Laser-Inscribed Glass Microfluidic Device for Non-Mixing Flow of Miscible Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Materials
3. Results
3.1. Data Analysis
3.2. Preliminary Considerations
- cylindrical channel (tubings) with length L and internal radius r,
- rectangular channel (glass chip) with length L, height h, and width w,
3.3. The Effect of Pumping Pressure
3.4. The Effect of Angle Between Inlets
3.5. The Effect of Chamber Height
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weigl, B.H.; Yager, P. Microfluidic Diffusion-Based Separation and Detection. Science 1999, 283, 346–347. [Google Scholar] [CrossRef]
- Kuo, J.S.; Chiu, D.T. Controlling Mass Transport in Microfluidic Devices. Annu. Rev. Anal. Chem. 2011, 4, 275–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMullen, J.P.; Jensen, K.F. Integrated Microreactors for Reaction Automation: New Approaches to Reaction Development. Annu. Rev. Anal. Chem. 2010, 3, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Kenis, P.J.A.; Ismagilov, R.F.; Whitesides, G.M. Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning. Science 1999, 285, 83–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Suh, Y.K.; Kang, S. A Review on Mixing in Microfluidics. Micromachines 2010, 1, 82–111. [Google Scholar] [CrossRef] [Green Version]
- Werts, M.H.V.; Raimbault, V.; Texier-Picard, R.; Poizat, R.; Franais, O.; Griscom, L.; Navarro, J.R.G. Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures. Lab Chip 2012, 12, 808–820. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Zhou, J.; Wu, H. Materials for Microfluidic Chip Fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Mcdonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T. Review General Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 2000, 21, 27–40. [Google Scholar] [CrossRef]
- Lee, J.N.; Park, C.; Whitesides, G.M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 2003, 75, 6544–6554. [Google Scholar] [CrossRef] [PubMed]
- Kirby, B.J. Micro- and Nanoscale Fluid Mechanics; Cornell University: Ithaca, NY, USA, 2010; ISBN 9780521119030. [Google Scholar]
- Ramponi, R.; Osellame, R.; Cerullo, G. Femtosecond Laser Micromachining; Springer: Cham, Switzerland, 2012. [Google Scholar]
- Osellame, R.; Hoekstra, H.J.W.M.; Cerullo, G.; Pollnau, M. Femtosecond laser microstructuring: An enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 2011, 5, 442–463. [Google Scholar] [CrossRef]
- Lo Turco, S.; Di Donato, A.; Criante, L. Scattering effects of glass-embedded microstructures by roughness controlled fs-laser micromachining. J. Micromech. Microeng. 2017, 27, 065007. [Google Scholar] [CrossRef]
- Taylor, R.; Hnatovsky, C.; Simova, E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev. 2008, 2, 26–46. [Google Scholar] [CrossRef]
- Hnatovsky, C.; Taylor, R.S.; Simova, E.; Rajeev, P.P.; Rayner, D.M.; Bhardwaj, V.R.; Corkum, P.B. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl. Phys. A 2006, 84, 47–61. [Google Scholar] [CrossRef]
- Sugioka, K.; Xu, J.; Wu, D.; Hanada, Y.; Wang, Z.; Cheng, Y.; Midorikawa, K. Femtosecond laser 3D micromachining: A powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 2014, 14, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Sugioka, K.; Cheng, Y. Femtosecond laser processing for optofluidic fabrication. Lab Chip 2012, 12, 3576–3589. [Google Scholar] [CrossRef] [PubMed]
- Bellouard, Y.; Said, A.; Dugan, M.; Bado, P. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 2004, 12, 2120–2129. [Google Scholar] [CrossRef] [PubMed]
- Okuducu, M.; Aral, M.; Okuducu, M.B.; Aral, M.M. Performance Analysis and Numerical Evaluation of Mixing in 3-D T-Shape Passive Micromixers. Micromachines 2018, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Kamholz, A.E.; Weigl, B.H.; Finlayson, B.A.; Yager, P. Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor. Anal. Chem. 1999, 71, 5340–5347. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.L.; Zhu, X.R.; Harris, J.M. Fluorescence correlation spectroscopy with patterned photoexcitation for measuring solution diffusion coefficients of robust fluorophores. Anal. Chem. 1998, 70, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Bruus, H. Theoretical microfluidics; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
ΔP (mbar) | Q (μL/min) | Re | Pe | ||
---|---|---|---|---|---|
25 | 13.5 | 22.5 | 4.5 | 2 | 7507.5 |
50 | 27.0 | 45.0 | 9.0 | 3 | 15,015.0 |
100 | 54.1 | 90.0 | 18.0 | 6 | 30,030.0 |
200 | 108.1 | 180.0 | 36.0 | 12 | 60,060.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Italia, V.; Giakoumaki, A.N.; Bonfadini, S.; Bharadwaj, V.; Le Phu, T.; Eaton, S.M.; Ramponi, R.; Bergamini, G.; Lanzani, G.; Criante, L. Laser-Inscribed Glass Microfluidic Device for Non-Mixing Flow of Miscible Solvents. Micromachines 2019, 10, 23. https://doi.org/10.3390/mi10010023
Italia V, Giakoumaki AN, Bonfadini S, Bharadwaj V, Le Phu T, Eaton SM, Ramponi R, Bergamini G, Lanzani G, Criante L. Laser-Inscribed Glass Microfluidic Device for Non-Mixing Flow of Miscible Solvents. Micromachines. 2019; 10(1):23. https://doi.org/10.3390/mi10010023
Chicago/Turabian StyleItalia, Valeria, Argyro N. Giakoumaki, Silvio Bonfadini, Vibhav Bharadwaj, Thien Le Phu, Shane M. Eaton, Roberta Ramponi, Giacomo Bergamini, Guglielmo Lanzani, and Luigino Criante. 2019. "Laser-Inscribed Glass Microfluidic Device for Non-Mixing Flow of Miscible Solvents" Micromachines 10, no. 1: 23. https://doi.org/10.3390/mi10010023
APA StyleItalia, V., Giakoumaki, A. N., Bonfadini, S., Bharadwaj, V., Le Phu, T., Eaton, S. M., Ramponi, R., Bergamini, G., Lanzani, G., & Criante, L. (2019). Laser-Inscribed Glass Microfluidic Device for Non-Mixing Flow of Miscible Solvents. Micromachines, 10(1), 23. https://doi.org/10.3390/mi10010023