Multi‐Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Method Implementation: Optimization of the UHPLC-Q-Orbitrap Conditions
2.2. Validation Parameters
2.3. Matrix Effect Studies
2.4. LOD, LOQ, and Linearity
2.5. Mycotoxin Occurrence
2.5.1. Mycotoxin Occurrence in Baby Food
2.5.2. Mycotoxinco-Occurrence
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemical and Reagents
5.2. Analytical Standards
5.3. Samples
5.4. Extraction Procedure
5.5. Instruments and Analytical conditions
5.5.1. UHPLC Chromatographic Analysis
5.5.2. High-Resolution Mass Spectrometry Analysis: Q Exactive Orbitrap Mass Spectrometry Analysis
5.6. Data Analysis
5.7. Analytical Parameters
5.7.1. Recovery Studies
5.7.2. Matrix Effect Studies
5.7.3. LOD, LOQ, and Linearity
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAO (Food Balance Sheet) 2007. Available online: http://www.faostat.fao.org (accessed on 24 January 2017).
- Scala, V.; Aureli, G.; Cesarano, G.; Incerti, G.; Fanelli, C.; Scala, F.; Reverberi, M.; Bonanomi, G. Climate, Soil management, and cultivar affect Fusarium head blight incidence and deoxynivalenol accumulation in durum wheat of Southern Italy. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Malachova, A.; Dzuman, Z.; Veprikova, Z.; Vaclavikova, M.; Zachariasova, M.; Hajslova, J. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: The major mycotoxins found in cereal-based products on the Czech market. J. Agric. Food Chem. 2011, 59, 12990–12997. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Cheli, F.; Pinotti, L.; Rossi, L.; Dell’Orto, V. Effect of milling procedures on mycotoxin distribution in wheat fractions: A review. LWT Food Sci. Technol. 2013, 54, 307–314. [Google Scholar] [CrossRef]
- Berthiller, F.; Dall’Asta, C.; Schuhmacher, R.; Lemmens, M.; Adam, G.; Krska, R. Masked mycotoxins: Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 3421–3425. [Google Scholar] [CrossRef] [PubMed]
- Covarelli, L.; Beccari, G.; Prodi, A.; Generotti, S.; Etruschi, F.; Juan, C.; Ferrer, E.; Mañes, J. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. J. Sci. Food Agric. 2015, 95, 540–551. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Brussels, Belgium, 2006. Available online: https://www.fsai.ie/uploadedFiles/Consol_Reg1881_2006.pdf (accessed on 20 November 2016).
- Commission recommendation (CR) No 2013/165/EU of 27 March 2013 on the Presence of T-2 and HT-2 Toxin in Cereals and Cereal Products. European Commission: Brussels, Belgium, 2013.
- Jestoi, M.; Ritieni, A.; Rizzo, A. Analysis of the Fusarium mycotoxins fusaproliferin and trichothecenes in grains using gas chromatography-mass spectrometry. J. Sci. Food Agric. 2004, 52, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Meca, G.; Zinedine, A.; Blesa, J.; Font, G.; Mañes, J. Further data on the presence of Fusarium emerging mycotoxins enniatins, fusaproliferin and beauvericin in cereals available on the Spanish markets. Food Chem. Toxicol. 2010, 48, 1412–1416. [Google Scholar] [CrossRef] [PubMed]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- Serrano, A.B.; Font, G.; Mañes, J.; Ferrer, E. Emerging Fusarium mycotoxins in organic and conventional pasta collected in Spain. Food Chem. Toxicol. 2013, 51, 259–266. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3802. [Google Scholar]
- Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. LC–MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam. 2008, 25, 472–489. [Google Scholar] [CrossRef] [PubMed]
- Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectr. 2006, 20, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Varga, E.; Glauner, T.; Köppen, R.; Mayer, K.; Sulyok, M.; Schuhmacher, R.; Krska, R.; Berthiller, F. Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Anal. Bioanal. Chem. 2012, 402, 2675–2686. [Google Scholar] [CrossRef] [PubMed]
- Frenich, A.G.; Vidal, J.L.M.; Romero-González, R.; del Mar Aguilera-Luiz, M. Simple and high-throughput method for the multi-mycotoxin analysis in cereals and related foods by ultra-high performance liquid chromatography/tandem mass spectrometry. Food Chem. 2009, 117, 705–712. [Google Scholar] [CrossRef]
- Zachariasova, M.; Lacina, O.; Malachova, A.; Kostelanska, M.; Poustka, J.; Godula, M.; Hajslova, J. Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra-performance liquid chromatography coupled with high resolution mass spectrometry. Anal. Chim. Acta 2010, 662, 51–61. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission decision 2002/657/EC of 12 August 2002 implementing Council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Community 2002, 221, L221–L228. [Google Scholar]
- Rodríguez-Carrasco, Y.; Berrada, H.; Font, G.; Mañes, J. Multi-mycotoxin analysis in wheat semolina using an acetonitrile-based extraction procedure and gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2012, 1270, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Ritieni, A.; Mañes, J. Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming. Food Chem. 2013, 141, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Aresta, A.; Cioffi, N.; Palmisano, F.; Zambonin, C.G. Simultaneous determination of ochratoxin A and cyclopiazonic, mycophenolic, and tenuazonic acids in cornflakes by solid-phase microextraction coupled to high-performance liquid chromatography. J. Agric. Food Chem. 2003, 51, 5232–5237. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Blanco, C.; Font, G.; Ruiz, M.J. Interaction effects of enniatin B, deoxinivalenol and alternariol in Caco-2 cells. Toxicol. Lett. 2016, 241, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Schollenberger, M.; Müller, H.M.; Rüfle, M.; Suchy, S.; Planck, S.; Drochner, W. Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. Int. J. Food Microbiol. 2005, 97, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, T.; Ritieni, A.; Visone, M.; Cocchieri, R.A. Evaluation of conventional and organic Italian foodstuffs for deoxynivalenol and fumonisins B1 and B2. J. Agric. Food Chem. 2003, 51, 8128–8131. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Takino, M.; Sugita-Konishi, Y.; Tanaka, T.; Toriba, A.; Hayakawa, K. Determination of nivalenol and deoxynivalenol by liquid chromatography/atmospheric pressure photoionization mass spectrometry. Rapid Commun. Mass Spectr. 2009, 23, 3119–3124. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Fernandes, J.O. Development and validation of a method based on a QuEChERS procedure and heart-cutting GC-MS for determination of five mycotoxins in cereal products. J. Sep. Sci. 2010, 33, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Griessler, K.; Rodrigues, I.; Handl, J.; Hofstetter, U. Occurrence of mycotoxins in Southern Europe. World Mycotoxin J. 2010, 3, 301–309. [Google Scholar] [CrossRef]
- Bryła, M.; Waśkiewicz, A.; Podolska, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- González-Osnaya, L.; Cortés, C.; Soriano, J.M.; Moltó, J.C.; Manes, J. Occurrence of deoxynivalenol and T-2 toxin in bread and pasta commercialized in Spain. Food Chem. 2011, 124, 156–161. [Google Scholar] [CrossRef]
- Cano-Sancho, G.; Gauchi, J.P.; Sanchis, V.; Marín, S.; Ramos, A.J. Quantitative dietary exposure assessment of the Catalonian population (Spain) to the mycotoxin deoxynivalenol. Food Addit. Contam. 2011, 28, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.M.T.; Solfrizzo, M.; Visconti, A. Determination of trichothecenes in cereals and cereal-based products by liquid chromatography–tandem mass spectrometry. Food Addit. Contam. 2008, 25, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Cano-Sancho, G.; Valle-Algarra, F.M.; Jiménez, M.; Burdaspal, P.; Legarda, T.M.; Ramos, A.J.; Sanchís, V.; Marín, S. Presence of trichothecenes and co-occurrence in cereal-based food from Catalonia (Spain). Food Control 2011, 22, 490–495. [Google Scholar] [CrossRef]
- Škrbić, B.; Malachova, A.; Živančev, J.; Veprikova, Z.; Hajšlová, J. Fusarium mycotoxins in wheat samples harvested in Serbia: A preliminary survey. Food Control 2011, 22, 1261–1267. [Google Scholar] [CrossRef]
- Liao, C.D.; Wong, J.W.; Zhang, K.; Yang, P.; Wittenberg, J.B.; Trucksess, M.W.; Hayward, D.G.; Lee, N.S.; Chang, J.S. Multi-mycotoxin analysis of finished grain and nut products using ultrahigh-performance liquid chromatography and positive electrospray ionization–quadrupole orbital ion trap high-resolution mass spectrometry. J. Agric. Food Chem. 2015, 63, 8314–8332. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Ritieni, A.; Mañes, J. Determination of trichothecenes and zearalenones in grain cereal, flour and bread by liquid chromatography tandem mass spectrometry. Food Chem. 2012, 134, 2389–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, A.B.; Meca, G.; Font, G.; Ferrer, E. Risk assessment associated to the intake of the emerging Fusarium mycotoxins BEA, ENs and FUS present in infant formula of Spanish origin. Food Control 2012, 28, 178–183. [Google Scholar] [CrossRef]
- Uhlig, S.; Torp, M.; Heier, B.T. Beauvericin and enniatins A, A1, B and B1 in Norwegian grain: A survey. Food Chem. 2006, 94, 193–201. [Google Scholar] [CrossRef]
- Juan, C.; Mañes, J.; Raiola, A.; Ritieni, A. Evaluation of beauvericin and enniatins in Italian cereal products and multicereal food by liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem. 2013, 140, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Raiola, A.; Mañes, J.; Ritieni, A. Presence of mycotoxin in commercial infant formulas and baby foods from Italian market. Food Control 2014, 39, 227–236. [Google Scholar] [CrossRef]
- Brera, C.; Bertazzoni, V.; Debegnach, F.; Gregori, E.; Prantera, E.; De Santis, B. Exposure assessment for italian population groups to deoxynivalenol deriving from pasta consumption. Toxins 2013, 5, 2293–2309. [Google Scholar] [CrossRef] [PubMed]
- Rubert, J.; Soler, C.; Mañes, J. Application of an HPLC–MS/MS method for mycotoxin analysis in commercial baby foods. Food Chem. 2012, 133, 176–183. [Google Scholar] [CrossRef]
- Speijers, G.J.A.; Speijers, M.H.M. Combined toxic effects of mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation No. 2006/401/EC of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, L70, 12e34. [Google Scholar]
Mycotoxin | Retention Time (min) | Elemental Composition | Adduct Ion | Theoretical Mass (m/z) | Measured (m/z) | Accuracy (Δppm) |
---|---|---|---|---|---|---|
Neosolaniol | 0.49 | C19H26O8 | [M + NH4]+ | 400.19659 | 400.19638 | −0.52 |
Fusarenon-X | 0.47 | C17H22O8 | [M + H]+ | 355.13874 | 355.13846 | −0.79 |
Nivalenol | 0.52 | C15H20O7 | [M + FAc]− | 357.11911 | 357.11771 | −3.92 |
Deoxynivalenol | 0.56 | C15H20O6 | [M + FAc]− | 341.12419 | 341.12378 | −1.20 |
Sum of 3- and 15-AcDon | 0.65 | C17H22O7 | [M + Na]+ | 361.12577 | 361.12589 | 0.33 |
HT-2 toxin | 0.93 | C22H32O8 | [M + Na]+ | 447.19894 | 447.19916 | 0.49 |
T-2 toxin | 1.22 | C24H34O9 | [M + Na]+ | 489.20950 | 489.20978 | 0.57 |
Zearalenone | 1.55 | C18H22O5 | [M + H]+ | 319.15400 | 319.15375 | −0.78 |
Aflatoxin B1 | 0.71 | C17H12O6 | [M + H]+ | 313.07066 | 313.07014 | −1.66 |
Fumonisin B1 | 1.00 | C34H59NO15 | [M + H]+ | 722.39574 | 722.39396 | −2.46 |
Fumonisin B2 | 2.47 | C34H59NO14 | [M + H]+ | 706.40083 | 706.40215 | 1.87 |
Enniatin A | 7.71 | C36H63N3O9 | [M + NH4]+ | 699.49026 | 699.49048 | 0.31 |
Enniatin A1 | 7.32 | C35H61N3O9 | [M + NH4]+ | 685.47461 | 685.47449 | −0.18 |
Enniatin B | 6.37 | C33H57N3O9 | [M + H]+ | 640.41676 | 640.41930 | 3.97 |
Beauvericin | 7.18 | C45H57N3O9 | [M + Na]+ | 806.39870 | 806.39697 | −2.14 |
Ochratoxin A | 1.53 | C20H18NO6Cl | [M + H]+ | 404.08954 | 404.08925 | −0.72 |
Mycotoxin | Recovery(%) | ME (%) | LOD (µg/kg) | LOQ (µg/kg) | r2 | Calibration Curve |
---|---|---|---|---|---|---|
Neosolaniol | 68 | 36 | 0.03 | 0.11 | 0.9988 | Y = −1.09137 × 106 + 644247X |
Fusarenon-X | 99 | 55 | 2.80 | 8.42 | 0.9982 | Y = −35936.3 + 14855.6X |
Nivalenol | 74 | 35 | 0.29 | 0.87 | 0.9996 | Y = −75591.9 + 127604X |
Deoxynivalenol | 89 | 57 | 0.03 | 0.09 | 0.9989 | Y = −199036 + 76100.7X |
Sum of 3- and 15-AcDon | 135 | 102 | 0.45 | 1.37 | 0.9956 | Y = 2.29667 × 106 + 629614X |
HT-2 toxin | 118 | 68 | 0.15 | 0.45 | 0.9993 | Y = −569704 + 407261X |
T-2 toxin | 149 | 57 | 0.23 | 0.70 | 0.9997 | Y = −1.7152 × 106 + 1.58156 × 106X |
Zearalenone | 148 | 86 | 0.21 | 0.65 | 0.9996 | Y = −575778 + 340107X |
Aflatoxin B1 | 128 | 64 | 0.03 | 0.11 | 0.9998 | Y = 668377 + 6.27115 × 106X |
Fumonisin B1 | 105 | 72 | 1.65 | 4.95 | 0.9939 | Y = −298323 + 62417X |
Fumonisin B2 | 132 | 85 | 8.21 | 24.6 | 0.9864 | Y = −655884 + 70612.3X |
Enniatin A | 165 | 105 | 0.39 | 1.19 | 0.9999 | Y = −186911 + 1.92893 × 106X |
Enniatin A1 | 148 | 90 | 0.28 | 0.85 | 0.9999 | Y = −486269 + 1.68215 × 106X |
Enniatin B | 123 | 89 | 1.08 | 3.26 | 0.9971 | Y = −255826 + 47880X |
Beauvericin | 210 | 17 | 0.89 | 2.68 | 0.9992 | Y = −483543 + 157248X |
Ochratoxin A | 139 | 91 | 0.07 | 0.22 | 0.9986 | Y = −717566 + 224556X |
Mycotoxin | Incidence(%) | Range(Mean) (µg/kg) | IARC Classification | MLs Established byCommission Regulation (EC) No. 1126/2007 for Cereals (µg/kg) |
---|---|---|---|---|
Neosolaniol | ND | ND | NC | No limits established |
Fusarenon-X | ND | ND | 3 | No limits established |
Nivalenol | 93.33 | 11.54–16.90 (13.87) | 3 | No limits established |
Deoxynivalenol | 100.00 | 20.89–247.27 (96.93) | 3 | <750 |
Sum of 3- and 15-AcDon | 86.67 | 1.46–4.18 (2.47) | NC | No limits established |
HT-2 toxin | 90.00 | 10.92–14.60 (12.46) | NC | No limits established |
T-2 toxin | 76.67 | 36.45–38.02 (36.95) | NC | No limits established |
Zearalenone | 93.30 | 16.84–19.94 (17.54) | 3 | 20 *–75 |
Aflatoxin B1 | ND | ND | 1 | 0.1 *–2 |
Fumonisin B1 | ND | ND | 2B | 200–1000 ** |
Fumonisin B2 | ND | ND | 2B | |
Enniatin A | 33.30 | 4.25–5.09 (4.46) | NC | No limits established |
Enniatin A1 | 93.30 | 4.47–18.83 (9.83) | NC | No limits established |
Enniatin B | 90.00 | 91.15–710.90 (326.17) | NC | No limits established |
Beauvericin | 10.00 | 53.66–73.67 (63.66) | NC | No limits established |
Ochratoxin A | ND | ND | 2B | 0.5 *–3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolosa, J.; Graziani, G.; Gaspari, A.; Chianese, D.; Ferrer, E.; Mañes, J.; Ritieni, A. Multi‐Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins 2017, 9, 59. https://doi.org/10.3390/toxins9020059
Tolosa J, Graziani G, Gaspari A, Chianese D, Ferrer E, Mañes J, Ritieni A. Multi‐Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins. 2017; 9(2):59. https://doi.org/10.3390/toxins9020059
Chicago/Turabian StyleTolosa, Josefa, Giulia Graziani, Anna Gaspari, Donato Chianese, Emilia Ferrer, Jordi Mañes, and Alberto Ritieni. 2017. "Multi‐Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry" Toxins 9, no. 2: 59. https://doi.org/10.3390/toxins9020059
APA StyleTolosa, J., Graziani, G., Gaspari, A., Chianese, D., Ferrer, E., Mañes, J., & Ritieni, A. (2017). Multi‐Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins, 9(2), 59. https://doi.org/10.3390/toxins9020059