Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Microfluidic Chip
2.2. Fabrication of a Microfluidic Chip
2.3. Measurement of Aperture and Channel Dimensions
2.4. Evaluation of Diffusion on Chip
2.5. Primary Neural Cell Culture on Chip
3. Results and Discussion
3.1. Size of the Microfluidic Channels
3.2. Gradient Generation
3.3. Guided Axon Elongation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chung, B.G.; Choo, J. Microfluidic Gradient Platforms for Controlling Cellular Behavior. Electrophoresis 2010, 31, 3014–3027. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Shimizu, T.S.; Stocker, R. Microfluidics for Bacterial Chemotaxis. Integr. Biol. (Camb.) 2010, 2, 604–629. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yakar, A.; Chronis, N.; Lu, H. Microfluidics for the Analysis of Behavior, Nerve Regeneration, and Neural Cell Biology in C. Elegans. Curr. Opin. Neurobiol. 2009, 19, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Weibel, D.B.; Whitesides, G.M. Applications of Microfluidics in Chemical Biology. Curr. Opin. Chem. Biol. 2006, 10, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The Present and Future Role of Microfluidics in Biomedical Research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Boyden, S. The Chemotactic Effect of Mixtures of Antibody and Antigen on Polymorphonuclear Leucocytes. J. Exp. Med. 1962, 115, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Phillips, R.A. Separation of Cells by Velocity Sedimentation. J. Cell. Physiol. 1969, 73, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Fakhr, O.; Altpeter, P.; Karrai, K.; Lugli, P. Easy Fabrication of Electrically Insulating Nanogaps by Transfer Printing. Small 2011, 7, 2533–2538. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Matsunaga, N.; Inomata, S.; Tanaka, M.; Futai, N. A Simple Microfluidic Gradient Generator with a Soft-Lithographically Prototyped, High-Aspect-Ratio, ~2 Microm Wide Microchannel. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2013, 5521–5524. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.C.; McDonald, J.C.; Schueller, O.J.; Whitesides, G.M. Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984. [Google Scholar] [CrossRef] [PubMed]
- Linder, V.; Wu, H.; Jiang, X.; Whitesides, G.M. Rapid Prototyping of 2d Structures with Feature Sizes Larger Than 8 Microm. Anal. Chem. 2003, 75, 2522–2527. [Google Scholar] [CrossRef] [PubMed]
- López-Romero, D.; Barrios, C.A.; Holgado, M.; Laguna, M.F.; Casquel, R. High Aspect-Ratio Su-8 Resist Nano-Pillar Lattice by E-Beam Direct Writing and Its Application for Liquid Trapping. Microelectron. Eng. 2010, 87, 663–667. [Google Scholar] [CrossRef]
- Huh, D.; Mills, K.L.; Zhu, X.; Burns, M.A.; Thouless, M.D.; Takayama, S. Tuneable Elastomeric Nanochannels for Nanofluidic Manipulation. Nat. Mater. 2007, 6, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Huh, Y.S.; Craighead, H.G.; Erickson, D. A Method for Nanofluidic Device Prototyping Using Elastomeric Collapse. Proc. Natl. Acad. Sci. USA 2009, 106, 15549–15554. [Google Scholar] [CrossRef] [PubMed]
- Futai, N.; Gu, W.; Takayama, S. Rapid Prototyping of Microstructures with Bell-Shaped Cross-Sections and Its Application to Deformation-Based Microfluidic Valves. Adv. Mater. 2004, 16, 1320–1323. [Google Scholar] [CrossRef]
- Gwyddion–Free SPM (Afm, Snom/Nsom, Stm, Mfm, …) Data Analysis Software. Available online: http://gwyddion.net/ (accessed on 11 November 2018).
- Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics, 1st ed.; Springer: Berlin, Germany, 1996. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1980. [Google Scholar]
- Ajdari, A.; Bontoux, N.; Stone, H.A. Hydrodynamic Dispersion in Shallow Microchannels: The Effect of Cross-Sectional Shape. Anal. Chem. 2006, 78, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Petrášek, Z.; Schwille, P. Precise Measurement of Diffusion Coefficients Using Scanning Fluorescence Correlation Spectroscopy. Biophys. J. 2008, 94, 1437–1448. [Google Scholar] [CrossRef]
- Goldberg, J.L. How Does an Axon Grow? Genes Dev. 2003, 17, 941–958. [Google Scholar] [CrossRef]
- Park, J.W.; Vahidi, B.; Taylor, A.M.; Rhee, S.W.; Jeon, N.L. Microfluidic Culture Platform for Neuroscience Research. Nat. Protoc. 2006, 1, 2128–2136. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Futai, N.; Tamura, M.; Ogawa, T.; Tanaka, M. Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist. Micromachines 2019, 10, 9. https://doi.org/10.3390/mi10010009
Futai N, Tamura M, Ogawa T, Tanaka M. Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist. Micromachines. 2019; 10(1):9. https://doi.org/10.3390/mi10010009
Chicago/Turabian StyleFutai, Nobuyuki, Makoto Tamura, Tomohisa Ogawa, and Masato Tanaka. 2019. "Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist" Micromachines 10, no. 1: 9. https://doi.org/10.3390/mi10010009
APA StyleFutai, N., Tamura, M., Ogawa, T., & Tanaka, M. (2019). Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist. Micromachines, 10(1), 9. https://doi.org/10.3390/mi10010009