Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Architecture of the Electromyography (EMG) Sensor for Human–Machine Interface (HMI) Application
2.2. EMG Sensor and Wearable Design
3. Experiments
3.1. Circuit Design and Configuration
3.2. Design Wireless Communication System and MCU
3.3. Fabrication of the EMG Sensor and BLE Module
3.4. Classification of EMG Signals
3.5. HMI Application
4. Results and Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Agarwal, K.; Hwang, S.; Bartnik, A.; Buchele, N.; Mishra, A.; Cho, J.-H. Small-Scale Biological and Artificial Multidimension Sensors for 3D Sensing. Small 2018, 14, 1801145. [Google Scholar] [CrossRef] [PubMed]
- Nan, K.; Kang, S.D.; Kan, L.; Yu, K.J.; Zhu, F.; Wang, J.; Dunn, A.C.; Zhou, C.; Xie, Z.; Agne, M.T.; et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 2018, 4, 5849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Gutruf, P.; Chiarelli, A.M.; Heo, S.Y.; Cho, K.; Xie, Z.; Banks, A.; Han, S.; Jang, K.-I.; Lee, J.W.; et al. Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry. Adv. Funct. Mater. 2017, 27, 1604373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lü, X.; Qi, L.; Hu, H.; Li, X.; Bai, G.; Chen, J.; Bao, W. Untra-Sensitive Flexible Tactile Sensor Based on Graphene Film. Micromachines 2019, 10, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, J.H.; Jeong, S.; Shim, H.J.; Son, D.; Kim, J.; Kim, D.C.; Choi, S.; Hong, J.-I.; Kim, D.-H. Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes. ACS Nano 2017, 11, 10032–10041. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.-I.; Li, K.; Chung, H.U.; Xu, S.; Jung, H.N.; Yang, Y.; Kwak, J.W.; Jung, H.H.; Song, J.; Yang, A.; et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 2017, 8, 15894. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-W.; Yeo, W.-H.; Akhtar, A.; Norton, J.J.S.; Kwack, Y.-J.; Li, S.; Jung, S.-Y.; Su, Y.; Lee, W.; Xia, J.; et al. Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics. Adv. Mater. 2013, 25, 6839–6846. [Google Scholar] [CrossRef] [PubMed]
- Roland, T.; Wimberger, K.; Amsuess, S.; Russold, M.F.; Baumgartner, W. An Insulated Flexible sensor for Stable Electromyography Detection: Application to Prosthesis Control. Sensors 2019, 19, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.; Lim, T.; Song, K.; Yang, S.; Lee, J. Stretchable Multichannel Electromyography Sensor Array Covering Large Area for Controlling Home Electronics with Distinguishable Signal from Multiple Muscles. ACS Appl. Mater. Interfaces 2016, 32, 21070–21076. [Google Scholar] [CrossRef] [PubMed]
- Casson, A.J. Wearable EEG and beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Vallès, E.; Bazan, V.; Marchlinski, F.E. ECG Criteria to Identify Epicardial Ventricular Tachycardia in Nonischemic Cardiomyopathy. Circulation 2010, 3, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girgels, A.P.M.; Vos, M.A.; Mulleneers, R.; Zwaan, C.; Bär, F.W.H.M.; Wellens, H.J.J. Value of the electroocardiogram in diagnosing the number of severly narrowed coronary arteries in rest angina pectoris. Am. J. Cardiol. 1993, 72, 999–1003. [Google Scholar] [CrossRef]
- Boutros, N.N.; Arfken, C.; Galderisi, S.; Warrick, J.; Pratt, G.; Iacono, W. The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr. Res. 2008, 99, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Al-Jumaily, A.; Olivares, R.A. Electromyogram (EMG) driven system based virtual reality for prosthetic and rehabilitation devices. In Proceedings of the 11th International Conference on Information Integration and Web-based Applications & Services (iiWAS2009), Kuala Lumpur, Malaysia, 14–16 December 2009; pp. 582–586. [Google Scholar]
- Mulas, M.; Folgheraiter, M.; Gini, G. An EMG-controlled exoskeleton for hand rehabilitation. In Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; pp. 371–374. [Google Scholar]
- Kiguchi, K.; Hayashi, Y. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 1064–1071. [Google Scholar] [CrossRef]
- Rangwani, R.; Park, H. Vibration Induced Proprioceptive Modulation in Surface-EMG Based Control of a Robotic Arm. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 1105–1108. [Google Scholar]
- Kim, J.; Banks, A.; Cheng, H.; Xie, Z.; Xu, S.; Jang, K.-I.; Lee, J.W.; Liu, Z.; Gutruf, P.; Huang, X.; et al. Epidermal Electronics with Advanced Capabilities In Near-Field Communication. Small 2015, 11, 906–912. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, C.; Liu, Z.; Yuan, W.; Wu, X.; Lu, Y.; Low, S.S.; Liu, J.; Zhu, L.; Ji, D.; et al. Battery-Free and Wireless Epidermal Electrochemical System with All-Printed Stretchable Electrode Array for Multiplexed in Situ Sweat Analysis. Adv. Mater. 2019, 4, 1800658. [Google Scholar] [CrossRef]
- Geist, D.R.; Brown, R.S.; Lepla, K.; Chandler, J. Practical Application of Electromyogram Radiotelemetry: The Suitablilty of Applying Laboratory-Acquired Calibration Data to Field Data. N. Am. J. Fish. Manag. 2012, 22, 474–479. [Google Scholar] [CrossRef]
- Fleischer, C.; Hommel, G. Calibration of an EMG-Based Body Model with six Muscles to control a Leg Exoskeleton. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 2514–2519. [Google Scholar]
- Yousefi, J.; Hmilton-Wright, A. Characterizing EMG data using machine-learning tools. Comput. Biol. Med. 2014, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Wang, W.; Yang, J.; Lantz, V.; Wang, K. Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors. In Proceedings of the 14th International Conference on Intelligent User Interfaces, Sanibel Island, FL, USA, 8–11 February 2009; pp. 401–406. [Google Scholar]
- Artemiadis, P.K.; Kyriakopoulos, K.J. EMG-Based Control of a Robot Arm Using Low-Dimensional Embeddings. IEEE Trans. Robot. 2010, 26, 393–398. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Ali, A.; Joyo, M.K.; Rehan, M.; Siddiqui, F.A.; Bhatti, J.A.; Liaquat, A.; Dezfouli, M.M.S. Mobility assistance robot for disabled persons using electromyography (EMG) sensor. In Proceedings of the 2018 IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, 11–12 May 2018; pp. 1–5. [Google Scholar]
- Artanto, D.; Prayadi Sulistyanto, M.; Deradjad Pranowo, I.; Erry Pramesta, E. Drowsiness detection system based on eye-closure using a low-cost EMG and ESP8266. In Proceedings of the 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 1–3 November 2017; pp. 235–238. [Google Scholar]
- Xia, P.; Hu, J. EMG-Based Estimation of Limb Movement Using Deep Learning with Recurrent Convolutional Neural Networks. Artif. Organs 2018, 42, E67–E77. [Google Scholar] [CrossRef] [PubMed]
Sensor Type | EMG Sensor | Untreated Sensor | Commercial Sensor |
---|---|---|---|
Mean (V) | 0.204 | 0.239 | 0.248 |
Standard deviation (V) | 0.023 | 0.05 | 0.104 |
Accuracy (%) | 95.3 | 92.7 | 85.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.-S.; Kang, S.-G.; Lee, K.-T.; Kim, J. Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application. Micromachines 2019, 10, 879. https://doi.org/10.3390/mi10120879
Song M-S, Kang S-G, Lee K-T, Kim J. Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application. Micromachines. 2019; 10(12):879. https://doi.org/10.3390/mi10120879
Chicago/Turabian StyleSong, Min-Su, Sung-Gu Kang, Kyu-Tae Lee, and Jeonghyun Kim. 2019. "Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application" Micromachines 10, no. 12: 879. https://doi.org/10.3390/mi10120879
APA StyleSong, M. -S., Kang, S. -G., Lee, K. -T., & Kim, J. (2019). Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application. Micromachines, 10(12), 879. https://doi.org/10.3390/mi10120879