Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Static Hot Air Treatments
2.2. Comparison of Static Hot Air and Infrared Rays Roasting
2.3. Analysis of Perisperm
3. Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Samples and Contamination Procedure
4.3. Roasters and Other Equipment
4.4. Treatments
4.5. Fatty Acid Composition
4.6. Extraction, Clean-Up, and LC-MS/MS Conditions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kurtzman, C.P.; Horn, B.W.; Hesseltine, C.W. Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie van Leeuwenhoek 1987, 53, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Co-occurrence of aflatoxins and ochratoxin A in spices commercialized in Italy. Food Control 2014, 39, 192–197. [Google Scholar] [CrossRef]
- Di Stefano, V.; Avellone, G.; Pitonzo, R.; Capocchiano, V.G.; Mazza, A.; Cicero, N.; Dugo, G. Natural co-occurrence of ochratoxin A, ochratoxin B and aflatoxins in Sicilian red wines. Food Addit. Contam. Part A 2015, 32, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.C.; Garibaldi, A.; Gullino, M.L. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins 2016, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Wogan, G.N. Chemical nature and biological effects of the aflatoxins. Bacteriol. Rev. 1966, 30, 460–470. [Google Scholar] [PubMed]
- Massey, T.E.; Stewart, R.K.; Daniels, J.M.; Liu, L. Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B1 carcinogenicity. Proc. Soc. Biol. Med. 1995, 208, 213–227. [Google Scholar] [CrossRef]
- IARC Monograph. Available online: http://monographs.iarc.fr/ENG/Monographs/vol82/ (accessed on 20 February 2017).
- Codex Alimentarius. Codex General Standard for Contaminants and Toxins in Food and Feed. 1995. Available online: http://www.fao.org/fileadmin/user_upload/agns/pdf/CXS_193e.pdf (accessed on 8 July 2016).
- Abdulkadar, A.H.W.; Al-Ali, A.; Al-Jedah, J. Aflatoxin contamination in edible nuts imported in Qatar. Food Control 2000, 11, 157–160. [Google Scholar] [CrossRef]
- Thuvander, A.; Moller, T.; Barbieri, H.E.; Jansson, A.; Salomonsson, A.C.; Olsen, M. Dietary intake of some important mycotoxins by the Swedish population. Food Addit. Contam. 2001, 18, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.S.; Kim, H.J.; Ok, H.E.; Hwang, J.B.; Chung, D.H. Determination of aflatoxin levels in nuts and their products consumed in South Korea. Food Chem. 2007, 102, 385–391. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ma, F.; Li, P.; Zhang, W.; Ding, X.; Zhang, Q.; Li, M.; Wang, Y.R.; Xu, B.C. Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chem. 2014, 146, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Pitonzo, R.; Avellone, G. Effect of gamma irradiation on aflatoxins and ochratoxin A reduction in almond samples. J. Food Res. 2014, 3, 113–118. [Google Scholar]
- Mao, J.; He, B.; Zhang, L.; Li, P.; Zhang, Q.; Ding, X.; Zhang, W. A structure identification and toxicity assessment of the degradation products of aflatoxin B1 in peanut oil under UV irradiation. Toxins 2016, 8, 332. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, M.; Açkurt, F.; Yildiz, M.; Biringen, G.; Gürcan, T.; Löker, M. Effect of roasting on some nutrients of hazelnuts (Corylus avellana L.). Food Chem. 2001, 73, 185–190. [Google Scholar] [CrossRef]
- FAOSTAT. Statistic Division. Available online: http://www.fao.org/faostat/en/#data (accessed on 16 January 2017).
- Alasalvar, C.; Pelvan, E.; Topal, B. Effects of roasting on oil and fatty acid composition of Turkish hazelnut varieties (Corylus avellana L.). Int. J. Food Sci. Nutr. 2010, 61, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Kirbaşlar, F.G.; Erkmen, G. Investigation of the effect of roasting temperature on the nutritive value of hazelnuts. Plant Foods Hum. Nutr. 2003, 58, 1–10. [Google Scholar] [CrossRef]
- Rustom, I.Y.S. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical mathods. Food Chem. 1997, 96, 57–67. [Google Scholar] [CrossRef]
- Pluyer, H.R.; Ahmed, E.M.; Wei, C.I. Destruction of aflatoxin on peanuts by oven- and microwave-roasting. J. Food Protect. 1987, 50, 504–508. [Google Scholar] [CrossRef]
- Yazdanpanah, H.; Mohammadi, T.; Abouhossain, G.; Cheraghali, A.M. Effect of roasting on degradation of aflatoxins in contaminated pistachio nuts. Food Chem. Toxicol. 2005, 43, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
- Soliman, K.M. Incidence, level, and behavior of aflatoxins during coffee bean roasting and decaffenation. J. Agric. Food Chem. 2002, 50, 5567–5573. [Google Scholar] [CrossRef]
- Vujević, P.; Petrović, M.; Vahčić, N.; Milinović, B.; Čmelik, Z. Lipids and minerals of the most represented hazelnut varieties cultivated in Croatia. Ital. J. Food Sci. 2014, 26, 25–29. [Google Scholar]
- Amaral, J.S.; Casal, S.; Seabra, R.M.; Oliveira, B.P.P. Effects of roasting on hazelnut lipids. J. Agric. Food Chem. 2006, 54, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Belviso, S.; Dal Bello, B.; Giacosa, S.; Bertolino, M.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Chemical, mechanical and sensory monitoring of hot air- and infraredroasted hazelnuts (Corylus avellana L.) during nine months of storage. Food Chem. 2017, 217, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Ciarmiello, L.F.; Piccirillo, P.; Gerardi, C.; Piro, F.; De Luca, A.; D’Imperio, F.; Rosito, V.; Poltronieri, P.; Santino, A. Microwave irradiation for dry-roasting of hazelnuts and evaluation of microwave treatment on hazelnuts peeling and fatty acid oxidation. J. Food Res. 2013, 2, 22–35. [Google Scholar] [CrossRef]
- Rastogi, N.K. Recent trends and developments in infrared heating in food processing. Crit. Rev. Food Sci. Nutr. 2012, 52, 737–760. [Google Scholar] [CrossRef] [PubMed]
- Ficarra, A.; Lo Fiego, D.P.; Minelli, G.; Antonelli, A. Ultra fast analysis of subcutaneous pork fat. Food Chem. 2010, 121, 809–814. [Google Scholar] [CrossRef]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Aflatoxin monitoring in Italian hazelnut products by LC-MS. Food Addit. Contam. Part B 2012, 5, 279–285. [Google Scholar] [CrossRef] [PubMed]
Hazelnut | T (°C) | t (min) | AFB1 | AFB2 | AFG1 | AFG2 |
---|---|---|---|---|---|---|
Italian | 120 | 20 | 17.5 ± 4.3 | 17.5 ± 3.8 | 5.62 ± 2.9 | 9.46 ± 3.8 |
Turkish | 47.2 ± 2.4 | 81.7 ± 5.1 | 77.8 ± 10 | 69.9 ± 6.0 | ||
Italian | 120 | 40 | 11.7 ± 1.4 | 13.9 ± 2.5 | 17.8 ± 5.4 | 22.5 ± 6.0 |
Turkish | 12.9 ± 8.0 | 53.1 ± 4.9 | 12.0 ± 5.2 | 13.9 ± 5.5 | ||
Italian | 170 | 20 | 38.7 ± 7.7 | 62.9 ± 5.8 | 24.7 ± 5.4 | 68.9 ± 14 |
Turkish | 7.39 ± 1.8 | 42.3 ± 8.4 | 10.4 ± 1.9 | 13.6 ± 5.3 | ||
Italian | 170 | 40 | 17.9 ± 7.3 | 43.6 ± 10 | 8.21 ± 1.1 | 34.5 ± 8.3 |
Turkish | 4.09 ± 4.2 | 31.3 ± 6.6 | 6.04 ± 8.5 | 5.97 ± 8.4 |
Fatty Acid | Raw | 140 °C 20 min | 140 °C 40 min | Significance |
---|---|---|---|---|
Static Hot Air Treatment | ||||
Myristic (C14:0) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Palmitic (C16:0) | 5.79 ± 0.00 b | 5.92 ± 0.01 a | 5.74 ± 0.01 a | *** |
Palmitoleic (C16:1) | 0.24 ± 0.00 b | 0.24 ± 0.00 c | 0.24 ± 0.00 a | *** |
Margaric (C17:0) | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | ns |
Heptadecenoic (C17:1) | 0.07 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.00 b | *** |
Stearic (C18:0) | 2.32 ± 0.00 c | 2.36 ± 0.00 a | 2.27 ± 0.00 b | *** |
Elaidic (C18:1 ω9t) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Oleic (C18:1 ω9c) | 84.86 ± 0.00 c | 84.44 ± 0.02 b | 84.35 ± 0.03 a | *** |
Linoleic (C18:2 ω6c) | 6.27 ± 0.00 a | 6.53 ± 0.01 b | 6.88 ± 0.02 c | *** |
Arachidic (C20:0) | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 | ns |
Eicosenoic (C20:1) | 0.12 ± 0.00 a | 0.12 ± 0.00 b | 0.12 ± 0.00 c | *** |
α-Linolenic (C18:3 ω3) | 0.08 ± 0.00 b | 0.08 ± 0.00 a | 0.08 ± 0.00 a | * |
Docosanoic (C22:0) | 0.02 ± 0.00 ab | 0.02 ± 0.00 b | 0.02 ± 0.00 a | * |
Arachidonic (C20:4 ω6) | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.03 ± 0.00 b | * |
∑ SFA | 8.31 ± 0.00 c | 8.48 ± 0.01 a | 8.20 ± 0.01 b | *** |
∑ MUFA | 85.31 ± 0.00 c | 84.89 ± 0.02 b | 84.80 ± 0.03 a | *** |
∑ PUFA | 6.38 ± 0.00 a | 6.64 ± 0.01 b | 6.99 ± 0.02 c | *** |
UFA/SFA | 11.03 ± 0.00 a | 10.80 ± 0.01 c | 11.19 ± 0.02 b | *** |
Oleic/Linoleic (O/L) | 13.54 ± 0.01 c | 12.93 ± 0.02 b | 12.26 ± 0.03 a | *** |
Iodine value (IV) | 88.34 ± 0.00 a | 88.43 ± 0.01 b | 88.99 ± 0.01 c | *** |
Infrared Rays Treatment | ||||
Myristic (C14:0) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Palmitic (C16:0) | 5.79 ± 0.00 b | 6.16 ± 0.02 b | 5.94 ± 0.01 a | * |
Palmitoleic (C16:1) | 0.24 ± 0.00 b | 0.27 ± 0.00 a | 0.25 ± 0.00 b | *** |
Margaric (C17:0) | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | ns |
Heptadecenoic (C17:1) | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.07 ± 0.00 | ns |
Stearic (C18:0) | 2.32 ± 0.00 b | 2.44 ± 0.00 a | 2.34 ± 0.00 b | * |
Elaidic (C18:1 ω9t) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Oleic (C18:1 ω9c) | 84.86 ± 0.00 a | 84.28 ± 0.03 b | 84.44 ± 0.02 a | *** |
Linoleic (C18:2 ω6c) | 6.27 ± 0.00 b | 6.32 ± 0.01 a | 6.50 ± 0.01 b | *** |
Arachidic (C20:0) | 0.11 ± 0.00 | 0.12 ± 0.00 | 0.12 ± 0.00 | ns |
Eicosenoic (C20:1) | 0.12 ± 0.00 | 0.12 ± 0.00 | 0.12 ± 0.00 | ns |
α-Linolenic (C18:3 ω3) | 0.08 ± 0.00 b | 0.08 ± 0.00 a | 0.08 ± 0.00 b | *** |
Docosanoic (C22:0) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Arachidonic (C20:4 ω6) | 0.03 ± 0.00 b | 0.03 ± 0.00 a | 0.03 ± 0.00 b | *** |
∑ SFA | 8.31 ± 0.00 b | 8.81 ± 0.02 a | 8.48 ± 0.01 b | * |
∑ MUFA | 85.31 ± 0.00 a | 84.76 ± 0.03 b | 84.91 ± 0.01 a | *** |
∑ PUFA | 6.38 ± 0.00 b | 6.44 ± 0.01 a | 6.62 ± 0.01 b | *** |
UFA/SFA | 11.03 ± 0.00 a | 10.36 ± 0.02 b | 10.80 ± 0.01 a | * |
Oleic/Linoleic (O/L) | 13.54 ± 0.01 a | 13.34 ± 0.03 b | 12.99 ± 0.02 a | *** |
Iodine value (IV) | 88.34 ± 0.00 | 87.97 ± 0.00 a | 88.40 ± 0.00 b | * |
Fatty Acid | Raw | 140 °C 20 min | 140 °C 40 min | Significance |
---|---|---|---|---|
Static Hot Air Treatment | ||||
Myristic (C14:0) | 0.03 ± 0.00 b | 0.03 ± 0.00 a | 0.03 ± 0.00 b | *** |
Palmitic (C16:0) | 5.57 ± 0.00 a | 5.58 ± 0.00 a | 5.76 ± 0.01 b | *** |
Palmitoleic (C16:1) | 0.17 ± 0.00 a | 0.17 ± 0.00 b | 0.18 ± 0.00 c | *** |
Margaric (C17:0) | 0.04 ± 0.00 a | 0.04 ± 0.00 a | 0.04 ± 0.00 b | *** |
Heptadecenoic (C17:1) | 0.07 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.00 a | *** |
Stearic (C18:0) | 2.21 ± 0.00 c | 2.04 ± 0.00 a | 2.17 ± 0.00 b | *** |
Elaidic (C18:1 ω9t) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Oleic (C18:1 ω9c) | 84.87 ± 0.01 b | 85.44 ± 0.01 c | 84.55 ± 0.01 a | *** |
Linoleic (C18:2 ω6c) | 6.64 ± 0.01 b | 6.25 ± 0.00 a | 6.81 ± 0.01 c | *** |
Arachidic (C20:0) | 0.12 ± 0.00 b | 0.11 ± 0.00 a | 0.12 ± 0.00 b | *** |
Eicosenoic (C20:1) | 0.15 ± 0.01 | 0.14 ± 0.00 | 0.13 ± 0.00 | ns |
α-Linolenic (C18:3 ω3) | 0.06 ± 0.00 a | 0.06 ± 0.00 b | 0.07 ± 0.00 c | *** |
Docosanoic (C22:0) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ns |
Arachidonic (C20:4 ω6) | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | ns |
∑ SFA | 8.00 ± 0.00 b | 7.83 ± 0.01 a | 8.15 ± 0.00 c | *** |
∑ MUFA | 85.28 ± 0.01 b | 85.83 ± 0.01 c | 84.95 ± 0.01 a | *** |
∑ PUFA | 6.73 ± 0.01 b | 6.34 ± 0.00 a | 6.91 ± 0.01 c | *** |
UFA/SFA | 11.51 ± 0.00 b | 11.78 ± 0.01 c | 11.27 ± 0.00 a | *** |
Oleic/Linoleic (O/L) | 12.78 ± 0.02 b | 13.68 ± 0.01 c | 12.42 ± 0.01 a | *** |
Iodine value (IV) | 88.83 ± 0.03 a | 88.64 ± 0.00 c | 88.87 ± 0.00 b | *** |
Infrared Rays Treatment | ||||
Myristic (C14:0) | 0.03 ± 0.00 b | 0.03 ± 0.00 a | 0.03 ± 0.00 b | *** |
Palmitic (C16:0) | 5.57 ± 0.00 c | 5.63 ± 0.01 b | 5.36 ± 0.04 a | *** |
Palmitoleic (C16:1) | 0.17 ± 0.00 b | 0.17 ± 0.00 b | 0.16 ± 0.00 a | *** |
Margaric (C17:0) | 0.04 ± 0.00 b | 0.04 ± 0.00 a | 0.04 ± 0.00 a | *** |
Heptadecenoic (C17:1) | 0.07 ± 0.00 a | 0.07 ± 0.00 b | 0.07 ± 0.00 a | ** |
Stearic (C18:0) | 2.21 ± 0.00 c | 2.08 ± 0.00 a | 2.19 ± 0.02 b | *** |
Elaidic (C18:1 ω9t) | 0.02 ± 0.00 a | 0.02 ± 0.00 ab | 0.03 ± 0.00 b | ** |
Oleic (C18:1 ω9c) | 84.87 ± 0.01 | 85.08 ± 0.02 | 84.96 ± 0.58 | ns |
Linoleic (C18:2 ω6c) | 6.64 ± 0.01 b | 6.52 ± 0.00 c | 6.10 ± 0.04 a | *** |
Arachidic (C20:0) | 0.12 ± 0.00 b | 0.11 ± 0.00 a | 0.12 ± 0.00 c | *** |
Eicosenoic (C20:1) | 0.15 ± 0.01 | 0.14 ± 0.00 | 0.14 ± 0.00 | ns |
α-Linolenic (C18:3 ω3) | 0.06 ± 0.00 a | 0.06 ± 0.00 c | 0.06 ± 0.00 b | *** |
Docosanoic (C22:0) | 0.02 ± 0.00 b | 0.02 ± 0.00 a | 0.02 ± 0.00 b | *** |
Arachidonic (C20:4 ω6) | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | ns |
∑ SFA | 8.00 ± 0.00 b | 7.90 ± 0.01 a | 7.76 ± 0.06 a | *** |
∑ MUFA | 85.28 ± 0.01 | 85.48 ± 0.02 | 85.35 ± 0.59 | ns |
∑ PUFA | 6.73 ± 0.01 b | 6.61 ± 0.00 c | 6.19 ± 0.05 a | *** |
UFA/SFA | 11.51 ± 0.00 a | 11.65 ± 0.02 b | 11.79 ± 0.01 a | *** |
Oleic/Linoleic (O/L) | 12.78 ± 0.02 b | 13.05 ± 0.01 a | 13.92 ± 0.01 c | *** |
Iodine value (IV) | 88.83 ± 0.03 b | 88.81 ± 0.01 c | 87.91 ± 0.61 a | *** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siciliano, I.; Dal Bello, B.; Zeppa, G.; Spadaro, D.; Gullino, M.L. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts. Toxins 2017, 9, 72. https://doi.org/10.3390/toxins9020072
Siciliano I, Dal Bello B, Zeppa G, Spadaro D, Gullino ML. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts. Toxins. 2017; 9(2):72. https://doi.org/10.3390/toxins9020072
Chicago/Turabian StyleSiciliano, Ilenia, Barbara Dal Bello, Giuseppe Zeppa, Davide Spadaro, and Maria Lodovica Gullino. 2017. "Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts" Toxins 9, no. 2: 72. https://doi.org/10.3390/toxins9020072
APA StyleSiciliano, I., Dal Bello, B., Zeppa, G., Spadaro, D., & Gullino, M. L. (2017). Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts. Toxins, 9(2), 72. https://doi.org/10.3390/toxins9020072