Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Occurrence of the Mycotoxins in Dried Fruits
2.2.1. Raisins
2.2.2. Dried Apricots
2.2.3. Dried Dates
2.2.4. Dried Wolfberries
2.3. Co-Occurrence of Mycotoxins
3. Conclusions
4. Materials and Methods
4.1. Reagents
4.2. Standards
4.3. Samples
4.4. Sample Preparation
4.4.1. Extraction
4.4.2. Cleanup
4.5. UPLC-MS/MS Analysis
4.6. Method Validation
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Drusch, S.; Ragab, W. Mycotoxins in fruits, fruits juices, and dried fruits. J. Food Prot. 2003, 66, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Karaca, H.; Velioglu, Y.S.; Nas, S. Mycotoxins: Contamination of dried fruits and degradation by ozone. Toxin Rev. 2010, 29, 51–59. [Google Scholar] [CrossRef]
- Ozer, H.; Oktay Basegmez, H.I.; Ozay, G. Mycotoxin risks and toxigenic fungi in date, prune and dried apricot among Mediterranean crops. Phytopathol. Mediterr. 2012, 51, 148–157. [Google Scholar]
- Tang, Y.; Xue, H.; Bi, Y.; Li, Y.; Wang, Y.; Zhao, Y.; Shen, K. A method of analysis for T-2 toxin and neosolaniol by UPLC-MS/MS in apple fruit inoculated with Trichothecium roseum. Food Addit. Contam. 2015, 32, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Zohri, A.A.; Abdel-Gawad, K.M. Survey of mycoflora and mycotoxins of some dried fruits in Egypt. J. Basic Microb. 1993, 33, 279–288. [Google Scholar] [CrossRef]
- Gunsen, U.; Buyukyoruk, I. Aflatoxins in retail products in Bursa, Turkey. Vet. Hum. Toxicol. 2002, 44, 289–290. [Google Scholar] [PubMed]
- Alghalibi, S.M.S.; Shater, A.M. Mycoflora and mycotoxin contamination of some dried fruits in Yemen Republic. Assiut Univ. Bull. Environ. Res. 2004, 7, 19–27. [Google Scholar]
- Meyvaci, K.B.; Altindisli, A.; Aksoy, U.; Eltem, R.; Turgut, H.; Arasiler, Z.; Kartal, N. Ochratoxin A in sultanas from Turkey: Survey of unprocessed sultanas from vineyards and packinghouses. Food Addit. Contam. 2005, 22, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Iamanaka, B.T.; Taniwaki, M.H.; Menezes, H.C.; Vicente, E.; Fungaro, M.H.P. Incidence of toxigenic fungi and ochratoxin A in dried fruits sold in Brazil. Food Addit. Contam. 2005, 22, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
- Bircan, C. Incidence of ochratoxin A in dried fruits and co-occurrence with aflatoxins in dried figs. Food Chem. Toxicol. 2009, 47, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Azaiez, I.; Font, G.; Mañes, J.; Fernández-Franzón, M. Survey of mycotoxins in dates and dried fruits from Tunisian and Spanish markets. Food Control 2015, 51, 340–346. [Google Scholar] [CrossRef]
- Palumbo, J.D.; O’keeffe, T.F.; Ho, Y.S.; Santillan, C.J. Occurrence of ochratoxin A contamination and detection of ochratoxigenic Aspergillus species in retail samples of dried fruits and nuts. J. Food Prot. 2015, 78, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Dong, M.; Han, W.; Shen, Y.; Nie, D.; Shi, W.; Zhao, Z. Occurrence and exposure assessment of multiple mycotoxins in dried fruits based on liquid chromatography-tandem mass spectrometry. World Mycotoxin J. 2016, 9, 465–474. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407–2504. [Google Scholar] [CrossRef]
- Hickert, S.; Bergmann, M.; Ersen, S.; Cramer, B.; Humpf, H.U. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res. 2016, 32, 7–18. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control 2016, 60, 196–204. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Mañes, J.; Berrada, H.; Juan, C. Development and validation of a LC-ESI-MS/MS method for the determination of Alternaria toxins alternariol, alternariol methyl-ether and tentoxin in tomato and tomato-based products. Toxins 2016, 8, 328. [Google Scholar] [CrossRef] [PubMed]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. A new method for detection of five Alternaria toxins in food matrices based on LC-APCI-MS. Food Chem. 2013, 140, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Shao, B.; Yang, D.J.; Li, F.Q. Natural occurrence of four Alternaria mycotoxins in tomato- and citrus-based foods in China. J. Agric. Food Chem. 2015, 63, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, N.; Xian, H.; Wei, D.; Shi, L.; Feng, X.Y. A single-step solid phase extraction for the simultaneous determination of 8 mycotoxins in fruits by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1429, 22–29. [Google Scholar] [CrossRef] [PubMed]
- European Commission. SANTE/11945/2015. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_11945.pdf (accessed on 25 March 2016).
- Azaiez, I.; Giusti, F.; Sagratini, G.; Mañes, J.; Fernández-Franzón, M. Multi-mycotoxins analysis in dried fruit by LC/MS/MS and a modified QuEChERS procedure. Food Anal. Methods 2014, 7, 935–945. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Rastelli, S.; Pietri, A. Aspergillus and Penicillium toxins in chestnuts and derived products produced in Italy. Food Control 2015, 50, 876–880. [Google Scholar] [CrossRef]
- Romero, S.M.; Comerio, R.M.; Larumbe, G.; Ritieni, A.; Vaamonde, G.; Fernández Pinto, V. Toxigenic fungi isolated from dried vine fruits in Argentina. Int. J. Food Microbiol. 2005, 104, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Pizzuttia, I.R.; de Kok, A.; Scholten, J.; Righi, L.W.; Cardoso, C.D.; Rohersa, G.N.; da Silvaa, R.C. Development, optimization and validation of a multimethod for the determination of 36 mycotoxins in wines by liquid chromatography-tandem mass spectrometry. Talanta 2014, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.E.; Urban, K.; Koppen, R.; Siegel, D.; Korn, U.; Koch, M. Mycotoxins as antagonistic or supporting agents in the interaction between phytopathogenic Fusarium and Alternaria fungi. World Mycotoxin J. 2015, 8, 311–321. [Google Scholar] [CrossRef]
- Prendes, L.P.; Merín, M.G.; Andreoni, M.A.; Ramirez, M.L.; Morata de Ambrosini, V.I. Mycobiota and toxicogenic Alternaria spp. strains in Malbec wine grapes from DOC San Rafael, Mendoza, Argentina. Food Control 2015, 57, 122–128. [Google Scholar] [CrossRef]
- Ntasiou, P.; Myresiotis, C.; Konstantinou, S.; Papadopoulou-Mourkidou, E.; Karaoglanids, G.S. Identification, characterization and mycotoxigenic ability of Alternaria spp. causing core rot of apple fruit in Greece. Int. J. Food Microbiol. 2015, 197, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.; Braga, A.; Venâncio, A. Mycotoxin producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Res. Microbiol. 2005, 156, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant Pathol. 2003, 109, 645–667. [Google Scholar] [CrossRef]
- Ciegler, A.; Vesonder, R.F.; Jackson, L.K. Production and biological activity of patulin and citrinin from Penicillium expansum. Appl. Environ. Microbiol. 1977, 33, 1004–1006. [Google Scholar] [PubMed]
- Ahmed, I.A.; Ahmed, A.W.K.; Robinson, R.K. Susceptibility of date fruits (Phoenix dactylifera) to aflatoxin production. J. Sci. Food Agric. 1997, 74, 64–68. [Google Scholar] [CrossRef]
- Yuan, H.J.; Yang, A.M.; Wu, G.F. Etiology of fruit rot of barbary wolfberry (Lycium barbarum L.) in the drying process with insolation method in green house. Adv. Mater. Res. 2012, 554–556, 1530–1533. [Google Scholar] [CrossRef]
Mycotoxins a | Linear Range (ng mL−1) | LOQ (ng mL−1) b | Spiked Levels | Recovery ± RSD (%) c | |||
---|---|---|---|---|---|---|---|
Raisins | Dried Apricots | Dried Dates | Dried Wolfberries | ||||
AME | 0.1~10 | 0.1 | LOQ | 85.2 ± 2.8 | 87.9 ± 4.3 | 83.1 ± 3.0 | 96.6 ± 2.6 |
10 LOQ | 96.8 ± 3.8 | 101.3 ± 2.7 | 102.3 ± 2.2 | 98.7 ± 2.2 | |||
PAT | 5~500 | 5 | LOQ | 82.0 ± 3.0 | 76.2 ± 6.2 | 87.8 ± 3.4 | 73.0 ± 6.4 |
10 LOQ | 91.5 ± 3.6 | 86.1 ± 3.5 | 96.8 ± 4.7 | 86.1 ± 4.3 | |||
AOH | 1~100 | 1 | LOQ | 91.1 ± 2.4 | 95.9 ± 2.9 | 89.0 ± 3.8 | 80.5 ± 3.0 |
10 LOQ | 93.4± 2.8 | 97.0 ± 3.8 | 101.1 ± 3.1 | 96.9 ± 5.4 | |||
TeA | 5~500 | 5 | LOQ | 82.9 ± 4.1 | 91.2 ± 1.9 | 82.3 ± 6.6 | 90.6 ± 3.6 |
10 LOQ | 90.0 ± 3.8 | 100.1 ± 4.9 | 101.9 ± 3.6 | 102.9 ± 6.2 | |||
TEN | 1~100 | 1 | LOQ | 89.1 ± 3.2 | 85.9 ± 4.5 | 93.4 ± 4.6 | 89.8 ± 3.6 |
10 LOQ | 102.5 ± 2.8 | 104.2 ± 3.4 | 106.6 ± 5.1 | 104.5 ± 5.6 | |||
ALT | 1~100 | 1 | LOQ | 84.4 ± 5.1 | 90.1 ± 3.8 | 89.4 ± 6.7 | 92.3 ± 2.3 |
10 LOQ | 95.8 ± 2.2 | 99.1 ± 4.1 | 98.8 ± 5.6 | 100.8 ± 2.6 | |||
OTA | 0.1~10 | 0.1 | LOQ | 85.5 ± 4.3 | 95.6 ± 4.8 | 80.3 ± 4.7 | 83.3 ± 3.9 |
10 LOQ | 97.7 ± 3.1 | 111.0 ± 3.7 | 92.7 ± 2.8 | 87.0 ± 2.4 | |||
OTB | 0.1~10 | 0.1 | LOQ | 90.6 ± 4.7 | 86.7 ± 4.3 | 82.1 ± 2.4 | 80.6 ± 2.6 |
10 LOQ | 90.7 ± 4.2 | 107.1 ± 3.0 | 95.8 ± 3.6 | 96.0 ± 4.5 | |||
PA | 5~500 | 5 | LOQ | 94.7 ± 5.6 | 82.4 ± 5.9 | 95.3 ± 4.1 | 89.4 ± 2.8 |
10 LOQ | 96.1 ± 3.2 | 81.2 ± 6.9 | 98.4 ± 3.3 | 92.1 ± 4.4 | |||
DON | 5~500 | 5 | LOQ | 71.3 ± 6.2 | 68.1 ± 6.4 | 70.8 ± 5.1 | 69.5 ± 5.9 |
10 LOQ | 75.1 ± 4.1 | 70.6 ± 5.8 | 75.3 ± 3.8 | 72.4 ± 4.2 | |||
Fus-X | 5~500 | 5 | LOQ | 82.9 ± 4.8 | 83.5 ± 5.3 | 76.7 ± 4.2 | 83.8 ± 4.0 |
10 LOQ | 85.6 ± 3.0 | 88.8 ± 4.8 | 85.8 ± 5.8 | 90.8 ± 3.3 | |||
3-AcDON | 5~500 | 5 | LOQ | 84.8 ± 6.6 | 84.9 ± 6.5 | 83.6 ± 8.8 | 83.4 ± 4.6 |
10 LOQ | 91.4 ± 3.5 | 92.4 ± 4.5 | 94.3±4.3 | 89.7 ± 3.2 | |||
15-AcDON | 5~500 | 5 | LOQ | 88.1 ± 5.5 | 87.7 ± 7.6 | 89.6 ± 7.5 | 85.3 ± 6.0 |
10 LOQ | 90.9 ± 6.8 | 95.6 ± 4.3 | 96.0 ± 3.7 | 87.0 ± 5.0 | |||
DAS | 5~500 | 5 | LOQ | 88.1 ± 4.3 | 77.8 ± 8.1 | 90.2 ± 5.8 | 75.9 ± 7.0 |
10 LOQ | 90.7± 5.2 | 89.1 ± 2.9 | 91.0 ± 5.0 | 87.1 ± 5.6 | |||
HT-2 | 5~500 | 5 | LOQ | 85.6 ± 3.1 | 75.4 ± 7.4 | 78.6 ± 8.2 | 77.3 ± 6.7 |
10 LOQ | 89.3 ± 4.9 | 87.1 ± 4.0 | 90.3 ± 7.8 | 83.3 ± 4.4 | |||
T-2 | 1~100 | 1 | LOQ | 95.4 ± 4.0 | 91.9 ± 5.5 | 99.3 ± 4.1 | 95.4 ± 6.6 |
10 LOQ | 100.6 ± 3.8 | 97.9 ± 3.4 | 101.8 ± 5.1 | 100.9 ± 4.3 | |||
MPA | 0.1~10 | 0.1 | LOQ | 93.9 ± 4.9 | 90.7 ± 4.2 | 92.8 ± 3.7 | 88.8 ± 4.4 |
10 LOQ | 102.9 ± 3.3 | 99.3 ± 3.3 | 100.6 ± 4.4 | 96.6 ± 5.4 |
Mycotoxins | Positives (N) | Occurrence (%) | Mean (μg kg−1) | Median (μg kg−1) | Range (μg kg−1) |
---|---|---|---|---|---|
AME | 18 | 8.2 | 3.0 | 0.5 | 0.2~15.0 |
PAT | 1 | 0.5 | 30.6 | 30.6 | 30.6 |
AOH | 5 | 2.3 | 12.0 | 7.5 | 3.5~27.4 |
TeA | 94 | 42.7 | 456.5 | 83.5 | 6.9~5665.3 |
TEN | 45 | 20.5 | 120.5 | 60.8 | 1.4~1032.6 |
OTA | 11 | 5.0 | 1.9 | 0.4 | 0.2~8.8 |
OTB | 2 | 0.9 | 0.2 | 0.2 | 0.1~0.3 |
PA | 14 | 6.3 | 39.1 | 35.2 | 20.4~85.6 |
MPA | 43 | 19.5 | 91.6 | 5.5 | 0.3~2647.3 |
Mycotoxins | Positives (N) | Occurrence (%) | Mean (μg kg−1) | Median (μg kg−1) | Range (μg kg−1) |
---|---|---|---|---|---|
Raisins | |||||
TeA | 20 | 35.1 | 104.8 | 29.4 | 6.9~594.4 |
AOH | 3 | 5.3 | 8.9 | 7.5 | 3.5~15.6 |
AME | 11 | 19.3 | 3.1 | 0.4 | 0.3~13.5 |
OTA | 11 | 19.3 | 1.9 | 0.4 | 0.2~8.8 |
OTB | 2 | 3.5 | 0.2 | 0.2 | 0.1~0.3 |
MPA | 27 | 47.4 | 130.7 | 9.4 | 0.3~2647.3 |
Dried apricots | |||||
TeA | 21 | 37.5 | 237.1 | 71.8 | 10.4~1231.8 |
TEN | 4 | 7.1 | 14.0 | 12.6 | 2.7~28.0 |
AME | 3 | 5.4 | 1.3 | 1.2 | 0.5~2.1 |
PAT | 1 | 1.8 | 30.6 | 30.6 | 30.6 |
MPA | 15 | 26.8 | 26.7 | 3.9 | 1.0~119.7 |
Dried dates | |||||
TeA | 18 | 34.0 | 873.2 | 555.0 | 9.6~4411.4 |
TEN | 7 | 13.2 | 6.2 | 5.2 | 1.4~11.2 |
PA | 14 | 26.4 | 39.1 | 35.2 | 20.4~85.6 |
MPA | 1 | 1.9 | 7.5 | 7.5 | 7.5 |
Dried wolfberries | |||||
TeA | 35 | 64.8 | 574.8 | 93.4 | 23.8~5665.3 |
TEN | 34 | 63.0 | 156.5 | 75.9 | 11.7~1032.6 |
AOH | 2 | 3.7 | 16.6 | 16.6 | 5.9~27.4 |
AME | 4 | 7.4 | 3.9 | 0.3 | 0.2~15.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Wang, Y.; Jiang, D.; Feng, X.; Li, J.; Wang, M. Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China. Toxins 2017, 9, 200. https://doi.org/10.3390/toxins9070200
Wei D, Wang Y, Jiang D, Feng X, Li J, Wang M. Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China. Toxins. 2017; 9(7):200. https://doi.org/10.3390/toxins9070200
Chicago/Turabian StyleWei, Dizhe, Yao Wang, Dongmei Jiang, Xiaoyuan Feng, Jun Li, and Meng Wang. 2017. "Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China" Toxins 9, no. 7: 200. https://doi.org/10.3390/toxins9070200
APA StyleWei, D., Wang, Y., Jiang, D., Feng, X., Li, J., & Wang, M. (2017). Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China. Toxins, 9(7), 200. https://doi.org/10.3390/toxins9070200