Proton Irradiation Effects on the Time-Dependent Dielectric Breakdown Characteristics of Normally-Off AlGaN/GaN Gate-Recessed Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hazdra, P.; Popelka, S. Radiation resistance of wide-bandgap semiconductor power transistors. Phys. Status Solidi (a) 2017, 214, 1600447. [Google Scholar] [CrossRef]
- Mararo, J.; Nicolas, G.; Nhut, D.M.; Forestier, S.; Rochette, S.; Vendier, O.; Langrez, D.; Cazaux, J.; Feudale, M. GaN for space application: Almost ready for flight. Int. J. Microw. Wirel. Technol. 2010, 2, 121–133. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Patrick, E.; Law, M.E.; Polylakov, A.Y. Review-ionizing radiation damage effects on GaN devices. ECS J. Solid State Sci. Technol. 2016, 5, Q35–Q60. [Google Scholar] [CrossRef]
- Chen, J.; Puzyrev, Y.S.; Jiang, R.; Zhang, E.X.; McCurdy, M.W.; Fleetwood, D.M.; Schrimpf, R.D.; Pantelides, S.T.; Arehart, A.R.; Ringel, S.A.; et al. Effects of applied bias and high field stress on the radiation response of GaN/AlGaN HEMTs. IEEE Trans. Nucl. Sci. 2015, 62, 2423–2430. [Google Scholar] [CrossRef]
- Keum, D.M.; Cha, H.Y.; Kim, H. Proton bombardment effects on normally-off AlGaN/GaN-on-Si recessed MISHeterostructure FETs. IEEE Trans. Nucl. Sci. 2015, 62, 3362–3368. [Google Scholar] [CrossRef]
- Lv, L.; Ma, X.; Zhang, J.; Bi, Z.; Liu, L.; Shan, H.; Hao, Y. Proton irradiation effects on AlGaN/AlN/GaN heterojunctions. IEEE Trans. Nucl. Sci. 2015, 62, 300–305. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, J.H.; Yeo, S.; Lee, J.H. Proton irradiation effects on AlGaN/GaN HEMTs with different isolation methods. IEEE Trans. Nucl. Sci. 2018, 65, 579–582. [Google Scholar] [CrossRef]
- Anderson, T.J.; Koehler, A.D.; Specht, P.; Weaver, B.D.; Greenlee, J.D.; Tadjer, M.J.; Hite, J.K.; Mastro, M.A.; Porter, M.; Wade, M.; et al. Failure mechanisms in AlGaN/GaN HEMTs irradiated with 2MeV protons. ECS Trans. 2015, 66, 15–20. [Google Scholar] [CrossRef]
- Weaver, B.D.; Martin, P.A.; Boos, J.B.; Cress, C.D. Displacement damage effects in AlGaN/GaN high electron mobility transistors. IEEE Trans. Nucl. Sci. 2012, 59, 3077–3080. [Google Scholar] [CrossRef]
- Lee, I.H.; Lee, C.; Choi, B.K.; Yun, Y.; Chang, Y.J.; Jang, S.Y. Proton-induced conductivity enhancement in AlGaN/GaN HEMT devices. J. Korean. Phys. Soc. 2018, 72, 920–924. [Google Scholar] [CrossRef]
- Keum, D.; Kim, H. Proton-irradiation effects on charge trapping-related instability of normally-off AlGaN/GaN recessed MISHFETs. J. Semicond. Technol. Sci. 2019, 19, 214–219. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.L.; Dimitrov, R.; Wittmer, L.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef] [Green Version]
- Smorchkova, I.P.; Elsass, C.R.; Ibbetson, J.P.; Vetury, R.; Heying, B.; Fini, P.; Haus, E.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 1999, 86, 4520–4526. [Google Scholar] [CrossRef]
- Su, M.; Chen, C.; Rajan, S. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems. Semicond. Sci. Technol. 2013, 28, 074012. [Google Scholar] [CrossRef]
- Choi, W.; Seok, O.; Ryu, H.; Cha, H.Y.; Seo, K.S. High-voltage and low -leakage-current gate recessed normally-off GaN MIS-HEMTs with dual gate insulator employing PEALD-SiNX/RF-Sputtered-HfO2. IEEE Electron Device Lett. 2014, 35, 175–177. [Google Scholar] [CrossRef]
- Park, B.R.; Lee, J.G.; Choi, W.; Kim, H.; Seo, K.S.; Cha, H.Y. High-quality ICPCVD SiO2 for normally off AlGaN/GaN-on-Si recessed MOSHFETs. IEEE Electron Device Lett. 2013, 34, 354–356. [Google Scholar] [CrossRef]
- Wu, T.L.; Marcon, D.; Jaeger, B.D.; Hove, M.V.; Bakeroot, B.; Stoffels, S.; Groeseneken, G.; Decoutere, S. Time dependent dielectric breakdown (TDDB) evaluation of PE-ALD SiN gate dielectrics on AlGaN/GaN recessed gate D-mode MIS-HEMTs and E-mode MIS-FETs. In Proceedings of the International Reliability Physics Symposium (IPRS), Monterey, CA, USA, 19–23 April 2015. [Google Scholar] [CrossRef]
- Kim, H.S.; Eom, S.K.; Seo, K.S.; Kim, H.; Cha, H.Y. Time-dependent dielectric breakdown of recessed AlGaN/GaN-on-Si MOS-HFETs with PECVD SiO2 gate oxide. Vacuum 2018, 155, 428–433. [Google Scholar] [CrossRef]
- Wuerfl, J.; Bahat-Treidel, E.; Brunner, F.; Cho, E.; Hilt, O.; Ivo, P.; Knauer, A.; Kurpas, P.; Lossy, R.; Schulz, M.; et al. Reliability issues of GaN based high voltage power devices. Microelectron. Reliab. 2011, 51, 1710–1716. [Google Scholar] [CrossRef]
- Schroder, D.K. Reliability and failure analysis. In Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 689–740. [Google Scholar]
- Lagger, P.; Ostermaier, C.; Pobegen, G.; Pogany, D. Towards understanding the origin of threshold voltage instability of AlGaN/GaN MISHEMTs. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 10–13 December 2012. [Google Scholar] [CrossRef]
- Reisinger, H.; Grasser, T.; Gustin, W.; Schluandnder, C. The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress. In Proceedings of the International Reliability Physics Symposium (IPRS), Anaheim, CA, USA, 2–6 May 2010. [Google Scholar] [CrossRef]
- Ostermaier, C.; Lagger, P.; Reiner, M.; Pogany, D. Review of bias-temperature instabilities at the III-N/dielectric interface. Microelectron. Reliab. 2018, 82, 62–83. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Xie, B.; Wen, C.P.; Wang, J.; Hao, Y.; Wu, W.; Chen, K.J.; Shen, B. High-Performance normally-off Al2O3/GaN MOSFET using a wet etching-based gate recess technique. IEEE Electron Device Lett. 2013, 34, 1370–1372. [Google Scholar] [CrossRef]
- Zheng, X.F.; Dong, S.S.; Ji, P.; Wang, C.; He, Y.L.; Lv, L.; Ma, X.H.; Hao, Y. Characterization of bulk traps and interface states in AlGaN/GaN heterostructure under proton irradiation. Appl. Phys. Lett. 2018, 112, 233504. [Google Scholar] [CrossRef]
- Kim, B.J.; Ahn, S.; Ren, F.; Pearton, S.J.; Yang, G.; Kim, J. Effects of proton irradiation and thermal annealing on off-state step-stressed AlGaN/GaN high electron mobility transistors. J. Vac. Sci. Technol. B 2016, 34, 041231. [Google Scholar] [CrossRef]
- Alamo, J.A.; Guo, A.; Warnock, S. Gate dielectric reliability and instability in GaN metal-insulator-semiconductor high-electron-mobility transistors for power electronics. J. Mater. Res. 2017, 32, 3458–3468. [Google Scholar] [CrossRef] [Green Version]
- Patrick, E.; Law, M.E.; Liu, L.; Cuervo, C.V.; Xi, Y.; Ren, F.; Pearton, S.J. Modeling proton irradiation in AlGaN/GaN HEMTs: Understanding the increase of critical voltage. IEEE Trans. Nucl. Sci. 2013, 60, 4103–4108. [Google Scholar] [CrossRef]
- Look, D.C. Defect-related donors, acceptors, and traps in GaN. Phys. Status Solidi B 2001, 228, 293–302. [Google Scholar] [CrossRef]
- Ganchenkova, M.G.; Nieminen, R.M. Nitrogen vacancies as major point defects in gallium nitride. Phys. Rev. Lett. 2006, 96, 196402. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—the stopping and range of ions and matter (2010). Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Lv, L.; Ma, J.G.; Cao, Y.R.; Zhang, J.C.; Zhang, W.; Li, L.; Xu, S.R.; Ma, X.H.; Ren, X.T.; Hao, Y. Study of proton irradiation effects on AlGaN/GaN high electron mobility transistors. Microelectron. Reliab. 2011, 51, 2168–2172. [Google Scholar] [CrossRef]
- Zhang, Z.; Arehart, A.R.; Cinkilic, E.; Chen, J.; Zhang, E.X.; Fleetwood, D.M.; Schrimpf, R.D.; McSkimming, B.; Speck, J.S.; Ringel, S.A. Impact of proton irradiation on deep level states in n-GaN. Appl. Phys. Lett. 2013, 103, 042102. [Google Scholar] [CrossRef]
Operation Mode | Nit or Dit (cm−2 or cm−2·eV−1) | Irradiation Dose (cm−2) | Irradiation Energy (MeV) | Reference |
---|---|---|---|---|
Normally Off | 1.2 × 1012–2 × 1012 | 5 × 1014 | 5 | This work |
Normally Off | 1.1 × 1012–6 × 1013 | 5 × 1014 | 5 | [5] |
Normally Off | 1.3 × 1013–2.6 × 1013 | 5 × 1014 | 5 | [11] |
Normally On | 1.8 × 1012–1.8 × 1013 | 5 × 1014 | 3 | [25] |
Normally On | 1.4 × 1013 | 1015 | 5 | [26] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keum, D.; Kim, H. Proton Irradiation Effects on the Time-Dependent Dielectric Breakdown Characteristics of Normally-Off AlGaN/GaN Gate-Recessed Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors. Micromachines 2019, 10, 723. https://doi.org/10.3390/mi10110723
Keum D, Kim H. Proton Irradiation Effects on the Time-Dependent Dielectric Breakdown Characteristics of Normally-Off AlGaN/GaN Gate-Recessed Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors. Micromachines. 2019; 10(11):723. https://doi.org/10.3390/mi10110723
Chicago/Turabian StyleKeum, Dongmin, and Hyungtak Kim. 2019. "Proton Irradiation Effects on the Time-Dependent Dielectric Breakdown Characteristics of Normally-Off AlGaN/GaN Gate-Recessed Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors" Micromachines 10, no. 11: 723. https://doi.org/10.3390/mi10110723
APA StyleKeum, D., & Kim, H. (2019). Proton Irradiation Effects on the Time-Dependent Dielectric Breakdown Characteristics of Normally-Off AlGaN/GaN Gate-Recessed Metal-Insulator-Semiconductor Heterostructure Field Effect Transistors. Micromachines, 10(11), 723. https://doi.org/10.3390/mi10110723