Phys. 2006, 39, 3494–3507. [Google Scholar] [CrossRef]
- Fridman, G.; Brooks, A.D.; Balasubramanian, M.; Fridman, A.; Gutsol, A.; Vasilets, V.N.; Ayan, H.; Friedman, G. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process. Polym. 2007, 4, 370–375. [Google Scholar] [CrossRef]
- Selcuk, M.; Oksuz, L.; Basaran, P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillium spp. by cold plasma treatment. Bioresour. Technol. 2008, 99, 5104–5109. [Google Scholar] [CrossRef] [PubMed]
- Suhem, K.; Matan, N.; Nisoa, M.; Matan, N. Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int. J. Food Microbiol. 2013, 161, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Laroussi, M. Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 1996, 24, 128–135. [Google Scholar] [CrossRef]
- Van Bokhorst-van de Veen, H.; Xie, H.; Esveld, E.; Abee, T.; Mastwijk, H.; Nierop Groot, M. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. Food Microbiol. 2015, 45, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Noriega, E.; Thompson, A. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 2013, 33, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Mols, M.; Mastwijk, H.; Nierop Groot, M.; Abee, T. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma. J. Appl. Microbiol. 2013, 115, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, T.; Uehara, K.; Sasaki, Y.; Hidekazu, M.; Matsumura, Y.; Iwasawa, A.; Ito, N.; Kohno, M.; Azuma, T.; Okino, A. Microbial inactivation in the liquid phase induced by multigas plasma jet. PLoS ONE 2015, 10, e0132381. [Google Scholar]
- Takamatsu, T.; Kawate, A.; Uehara, K.; Oshita, T.; Miyahara, H.; Dobrynin, D. Bacterial inactivation in liquids using multi-gas plasma. Plasma Med. 2012, 2, 237–247. [Google Scholar] [CrossRef]
- Basaran, P.; Basaran-Akgul, N.; Oksuz, L. Elimination of Aspergillus parasiticus fron nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol. 2008, 25, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Akishev, Y.; Grushin, M.; Karalnik, V.; Trushkin, N.; Kholodenko, V.; Chugunov, V.; Kobzev, E.; Zhirkova, N.; Irkhina, I.; Kireev, G. Atmospheric-pressure, nonthermal plasma sterilization of microorganisms in liquids and on surfaces. Pure Appl. Chem. 2008, 80, 1953–1969. [Google Scholar] [CrossRef]
- Surowsky, B.; Schlüter, O.; Knorr, D. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: A review. Food Eng. Rev. 2015, 7, 82–108. [Google Scholar] [CrossRef]
- Dasan, B.G.; Mutlu, M.; Boyaci, I.H. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnut via atmospheric pressure fluidized bed plasma reactor. Int. J. Food Microbiol. 2016, 216, 50–59. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, K.S.; Kubena, L.F.; Denvir, A.J.; Rogers, T.D.; Hitchens, G.D.; Bailey, R.H.; Harvey, R.B.; Buckley, S.A.; Phillips, T.D. Aflatoxicosis in turkey poults is prevented by treatment of naturally contaminated corn with ozone generated by electrolysis. Poult. Sci. 1998, 77, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Proctor, A.D.; Ahmedna, M.; Kumar, J.V.; Goktepe, I. Degradation of aflatoxins in peanut kernels/flour by gaseous ozonation and mild heat treatment. Food Addit. Contam. 2004, 21, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Diao, E.; Hou, H.; Dong, H. Ozonolysis mechanism and influencing factors of aflatoxin B1: A review. Trends Food Sci. Technol. 2013, 33, 21–26. [Google Scholar] [CrossRef]
- Lee, L.S.; Stanley, J.B.; Cucullu, A.F.; Pons, W.A.; Goldblatt, L.A. Ammoniation of aflatoxin B1: Isolation and identification of the major reaction product. J. AOAC 1974, 57, 626–631. [Google Scholar]
- Cucullu, A.F.; Lee, L.S.; Pons, W.A.; Stanley, J.B. Ammoniation of aflatoxin B1: Isolation and characterization of a product with molecular weight 206. J. Agric. Food Chem. 1976, 24, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Albores, A.; Nicolas-Vazquez, I.; Miranda-Ruvalcaba, R.; Moreno-Martinez, E. Mass spectrometry/mass spectrometry study on the degradation of B-aflatoxins in maize with aqueous citric acid. Am. J. Agric. Biol. Sci. 2008, 3, 482–489. [Google Scholar]
- Velazhahan, R.; Vijayanandraj, S.; Vijayasamundeeswari, A.; Paranidharan, V.; Samiyappan, R.; Iwamoto, T.; Friebe, B.; Muthukrishnan, S. Detoxification of aflatoxins by seed extracts of the medicinal plant, Trachyspermum ammi (L.) Sprague ex Turrill—Structural analysis and biological toxicity of degradation product of aflatoxin G1. Food Control. 2010, 21, 719–725. [Google Scholar] [CrossRef]
- Diaz, G.J.; Murcia, H.W. Biotransformation of Aflatoxin B1 and Its Relationship with the Differential Toxicological Response to Aflatoxin in Commercial Poultry Species. In Aflatoxins—Biochemistry and Molecular Biology, 1st ed.; Guevara-González, R.G., Ed.; InTech: Rijeka, Croatia, 2011; pp. 3–20. [Google Scholar]
- Baertschi, S.W.; Raney, K.D.; Shimada, T.; Harris, T.M.; Guengerich, F.P. Comparison of rates of enzymatic oxidation of aflatoxin B1, aflatoxin G1, and sterigmatocystin and activities of the epoxides in forming guanyl-N7 adducts and inducing different genetic responses. Chem. Res. Toxicol. 1989, 2, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Aflatoxin monitoring in Italian hazelnut products by LC-MS. Food Addit. Contam. B 2012, 5, 279–285. [Google Scholar] [CrossRef] [PubMed]
Plasma | AFB1 (%) | Afs 1 (%) | ||||
---|---|---|---|---|---|---|
gas | 1 min | 2 min | 4 min | 1 min | 2 min | 4 min |
21% O2 | 100 | 100 | 100 | 99.44 | 95.50 | 94.9 |
1% O2 | 100 | 50.2 ± 17.1 | 0.50 ± 0.29 | 100 | 88.5 ± 7.55 | 50.5 ± 14.0 |
0.1% O2 | 78.1 ± 0.07 | 31.3 ± 5.98 | 9.31 ± 0.27 | 92.3 ± 2.89 | 73.8 ± 8.49 | 59.7 ± 1.49 |
N2 | 87.5 ± 17.4 | 20.0 ± 0.69 | 0 | 77.9 ± 11.1 | 32.8 ± 4.72 | 13.7 ± 0.19 |
Power (W) | Time (min) | Standards | Hazelnuts 1 | ||
---|---|---|---|---|---|
AFB1 (%) | AFs 2 (%) | AFB1 (%) | AFs 2 (%) | ||
400 | 1 | 25.4 ± 6.13 | 57.1 ± 28.8 | 100 ± 1.60 | 97.7 ± 13.6 |
2 | 7.75 ± 0.17 | 20.6 ± 14.6 | 100 ± 5.10 | 98.7 ± 23.9 | |
4 | 4.49 ± 0.80 | 9.40 ± 6.41 | 83.2 ± 27.5 | 81.2 ± 30.0 | |
12 | 0 | 0 | 54.3 ± 0.91 | 54.1 ± 6.01 | |
700 | 1 | 12.7 ± 6.08 | 44.3 ± 25.6 | 99.6 ± 68.6 | 90.9 ± 41.6 |
2 | 0 | 6.61 ± 1.94 | 84.7 ± 15.2 | 84.7 ± 10.2 | |
4 | 0 | 2.40 | 83.1 ± 6.81 | 83.9 ± 30.2 | |
12 | 0 | 0 | 44.8 ± 3.36 | 52.9 ± 10.7 | |
1000 | 1 | 9.52 ± 4.70 | 24.0 ± 12.1 | 96.2 ± 6.50 | 88.5 ± 12.9 |
2 | 0 | 0.60 | 82.5 ± 30.2 | 79.9 ± 34.8 | |
4 | 0 | 0 | 78.5 ± 10.7 | 66.9 ± 11.8 | |
12 | 0 | 0 | 35.7 ± 0.87 | 25.8 ± 13.2 | |
1150 | 1 | 0 | 0 | 85.2 ± 8.46 | 81.7 ± 20.3 |
2 | 0 | 0 | 60.2 ± 3.31 | 62.0 ± 13.4 | |
4 | − | − | 50.6 ± 9.77 | 60.0 ± 20.8 | |
12 | − | − | 29.1 ± 5.89 | 30.4 ± 9.04 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.C.; Garibaldi, A.; Gullino, M.L. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins 2016, 8, 125. https://doi.org/10.3390/toxins8050125
Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins. 2016; 8(5):125. https://doi.org/10.3390/toxins8050125
Chicago/Turabian StyleSiciliano, Ilenia, Davide Spadaro, Ambra Prelle, Dario Vallauri, Maria Chiara Cavallero, Angelo Garibaldi, and Maria Lodovica Gullino. 2016. "Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins" Toxins 8, no. 5: 125. https://doi.org/10.3390/toxins8050125
APA StyleSiciliano, I., Spadaro, D., Prelle, A., Vallauri, D., Cavallero, M. C., Garibaldi, A., & Gullino, M. L. (2016). Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins, 8(5), 125. https://doi.org/10.3390/toxins8050125