trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto
Abstract
:1. Introduction
2. Results and Discussion
2.1. Production of Phenolic Acids by F. culmorum and F. graminearum s.s.
2.2. Exogenously Applied trans-Cinnamic and Chlorogenic Acids Contribute to Changes in the Production of Phenolic Acids in Fungal Cultures of F. culmorum and F. graminearum s.s.
2.3. Exogenous trans-Cinnamic and Chlorogenic Acids Lowers Trichothecene Accumulation in the Media
2.4. Gene Expression Studies Reveal Stronger Inhibitory Effect of trans-Cinnamic than Chlorogenic Acid on the Activity of Tri Genes Involved in Trichothecene Biosynthesis
2.5. trans-Cinnamic and Chlorogenic Acids Exhibit Different Effects on Ergosterol Biosynthesis by F. culmorum and F. graminearum s.s.
3. Conclusions
4. Materials and methods
4.1. Fungal Strains
4.2. Medium and Culture Conditions
4.3. Determination of Phenolic Acids in the Medium
4.4. Determination of Antioxidant Capacity (VCEAC/L) and Radical Scavenging Activity (ABTS) of trans-Cinnamic and Chlorogenic Acids
4.5. Analysis of Trichothecenes from Fungal Cultures
4.6. Extraction of total RNA and preparation of cDNA
4.7. RT-qPCR and Data Analyses
4.8. Determination of Ergosterol
4.9. Statistical Analyses
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pasquali, M.; Migheli, Q. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int. J. Food Microbiol. 2014, 17, 164–182. [Google Scholar] [CrossRef]
- Van der Lee, T.; Zhang, H.; Van Diepeningen, A.; Waalwijk, C. Biogeography of Fusarium graminearum species complex and chemotypes: A review. Food Addit. Contam. 2015, 32, 453–460. [Google Scholar] [CrossRef]
- Desjardins, A.E. Fusarium Mycotoxins Chemistry, Genetics and Biology; American Phytopathological Society Press: St. Paul, MN, USA, 2006. [Google Scholar]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Paul, P.A.; Lipps, P.E.; Hershman, D.E.; McMullen, M.P.; Draper, M.A.; Madden, LV. Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: A multivariate meta-analysis. Phytopathology 2008, 98, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Mesterházy, Á.; Tóth, B.; Varga, M.; Bartók, T.; Szabó-Hevér, Á.; Farády, L.; Lehoczki-Krsjak, S. Role of fungicides, application of nozzle types, and the resistance level of wheat varieties in the control of Fusarium Head Blight and deoxynivalenol. Toxins 2011, 3, 1453–1483. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.A. Natural Fungicides obtained from plants. In Fungicides for Plant and Animal Diseases; InTech: Rijeka, Croatia, 2012; pp. 1–28. [Google Scholar]
- Soković, M.D.; Glamočlija, J.M.; Ćirić, A.D. Natural products from plants and fungi as fungicides. In Fungicides—Showcases of Integrated Plant Disease Management from around the World; InTech: Rijeka, Croatia, 2013; pp. 185–232. [Google Scholar] [CrossRef]
- Pani, G.; Scherm, B.; Azara, E.; Balmas, V.; Jahanshiri, Z.; Carta, P.; Fabbri, D.; Dettori, M.A.; Fadda, A.; Dessi, A.; et al. Natural and natural-like phenolic inhibitors of type b trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. J. Agric. Food Chem. 2014, 62, 4969–4978. [Google Scholar] [CrossRef] [PubMed]
- Walter, S.; Nicholson, P.; Doohan, F.M. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 2010, 185, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Bollina, V.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S. Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol. Biol. 2011, 77, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Gunnaiah, R.; Kushalappa, A.C.; Duggavathi, R.; Fox, S.; Somers, D.J. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 2012, 7, e40695. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014, 19, 19292–19349. [Google Scholar] [CrossRef] [PubMed]
- Atanasova-Pénichon, V.; Barreau, C.; Richard-Forget, F. Antioxidant secondary metabolites in cereals: Potential involvement in resistance to Fusarium and mycotoxin accumulation. Front. Microbiol. 2016, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Atanasova-Penichon, V.; Pons, S.; Pinson-Gadais, L.; Picot, A.; Marchegay, G.; Bonnin-Verdal, M.-N.; Ducos, C.; Barreau, C.; Roucolle, J.; Sehabiague, P.; et al. Chlorogenic acid and maize Ear Rot Resistance: A dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Mol. Plant Microbe Interact. 2012, 25, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Audenaert, K.; Callewaert, E.; Höfte, M.; De Saeger, S.; Haesaert, G. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol. 2010, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Waśkiewicz, A.; Morkunas, I.; Bednarski, W.; Mai, V.-C.; Formela, M.; Beszterda, M.; Wiśniewska, H.; Goliński, P. Deoxynivalenol and oxidative stress indicators in winter wheat inoculated with Fusarium graminearum. Toxins 2014, 6, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Bakan, B.; Bily, A.C.; Melcion, D.; Cahagnier, B.; Regnault-Roger, C.; Philogène, B.J.; Richard-Molard, D. Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels. J. Agric. Food Chem. 2003, 51, 2826–2831. [Google Scholar] [CrossRef] [PubMed]
- Boutigny, A.L.; Barreau, C.; Atanasova-Penichon, V.; Verdal-Bonnin, M.N.; Pinson-Gadais, L.; Richard-Forget, F. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol. Res. 2009, 113, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Boutigny, A.L.; Atanasova-Penichon, V.; Benet, M.; Barreau, C.; Richard-Forget, F. Natural phenolic acids from wheat bran inhibit Fusarium culmorum trichothecene biosynthesis in vitro by repressing Tri gene expression. Eur. J. Plant Pathol. 2010, 127, 275–286. [Google Scholar] [CrossRef]
- Gauthier, L.; Bonnin-Verdal, M.N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol. 2016, 221, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ponts, N.; Pinson-Gadais, L.; Boutigny, A.L.; Barreau, C.; Richard-Forget, F. Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathology 2011, 101, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Etzerodt, T.; Maeda, K.; Nakajima, Y.; Laursen, B.; Fomsgaard, I.S.; Kimura, M. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. Int. J. Food Microbiol. 2015, 214, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Ferruz, E.; Loran, S.; Herrera, M.; Gimenez, I.; Bervis, N.; Barcena, C.; Carramiñana, J.J.; Juan, T.; Herrera, A.; Ariño, A. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids. J. Food Prot. 2016, 79, 1753–1758. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Tohge, T.; Watanabe, M.; Hoefgen, R.; Fernie, A.R. Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bandoni, R.J.; Moore, K.; Subba Rao, P.V.; Towers, G.H. Phenylalanine and tyrosine ammonia-lyase activity in some Basidiomycetes. Phytochemistry 1968, 7, 205–207. [Google Scholar] [CrossRef]
- Vance, C.P.; Bandoni, R.J.; Towers, G.H.N. Further observations on phenylalanine ammonia-lyase in fungi. Phytochemistry 1975, 14, 1513–1514. [Google Scholar] [CrossRef]
- Hyun, M.W.; Yun, Y.H.; Kim, J.Y.; Kim, S.H. Fungal and plant phenylalanine ammonia-lyase. Mycobiology 2011, 39, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Sachan, A.; Ghosh, S.; Mitra, A. Biotransformation of p-coumaric acid by Paecilomyces variotii. Lett. Appl. Microbiol. 2006, 42, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Estrada Alvarado, I.; Navarro, D.; Record, E.; Asther, M.; Asther, M.; Lesage-Meessen, L. Fungal biotransformation of p-coumaric acid into caffeic acid by Pycnoporus cinnabarinus: An alternative for producing a strong natural antioxidant. World J. Microbiol. Biotechnol. 2003, 19, 157–160. [Google Scholar] [CrossRef]
- Estrada Alvarado, I.; Lomascolo, A.; Navarro, D.; Delattre, M.; Asther, M.; Lesage-Meessen, L. Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus. Appl. Microbiol. Biotechnol. 2001, 57, 725–730. [Google Scholar] [PubMed]
- Tillett, R.; Walker, J.R.L. Metabolism of ferulic acid by a Penicillium sp. Arch. Microbiol. 1990, 154, 206–208. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Delattre, M.; Haon, M.; Thibault, J.F.; Ceccaldi, B.C.; Brunerie, P.; Asther, M. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol. 1996, 50, 107–113. [Google Scholar] [CrossRef]
- Falconnier, B.; Lapierre, C.; Lesage-Meessen, L.; Yonnet, G.; Brunerie, P.; Colonna-Ceccaldi, B.; Corrieu, G.; Asther, M. Vanillin as a product to ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: Identification of metabolic pathways. J. Biotechnol. 1994, 37, 123–132. [Google Scholar] [CrossRef]
- Mukherjee, G.; Sachan, A.; Ghosh, S.; Mitra, A. Conversion of sinapic acid to syringic acid by a filamentous fungus Paecilomyces variotii. J. Gen. Appl. Microbiol. 2006, 52, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Torres-Mancera, M.T.; Baqueiro-Peña, I.; Figueroa-Montero, A.; Rodríguez-Serrano, G.; González-Zamora, E.; Favela-Torres, E.; Saucedo-Castañeda, G. Biotransformation and improved enzymatic extraction of chlorogenic acid from coffee pulp by filamentous fungi. Biotechnol. Prog. 2013, 29, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Atanasova-Penichon, V.; Bernillon, S.; Marchegay, G.; Lornac, A.; Pinson-Gadais, L.; Ponts, N.; Zehraoui, E.; Barreau, C.; Richard-Forget, F. Bioguided isolation, characterization, and biotransformation by Fusarium verticillioides of maize kernel compounds that inhibit fumonisin production. Mol. Plant Microbe Interact. 2014, 27, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.J.; Dagley, S. Catabolism of aromatic acids in Trichosporon cutaneum. J. Bacteriol. 1980, 141, 534–543. [Google Scholar] [PubMed]
- Cain, R.B.; Bilton, R.F.; Darrah, J.A. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi. Biochem. J. 1968, 108, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D. Fungal degradation of benzoic acid and related compounds. World J. Microbiol. Biotechnol. 1993, 9, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Andújar, I.; Vilanova, S.; Plazas, M.; Gramazio, P.; Herraiz, F.J.; Brar, N.S.; Prohens, J. Breeding Vegetables with increased content in bioactive phenolic acids. Molecules 2015, 20, 18464–18481. [Google Scholar] [CrossRef] [PubMed]
- Gowri, G.; Bugos, R.C.; Campbell, W.H.; Maxwell, C.A.; Dixon, R.A. Stress responses in alfafa (Medicago sativa L.). X. Molecular cloning and expression of -adenosyl-L-methionine: Caffeic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiol. 1991, 97, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Bagal, U.R.; Leebens-Mack, J.H.; Lorenz, W.W.; Dean, J.F.D. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC Genom. 2012, 13, S1. [Google Scholar]
- Dixon, R.A.; Paiva, N.L. Stress-induced Phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Typek, R. Thermal stability of 5-o-caffeoylquinic acid in aqueous solutions at different heating conditions. J. Agric. Food Chem. 2010, 58, 12578–12584. [Google Scholar] [CrossRef] [PubMed]
- Kulik, T.; Buśko, M.; Bilska, K.; Ostrowska-Kołodziejczak, A.; Van Diepeningen, A.D.; Perkowski, J.; Stenglein, S. Depicting the discrepancy between Tri genotype and chemotype on the basis of strain CBS 139514 from a field population of F. graminearum sensu stricto from Argentina. Toxins 2016, 8, 330. [Google Scholar] [CrossRef] [PubMed]
- Kulik, T.; Abarenkov, K.; Buśko, M.; Bilska, K.; van Diepeningen, A.D.; Ostrowska-Kołodziejczak, A.; Krawczyk, K.; Brankovics, B.; Stenglein, S.; Sawicki, J.; et al. ToxGen: An improved reference database for the identification of type B-trichothecene genotypes in Fusarium. PeerJ 2017, 5, e2992. [Google Scholar] [CrossRef] [PubMed]
- Tag, A.G.; Garifullina, G.F.; Peplow, A.W.; Ake, C.J.; Phillips, T.D.; Hohn, T.M.; Beremand, M.N. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl. Environ. Microbiol. 2001, 67, 5294–5302. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Lee, S.-H.; Shin, J.Y.; Kim, H.-K.; Yun, S.-H.; Kim, H.-Y.; Lee, S.; Ryu, J.-G. Comparison of trichothecene biosynthetic gene expression between Fusarium graminearum and Fusarium asiaticum. Plant Pathol. J. 2014, 30, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, C.C.; Fernando, W.G.D. Comparative analysis of deoxynivalenol biosynthesis related gene expression among different chemotypes of Fusarium graminearum in spring wheat. Front. Microbiol. 2016, 7, 1229. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.P.; Alexander, N.J.; Harris, L.J. CLM1 of Fusarium graminearum encodes a longiborneol synthase required for culmorin production. Appl. Environ. Microbiol. 2010, 76, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Labronici Bertin, R.; Gonzaga, L.V.; da Silva Campelo Borges, G.; Stremel Azevedo, M.; França Maltez, H.; Heller, M.; Micke, G.A.; Ballod Tavares, L.B.; Fett, R. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Res. Int. 2014, 55, 404–411. [Google Scholar] [CrossRef]
- Mille-Lindblom, C.; von Wachenfeldt, E.; Tranvik, L.J. Ergosterol as a measure of living fungal biomass: Persistence in environmental samples after fungal death. J. Microbiol. Methods 2004, 59, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tong, J.; Lee, C.W.; Ha, S.; Eom, S.H.; Im, Y.J. Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nat. Commun. 2015, 6, 6129. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, J.L.; Sondergaard, T.E. The effects of different yeast extracts on secondary metabolite production in Fusarium. Int. J. Food Microbiol. 2014, 170, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellergini, N.; Proteggente, A.; Pannala, A.S.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Perkowski, J.; Kiecana, I.; Kaczmarek, Z. Natural occurrence and distribution of Fusarium toxins in 15 naturally-contaminated barley cultivars. Eur. J. Plant Pathol. 2003, 109, 331–339. [Google Scholar] [CrossRef]
- Kulik, T.; Łojko, M.; Jestoi, M.; Perkowski, J. Sublethal concentrations of azoles induce tri transcript levels and trichothecene production in Fusarium graminearum. FEMS Microbiol. Lett. 2012, 335, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Kulik, T.; Buśko, M.; Pszczółkowska, A.; Perkowski, J.; Okorski, A. Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett. Appl. Microbiol. 2014, 59, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Geneious. Available online: http://www.geneious.com (accessed on 10 January 2016).
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, 1–10. [Google Scholar] [CrossRef]
- Perkowski, J.; Buśko, M.; Stuper, K.; Kostecki, M.; Matysiak, A.; Szwajkowska-Michałek, L. Concentration of ergosterol in small-grained naturally contaminated and inoculated cereals. Biologia 2008, 63, 542–547. [Google Scholar] [CrossRef]
Phenolic Acid Concentration | Strain | Tri Genotype | Trichothecene Levels (mg/kg) (n = 3 in Each Condition) | RQ (n = 6 in Each Condition) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DON | 3ADON | 15ADON | NIV | 4ANIV | Sum of Trichothecenes | Tri4 | Tri5 | Tri10 | |||
YES + fungal controls | MUCL 53469 | 3ADON | 17.5 ± 0.4 (a) | 23.1 ± 0.9 (a) | 40.6 | ||||||
CBS 173.31 | 3ADON | 63.7 ± 3.8 (b) | 9.9 ± 0.4 (a) | 73.6 | |||||||
CBS 139512 | NIV | 79.2 ± 3.2 (a) | 96.4 ± 4.8 (a) | 175.6 | |||||||
CBS 119173 | 3ADON | 49.6 ± 3.6 (a) | 12.2 ± 0.8 (a) | 61.8 | |||||||
CBS 138561 | 15ADON | 1.5 ± 0.7 (a) | 1.5 ± 0.7 (a) | 3 | |||||||
MUCL 53455 | NIV | 4.4 ± 0.2 (a) | 4.4 | ||||||||
trans-cinnamic acid 0.7 mM (100 μg/g) | MUCL 53469 | 3ADON | 4.62 ± 0.14 (c) | 16.41 ± 0.33 (b) | 21.03 | 0.21 (0.12–0.38) | 0.26 (0.14–0.46) | NS | |||
CBS 173.31 | 3ADON | 52.48 ± 1.57 (b) | 9.9 ± 0.22 (a) | 62.38 | 0.13 (0.11–0.16) | 0.19 (0.16–0.23) | NS | ||||
CBS 139512 | NIV | 68.63 ± 1.37 (b) | 15.45 ± 0.62 (b) | 84.08 | 0.14 (0.07–0.28) | 0.17 (0.12–0.26) | NS | ||||
CBS 119173 | 3ADON | 2.7 ± 0.2 (b) | 0.5 ± 0.03 (b) | 3.2 | NS | NS | NS | ||||
CBS 138561 | 15ADON | 0.34 ± 0.01 (b) | 0.005 ± 0.0002 (b) | 0.35 | NS | NS | NS | ||||
MUCL 53455 | NIV | 2.07 ± 0.12 (b) | 2.07 | NS | NS | NS | |||||
trans-cinnamic acid 2.7 mM (400 μg/g) | MUCL 53469 | 3ADON | 8 ± 0.2 (b) | 17.5 ± 0.5 (b) | 25.5 | 0.02 (0.006–0.038) | 0.03 (0.02–0.07) | 0.15 (0.1–0.26) | |||
CBS 173.31 | 3ADON | 44.01 ± 0.88 (c) | 7.47 ± 0.37 (c) | 51.48 | 0.02 (0.007–0.055) | 0.02 (0.01–0.046) | 0.18 (0.1–0.36) | ||||
CBS 139512 | NIV | 37.26 ± 2.23 (c) | 14.12 ± 0.57 (c) | 51.38 | 0.046 (0.044–0.047) | 0.023 (0.02–0.03) | NS | ||||
CBS 119173 | 3ADON | 1.8 ± 0.1 (b) | 1.3 ± 0.05 (b) | 3.1 | 0.15 (0.089–0.255) | 0.21 (0.083–0.541) | NS | ||||
CBS 138561 | 15ADON | 0.22 ± 0.01 (b) | 0.003 ± 0.0001 (b) | 0.22 | 0.086 (0.058–0.212) | 0.039 (0.028–0.076) | NS | ||||
MUCL 53455 | NIV | 0.59 ± 0.01 (c) | 0.59 | 0.023 (0.019–0.023) | 0.022 (0.02–0.024) | NS | |||||
chlorogenic acid 0.3 mM(100 μg/g) | MUCL 53469 | 3ADON | 9.62 ± 0.57 (b) | 21.51 ± 0.43 (ab) | 31.13 | NS | NS | NS | |||
CBS 173.31 | 3ADON | 84.13 ± 3.37 (a) | 11.52 ± 0.46 (a) | 95.65 | NS | NS | NS | ||||
CBS 139512 | NIV | 32.3 ± 1.9 (d) | 10.3 ± 0.4 (c) | 42.6 | NS | NS | NS | ||||
CBS 119173 | 3ADON | 3.2 ± 0.2 (b) | 1.0 ± 0.1 (b) | 4.2 | NS | NS | NS | ||||
CBS 138561 | 15ADON | 1.88 ± 0.11 (a) | 0.12 ± 0.01 (b) | 2 | NS | NS | NS | ||||
MUCL 53455 | NIV | 2.41 ± 0.15 (c) | 2.41 | NS | NS | NS | |||||
chlorogenic acid 1.1 mM (400 μg/g) | MUCL 53469 | 3ADON | 7.93 ± 0.32 (c) | 15.66 ± 0.47 (c) | 23.59 | NS | NS | NS | |||
CBS 173.31 | 3ADON | 54.88 ± 1.31 (b) | 4.27 ± 0.02 (a) | 59.15 | 0.68 (0.65–0.71) | NS | NS | ||||
CBS 139512 | NIV | 49.6 ± 3 (c) | 22.1 ± 1.3 (b) | 71.7 | NS | NS | NS | ||||
CBS 119173 | 3ADON | 5 ± 0.3 (b) | 1.7 ± 0.1 (b) | 6.7 | 0.43 (0,36–0,5) | 0.59 (0.55–0.65) | 0.89 (0.85–0.93) | ||||
CBS 138561 | 15ADON | 0.29 ± 0,01 (b) | 0.07 ± 0.01 (b) | 0.36 | NS | NS | NS | ||||
MUCL 53455 | NIV | 3.14 ± 0.1 (b) | 3.14 | NS | NS | NS | |||||
chlorogenic acid 2.3 mM (800 μg/g) | MUCL 53469 | 3ADON | 7.42 ± 0.37 (c) | 20.3 ± 0.81 (b) | 27.72 | NS | NS | NS | |||
CBS 173.31 | 3ADON | 41.97 ± 1.68 (c) | 2.6 ± 0.16 (b) | 44.57 | 0.05 (0.04–0.05) | 0.12 (0.11–0.14) | 0.17 (0.15–0.2) | ||||
CBS 139512 | NIV | 57 ± 1.1 (b) | 16.5 ± 0.8 (bc) | 73.5 | NS | NS | NS | ||||
CBS 119173 | 3ADON | 4.9 ± 0.3 (b) | 1.8 ± 0.1 (b) | 6.7 | 0.47 (0.45–0.49) | 0.71 (0.65–0.71) | 0.82 (0.77–0.86) | ||||
CBS 138561 | 15ADON | 1.16 ± 0.07 (ab) | 0.05 ± 0.002 (b) | 1.21 | NS | NS | NS | ||||
MUCL 53455 | NIV | 1.85 ± 0.1 (d) | 1.85 | NS | NS | NS |
Phenolic Acid | VCEAC/L | ABTS (μmol TROLOX/100 g s.m.) | Retention Times (min) * |
---|---|---|---|
trans-Cinnamic acid | 812.3 | 314.9 | 9.6 |
Chlorogenic acid | 12.3 | 57.1 | 2.6 |
Species | Strain | Trichothecene Genotype | Origin, Host and Year of Isolation |
---|---|---|---|
F. culmorum | CBS 173.31, NRRL 26853 | 3ADON | Canada, oat, 1927 |
MUCL 53469 | 3ADON | Belgium, corn, 2007 | |
CBS 139512 | NIV | Poland, wheat kernel, 2003 | |
F. graminearum s.s. | CBS 119173, NRRL 38369 | 3ADON | USA, Louisiana, wheat head, 2005 |
CBS 138561 | 15ADON | Poland, wheat kernel, 2010 | |
MUCL 53455 | NIV | Belgium, corn, 2007 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulik, T.; Stuper-Szablewska, K.; Bilska, K.; Buśko, M.; Ostrowska-Kołodziejczak, A.; Załuski, D.; Perkowski, J. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto. Toxins 2017, 9, 198. https://doi.org/10.3390/toxins9070198
Kulik T, Stuper-Szablewska K, Bilska K, Buśko M, Ostrowska-Kołodziejczak A, Załuski D, Perkowski J. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto. Toxins. 2017; 9(7):198. https://doi.org/10.3390/toxins9070198
Chicago/Turabian StyleKulik, Tomasz, Kinga Stuper-Szablewska, Katarzyna Bilska, Maciej Buśko, Anna Ostrowska-Kołodziejczak, Dariusz Załuski, and Juliusz Perkowski. 2017. "trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto" Toxins 9, no. 7: 198. https://doi.org/10.3390/toxins9070198
APA StyleKulik, T., Stuper-Szablewska, K., Bilska, K., Buśko, M., Ostrowska-Kołodziejczak, A., Załuski, D., & Perkowski, J. (2017). trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto. Toxins, 9(7), 198. https://doi.org/10.3390/toxins9070198