Fast and Parallel Detection of Four Ebola Virus Species on a Microfluidic-Chip-Based Portable Reverse Transcription Loop-Mediated Isothermal Amplification System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ebola Virus RNAs
2.2. LAMP Primer Design
2.3. LAMP Reactions in an Eppendorf (EP) Tube and on a Microfluidic Chip
2.4. Microfluidic Chip Design
2.5. Microfluidic-Chip-Based Portable Detection System
3. Results
3.1. Linearities of the Designed LAMP Primers
3.2. Comparison of the Sensitivities in the Tube and on the Chip
3.3. Specificities of the Four Subtypes of the Ebola Virus on the Chip
4. Discussion
- (1)
- The specificities of the proposed assay are similar or even better than those of previously reported RT-PCR and RT-LAMP methods. The microfluidic chip could detect 100, 1, 1000, and 10 copies of EBOV, SUDV, BDBV, and TAFV per reaction, respectively. The RT-LAMP method has generally provided LODs of 10–100 copies/μL [15,17,20,21]. Considering the traditional reaction volume of RT-LAMP (25 μL), the total number of templates in the previous reports could be as low as 250–2500 copies of Ebola virus per reaction. Thus, our method is advantageous over the others in terms of specificity, and four species can be identified parallelly after only one sample addition. The comparison of the tube and the on-chip methods showed that the latter provided a higher performance for SUDV, likely owing to the high sensitivity of the portable detection system.
- (2)
- The four species of the Ebola virus could be detected after only one sampling by a single chip. Notably, no extensive studies have been carried out on methods suitable to distinguish all four subtypes at a time. However, the correct classification is important for the diagnosis and the treatment of patients and is necessary for virus transmission and virology. In the proposed assay, we designed corresponding LAMP primers for each of the four species and repeated three reactions on one chip. According to the specificity test, the primers could be used to well differentiate the four subtypes without cross-contamination. As 24 bio-reactor cells were implemented on the microfluidic chip, primers for other endemic diseases could be added to develop a more complete chip for general virus detection.
- (3)
- The chip method is better than the traditional tube method in terms of simplicity and convenience. First, the reaction volume on the chip (0.94 μL) is approximately 25 times smaller than that in the tube (recommended value for the LAMP kit: 25 μL), and thus the consumptions of reagents and samples can be largely decreased. Second, the assay requires only the portable real-time fluorescence detector and a microfluidic chip. Compared to the large-scale PCR amplification instruments, our system is smaller and portable and has similar or even better performances. In addition, the chip is more convenient for transportation and sample loading, as it does not require a specialized laboratory. The chemical reagents used in this article should be stored at −20 °C and transported in an ice box. The Ebola virus is relatively common in at-risk countries such as Guinea and Liberia. These locations have weak medical systems and inadequate equipment. Our assay can well satisfy the corresponding demands.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Peters, C.J.; LeDuc, J.W. An introduction to Ebola: The virus and the disease. J. Infect. Dis. 1999, 179, IX–XVI. [Google Scholar] [CrossRef] [PubMed]
- Negredo, A.; Palacios, G.; Vazquez-Moron, S.; Gonzalez, F.; Dopazo, H.; Molero, F.; Juste, J.; Quetglas, J.; Savji, N.; de la Cruz Martinez, M.; et al. Discovery of an ebolavirus-like filovirus in europe. Plos Pathog. 2011, 7, e1002304. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Dodd, L.E.; Wahl-Jensen, V.; Radoshitzky, S.R.; Bavari, S.; Jahrling, P.B. Evaluation of perceived threat differences posed by filovirus variants. Biosecur. Bioterror. Biodef. Strategy Pract. Sci. 2011, 9, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Ebola Virus Disease. Available online: https://www.who.int/en/news-room/fact-sheets/detail/ebola-virus-disease (accessed on 15 September 2019).
- WHO Determined Ebola Epidemic as Public Health Emergencies of International Concern. Available online: http://news.sciencenet.cn/sbhtmlnews/2019/7/347906.shtm?id=347906 (accessed on 15 September 2019).
- Towner, J.S.; Rollin, P.E.; Bausch, D.G.; Sanchez, A.; Crary, S.M.; Vincent, M.; Lee, W.F.; Spiropoulou, C.F.; Ksiazek, T.G.; Lukwiya, M.; et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J. Virol. 2004, 78, 4330–4341. [Google Scholar] [CrossRef] [PubMed]
- Piraino, F.; Volpetti, F.; Watson, C.; Maerkl, S.J. A digital-analog microfluidic platform for patient-centric multiplexed biomarker diagnostics of ultralow volume samples. ACS Nano 2016, 10, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Zang, F.; Su, Z.; Zhou, L.; Konduru, K.; Kaplan, G.; Chou, S.Y. Ultrasensitive Ebola virus antigen sensing via 3d nanoantenna arrays. Adv. Mater. 2019, 31, e1902331. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Park, M.; Alfson, K.J.; Tamhankar, M.; Carrion, R.; Patterson, J.L.; Griffiths, A.; He, Q.; Yildiz, A.; Mathies, R.; et al. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sens. 2019, 4, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Cai, H.; Park, M.; Wall, T.A.; Stott, M.A.; Alfson, K.J.; Griffiths, A.; Carrion, R.; Patterson, J.L.; Hawkins, A.R.; et al. Multiplexed efficient on-chip sample preparation and sensitive amplification-free detection of Ebola virus. Biosens. Bioelectron. 2017, 91, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Public Reports: WHO list of IVDs for Ebola Virus Disease Accepted for Procurement through the EUAL Procedure for IVDs. Available online: https://www.who.int/diagnostics_laboratory/procurement/purchasing/en/ (accessed on 15 September 2019).
- Selection and Use of Ebola in Vitro Diagnostic (IVD) Assays. Available online: https://www.who.int/medical_devices/publications/ivd_assays/en/ (accessed on 15 September 2019).
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.; Akrami, K.; Hall, D.; Smith, D.; Aronoff-Spencer, E. Lyophilized visually readable loop-mediated isothermal reverse transcriptase nucleic acid amplification test for detection Ebola Zaire RNA. J. Virolog. Methods 2017, 244, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Oloniniyi, O.K.; Kurosaki, Y.; Miyamoto, H.; Takada, A.; Yasuda, J. Rapid detection of all known ebolavirus species by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). J. Virolog. Methods 2017, 246, 8–14. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Magassouba, N.F.; Oloniniyi, O.K.; Cherif, M.S.; Sakabe, S.; Takada, A.; Hirayama, K.; Yasuda, J. Development and evaluation of reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay coupled with a portable device for rapid diagnosis of Ebola virus disease in Guinea. Plos Negl. Trop. Dis. 2016, 10, e0004472. [Google Scholar] [CrossRef]
- Park, S.-W.; Lee, Y.-J.; Lee, W.-J.; Jee, Y.; Choi, W. One-step reverse transcription-polymerase chain reaction for Ebola and Marburg viruses. Osong Public Health Res. Perspect. 2016, 7, 205–209. [Google Scholar] [CrossRef]
- Houssin, T.; Cramer, J.; Grojsman, R.; Bellahsene, L.; Colas, G.; Moulet, H.; Minnella, W.; Pannetier, C.; Leberre, M.; Plecis, A.; et al. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections. Lab Chip 2016, 16, 1401–1411. [Google Scholar] [CrossRef]
- Biava, M.; Colavita, F.; Marzorati, A.; Russo, D.; Pirola, D.; Cocci, A.; Petrocelli, A.; Guanti, M.D.; Cataldi, G.; Kamara, T.A.; et al. Evaluation of a rapid and sensitive RT-qPCR assay for the detection of Ebola virus. J. Virolog. Methods 2018, 252, 70–74. [Google Scholar] [CrossRef]
- Xu, C.; Wang, H.; Jin, H.; Feng, N.; Zheng, X.; Cao, Z.; Li, L.; Wang, J.; Yan, F.; Wang, L.; et al. Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection. Arch. Virol. 2016, 161, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Benzine, J.W.; Brown, K.M.; Agans, K.N.; Godiska, R.; Mire, C.E.; Gowda, K.; Converse, B.; Geisbert, T.W.; Mead, D.A.; Chander, Y. Molecular diagnostic field test for point-of-care detection of Ebola virus directly from blood. J. Infect. Dis. 2016, 214, S234–S242. [Google Scholar] [CrossRef] [PubMed]
Species | Name | Sequences (5′-3′) |
---|---|---|
EBOV | Z-F3 | ATCAATTGAGATCAGTTGGAC |
Z-B3 | ACTTTGTGCACATACCGG | |
Z-FIP | CCTGAAGCCCCATCTTTTAGTCACATGAATCTCGAGGGGAATGGA | |
Z-BIP | TTATGAAGCTGGTGAATGGGCTGCTGGTAGACACTCACTC | |
Z-LF | GCACGTCAGTTGCCAC | |
Z-LB | GAAAACTGCTACAATCTTGAAATC | |
SUDV | S-F3 | GCCTTAGTCTGTGGACTTAGG |
S-B3 | GTGGCTCAATGCAACAATC | |
S-FIP | GTCCGCAGCTCCGTTGTGCAACTTGCAAATGAAACAACTCA | |
S-BIP | CCATACTCAATAGGAAGGCCATAGCCCAGGATCCTGCATGTC | |
S-LF | CTTAAGAAAAGCTGCAGAGC | |
S-LB | ATTTCCTTCTGCGACGAT | |
BDBV | B-F3 | CCCAAAGTGGTGAACTACGA |
B-B3 | AGCGCCTTCTTTGTGGAAAG | |
B-FIP | CAGGGGCTTCAGGTAGGCATTCGGGAGTGGGCTGAAAACTG | |
B-BIP | GGTGTAAGAGGCTTCCCTCGCAAACCTTCAGGACACGGC | |
B-LF | GCTTTCTTGATGTCCAGGTTGTA | |
B-LB | GTTATGTGCACAAGGTTTCTGGAAC | |
TAFV | T-F3 | TAGAGGCACGGGACCATC |
T-B3 | TTCTGGATCCTGTCAGGAGA | |
T-FIP | GCAGTGTGCTGTTCTGGGAGTGAACACCACAGAAAGCCACG | |
T-BIP | GCCAGTGCCATTCCAAGAGCCTTGTGTTCGTCAGGAAGCC | |
T-LF | TGGGGTTGTCTTGCCAAGT | |
T-LB | CACCCCGACGAACTCAGT |
Sensitivity (Copy Number per Reaction) | EBOV | SUDV | BDBV | TAFV |
---|---|---|---|---|
Tube | 100 | 10 | 1000 | 10 |
Chip | 100 | 1 | 1000 | 10 |
Numbers of Bio-Reactor Cells | EBOV 6,10,14 | SUDV 7,11,15 | BDBV 8,12,16 | TAFV 9,13,17 | Positive Control 23 | Negative Controls Others |
---|---|---|---|---|---|---|
EBOV | + | − | − | − | + | − |
SUDV | − | + | − | − | + | − |
BDBV | − | − | + | − | + | − |
TAFV | − | − | − | + | + | − |
Negative | − | − | − | − | + | − |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Jin, X.; Xu, B.; Wang, R.; Fu, R.; Su, Y.; Jiang, K.; Yang, H.; Lu, Y.; Guo, Y.; et al. Fast and Parallel Detection of Four Ebola Virus Species on a Microfluidic-Chip-Based Portable Reverse Transcription Loop-Mediated Isothermal Amplification System. Micromachines 2019, 10, 777. https://doi.org/10.3390/mi10110777
Lin X, Jin X, Xu B, Wang R, Fu R, Su Y, Jiang K, Yang H, Lu Y, Guo Y, et al. Fast and Parallel Detection of Four Ebola Virus Species on a Microfluidic-Chip-Based Portable Reverse Transcription Loop-Mediated Isothermal Amplification System. Micromachines. 2019; 10(11):777. https://doi.org/10.3390/mi10110777
Chicago/Turabian StyleLin, Xue, Xiangyu Jin, Bin Xu, Ruliang Wang, Rongxin Fu, Ya Su, Kai Jiang, Han Yang, Ying Lu, Yong Guo, and et al. 2019. "Fast and Parallel Detection of Four Ebola Virus Species on a Microfluidic-Chip-Based Portable Reverse Transcription Loop-Mediated Isothermal Amplification System" Micromachines 10, no. 11: 777. https://doi.org/10.3390/mi10110777
APA StyleLin, X., Jin, X., Xu, B., Wang, R., Fu, R., Su, Y., Jiang, K., Yang, H., Lu, Y., Guo, Y., & Huang, G. (2019). Fast and Parallel Detection of Four Ebola Virus Species on a Microfluidic-Chip-Based Portable Reverse Transcription Loop-Mediated Isothermal Amplification System. Micromachines, 10(11), 777. https://doi.org/10.3390/mi10110777