High Performance Drain Engineered InGaN Heterostructure Tunnel Field Effect Transistor
Abstract
:1. Introduction
2. Device Structure and Simulation Parameters
3. Results and Discussions
3.1. Drain Engineered HTFET to Suppress Ambipolar Current
3.1.1. Impact of Drain Engineering Metal Position on Electrical Characteristic of DE-HTFET
3.1.2. Impact of Drain Engineering Metal Workfunction (φM) on Electrical Characteristic of DE-HTFET
3.2. Polar Heterostructure DE-HTFET to Improve Device Performances
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ionescu, A.M.; Riel, H. Tunnel field effect transistors as energy efficient electronic switches. Nature 2011, 479, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Avci, U.E.; Morris, D.H.; Young, I.A. Tunnel field-effect transistors: Prospects and challenges. J. Electron. Dev. Soc. 2015, 3, 88–95. [Google Scholar] [CrossRef]
- Koswatta, S.O.; Lundstrom, M.S.; Nikonov, D.E. Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 2007, 56, 456–465. [Google Scholar] [CrossRef]
- Luisier, M.; Klimeck, G. Performance comparisons of tunneling field-effect transistors made of InSb, Carbon, and GaSb–InAs broken gap heterostructures, In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Nirschla, T.; Henzler, S.; Fischer, J.; Fulde, M.; Bargagli-Stoffi, A.; Sterkel, M.; Sedlmeir, J.; Weber, C.; Heinrich, R.; Schaper, U.; et al. Scaling properties of the tunneling field effect transistor (TFET): Device and circuit. Solid-State Electron. 2006, 50, 44–51. [Google Scholar] [CrossRef]
- Vijayvargiya, V.; Vishvakarma, S.K. Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nanotechnol. 2014, 13, 974–981. [Google Scholar] [CrossRef]
- Loan, S.A.; Alharbi, A.G.; Rafat, M. Ambipolar leakage suppression in electron–hole bilayer TFET: Investigation and analysis. J. Comput. Electron. 2018, 17, 977–985. [Google Scholar]
- Beneventi, G.B.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G. Dual-metal-gate InAs tunnel FET with enhanced turn-on steepness and high ON-current. IEEE Trans. Electron. Dev. 2014, 61, 776–784. [Google Scholar] [CrossRef]
- Choi, W.Y.; Lee, W. Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron. Dev. 2010, 57, 2317–2319. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Sharma, N. Enhancing analog performance and suppression of subthreshold swing using hetero-junctionless double gate TFETs. Superlattices Microstruct. 2017, 112, 257–261. [Google Scholar] [CrossRef]
- Peng, Y.; Han, G.; Wang, H.; Zhang, C.; Liu, Y.; Wang, Y.; Zhao, S.; Zhang, J.; Hao, Y. InN/InGaN complementary heterojunction-enhanced tunneling field-effect transistor with enhanced subthreshold swing and tunneling current. Superlattices Microstruct. 2016, 93, 144–152. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Liu, M.; Zhang, Q.; Zhang, C.; Ma, X.; Zhang, J.; Hao, Y.; Han, G. Performance improvement in novel germanium–tin/germanium heterojunction-enhanced p-channel tunneling field-effect transistor. Superlattices Microstruct. 2015, 83, 401–410. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Han, G.; Wang, H.; Zhang, C.; Zhang, J.; Hao, Y. Theoretical investigation of GaAsBi/GaAsN tunneling field-effect transistors with type-II staggered tunneling junction. Superlattices Microstruct. 2017, 106, 139–146. [Google Scholar] [CrossRef]
- Raad, B.R.; Sharma, D.; Kondekar, P.; Nigam, K.; Baronia, S. DC and analog/RF performance optimisation of source pocket dual work function TFET. Int. J. Electron. 2017, 104, 1992–2006. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Adams, B.; Chien, P.-Y.; Li, J.; Woo, J.C.S. Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE Trans. Electron Devices 2013, 60, 92–96. [Google Scholar] [CrossRef]
- Kumar, M.J.; Janardhanan, S. Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron Devices 2013, 60, 3285–3290. [Google Scholar] [CrossRef]
- Bashir, F.; Loan, S.A.; Rafat, M.; Alamoud, A.R.M.; Abbasi, S.A. A high performance gate engineered charge plasma based tunnel field effect transistor. J. Comput. Electron. 2015, 14, 477–485. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, J.; Wang, S.; Li, Y.; Xu, S.; Hao, Y. A High-Performance Gate Engineered InGaN Dopingless Tunnel FET. IEEE Trans. Electron Devices 2018, 65, 1223–1229. [Google Scholar] [CrossRef]
- Abdi, D.B.; Kumar, M.J. PNPN tunnel FET with controllable drain side tunnel barrier width: Proposal and analysis. Superlattices Microstruct. 2015, 86, 121–125. [Google Scholar] [CrossRef]
- Sahay, S.; Kumar, M.J. Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electrons Devices 2015, 62, 3882–3885. [Google Scholar] [CrossRef]
- Li, W.; Sharmin, S.; Ilatikhameneh, H.; Rahman, R.; Lu, Y.; Wang, J.; Yan, X.; Seabaugh, A.; Klimeck, G.; Jena, D.; et al. Polarization-Engineered III-Nitride Heterojunction Tunnel Field-Effect Transistors. IEEE J. Explor. Solid-State Comput. Devices Circuits 2015, 1, 28–34. [Google Scholar] [CrossRef]
- Li, W.; Cao, L.; Lund, C.; Keller, S.; Fay, P. Performance projection of III-nitride heterojunction nanowire tunneling field-effect transistors. Phys. Status Solidi A 2016, 213, 905–908. [Google Scholar] [CrossRef]
- Cho, M.S.; Kwon, R.H.; Seo, J.H.; Yoon, Y.J.; Jang, Y.I.; Won, C.H.; Kim, J.-G.; Lee, J.; Cho, S.; Lee, J.-H.; et al. Electrical performances of InN/GaN tunneling field-effect transistor. J. Nanosci. Nanotechnol. 2017, 17, 8355–8359. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, J.; Wang, S.; Quan, R.; Hao, Y. Effect of graded InGaN drain region and ‘In’ fraction in InGaN channel on performances of InGaN tunnel field-effect transistor. Superlattices Microstruct. 2017, 112, 671–679. [Google Scholar] [CrossRef]
- ATLAS Device Simulation Software, Silvaco Int.: Santa Clara, CA, USA, 2013.
- Duan, X.; Zhang, J.; Xiao, M.; Zhao, Y.; Ning, J.; Hao, Y. Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures. Chin. Phys. B 2016, 25, 087304. [Google Scholar] [CrossRef]
- Verhulst, A.S.; Vandenberghe, W.G.; Maex, K.; Groeseneken, G. Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. J. Appl. Phys. 2008, 104, 064514. [Google Scholar] [CrossRef]
- Raad, B.R.; Sharma, D.; Kondekar, P.; Nigam, K.; Yadav, D.S. Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: A proposal, design, and investigation. IEEE Trans. Electron Devices 2016, 63, 3950–3957. [Google Scholar] [CrossRef]
Parameters | In0.75Ga0.25N | In0.85Ga0.15N |
---|---|---|
Band gap Eg (eV) | 1.1125 | 0.9265 |
Hole effective mass (m0) | 0.295 | 0.273 |
Electron effective mass (m0) | 0.1025 | 0.0895 |
Static dielectric constant εr | 12.75 | 13.05 |
Electron mobility μe (cm2/Vs) | 1050 | 1050 |
Hole mobility μh (cm2/Vs) | 20 | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Zhang, J.; Chen, J.; Zhang, T.; Zhu, J.; Lin, Z.; Hao, Y. High Performance Drain Engineered InGaN Heterostructure Tunnel Field Effect Transistor. Micromachines 2019, 10, 75. https://doi.org/10.3390/mi10010075
Duan X, Zhang J, Chen J, Zhang T, Zhu J, Lin Z, Hao Y. High Performance Drain Engineered InGaN Heterostructure Tunnel Field Effect Transistor. Micromachines. 2019; 10(1):75. https://doi.org/10.3390/mi10010075
Chicago/Turabian StyleDuan, Xiaoling, Jincheng Zhang, Jiabo Chen, Tao Zhang, Jiaduo Zhu, Zhiyu Lin, and Yue Hao. 2019. "High Performance Drain Engineered InGaN Heterostructure Tunnel Field Effect Transistor" Micromachines 10, no. 1: 75. https://doi.org/10.3390/mi10010075
APA StyleDuan, X., Zhang, J., Chen, J., Zhang, T., Zhu, J., Lin, Z., & Hao, Y. (2019). High Performance Drain Engineered InGaN Heterostructure Tunnel Field Effect Transistor. Micromachines, 10(1), 75. https://doi.org/10.3390/mi10010075