Design and Characterization of Semi-Floating-Gate Synaptic Transistor
Abstract
:1. Introduction
2. Device Structure and Operation Schemes
3. Synaptic Operation Characteristics
3.1. Short-Term and Long-Term Potentiation Operations
3.2. Spike-Timing-Dependent Plasticity (STDP)
4. Conclusions
5. Patents
- (1)
- Seongjae Cho and Yongbeom Cho, “Synaptic Semiconductor Device and Neural Networks Using the Same,”
- -
- Korean patent filed, 10-2017-0152803, 16 November 2017
- -
- United States patent filed, 15/892,658, February 2018.
- (2)
- Byung–Gook Park and Seongjae Cho, “Neuron circuit and synapse array integrated circuit architecture and fabrication method of the same,”
- -
- Korean patent filed, 10-2017-0062097, 19 May 2017.
- -
- United States patent filed, 15/895,255, 13 February 2018.
Author Contributions
Funding
Conflicts of Interest
References
- Lee, C.S.; Wang, M.H.; Yen, S.J.; Wei, T.H.; Wu, I.C.; Chou, P.C.; Chou, C.H.; Wang, M.W.; Yan, T.H. Human vs. Computer Go: Review and Prospect [Discussion Forum]. IEEE Comput. Intell. Mag. 2016, 11, 67–72. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Ishiwara, H. Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights. Jpn. J. Appl. Phys. 1993, 32, 442–446. [Google Scholar] [CrossRef]
- Kuzum, D.; Yu, S.; Wong, H.-S.P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, Y.; Kaneko, Y.; Ueda, M.; Fujii, E.; Tsujimura, A. Dynamic observation of brain-like learning in a ferroelectric synapse device. Jpn. J. Appl. Phys. 2013, 52, 04CE06. [Google Scholar] [CrossRef]
- Kim, H.; Cho, S.; Sun, M.-C.; Park, J.; Hwang, S.; Park, B.-G. Simulation study on silicon-based floating body synaptic transistor with short- and long-term memory functions and its spike timing-dependent plasticity. J. Semicond. Technol. Sci. 2016, 16, 657–663. [Google Scholar] [CrossRef]
- Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science 2002, 298, 789–791. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, C.; Isaac, J.T. The synapse: Center stage for many brain diseases. J. Physiol. 2009, 15, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Barker, R.A.; Cicchetti, F.; Neal, M.J. Neuroanatomy and Neuroscience at a Glance, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; ISBN 978-1-118-36852-7. [Google Scholar]
- Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med. 2016, 22, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Miller, K.D.; Abbot, L.F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 2000, 3, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.-W.; Kim, H.; Park, J.; Park, B.-G. Integrate-and-fire neuron circuit and synaptic device using floating body MOSFET with spike timing-dependent plasticity. J. Semicond. Technol. Sci. 2015, 15, 658–663. [Google Scholar] [CrossRef]
- Choi, H.-S.; Wee, D.-H.; Kim, H.; Kim, S.; Ryoo, K.-C.; Park, B.-G.; Kim, Y. 3-D floating-gate synapse array with spike-time-dependent plasticity. IEEE Trans. Electron Devices 2018, 65, 101–107. [Google Scholar] [CrossRef]
- ATLAS User’s Manual; Silvaco International Inc.: Santa Clara, CA, USA, 2016.
- Hurkx, G.A.M.; Klaassen, D.B.M.; Knuvers, M.P.G. A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 1992, 39, 331–338. [Google Scholar] [CrossRef]
- Abbott, L.F.; Nelson, S.B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 2000, 3, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
Region | Length (nm) | Thickness (nm) | Doping Concen Tration (cm−3) |
---|---|---|---|
1st Gate | 100 | 37 | p-type 1 × 1020 |
2nd Gate | 400 | 10 | p-type 1 × 1020 |
SFG | 400 | 10 | p-type 1 × 1018 |
Source junction | 100 | 20 | n-type 1 × 1020 |
Channel | 500 | 20 | n-type 1 × 1017 |
Drain junction | 100 | 20 | n-type 1 × 1020 |
Gate oxide | - | 3 | - |
Tunneling oxide | - | 6 | - |
Nitride | - | 2 | - |
Blocking oxide | - | 6 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Lee, J.Y.; Yu, E.; Han, J.-H.; Baek, M.-H.; Cho, S.; Park, B.-G. Design and Characterization of Semi-Floating-Gate Synaptic Transistor. Micromachines 2019, 10, 32. https://doi.org/10.3390/mi10010032
Cho Y, Lee JY, Yu E, Han J-H, Baek M-H, Cho S, Park B-G. Design and Characterization of Semi-Floating-Gate Synaptic Transistor. Micromachines. 2019; 10(1):32. https://doi.org/10.3390/mi10010032
Chicago/Turabian StyleCho, Yongbeom, Jae Yoon Lee, Eunseon Yu, Jae-Hee Han, Myung-Hyun Baek, Seongjae Cho, and Byung-Gook Park. 2019. "Design and Characterization of Semi-Floating-Gate Synaptic Transistor" Micromachines 10, no. 1: 32. https://doi.org/10.3390/mi10010032
APA StyleCho, Y., Lee, J. Y., Yu, E., Han, J. -H., Baek, M. -H., Cho, S., & Park, B. -G. (2019). Design and Characterization of Semi-Floating-Gate Synaptic Transistor. Micromachines, 10(1), 32. https://doi.org/10.3390/mi10010032