Fabriction of ZnO Nanorods with Strong UV Absorption and Different Hydrophobicity on Foamed Nickel under Different Hydrothermal Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Cleaning of Foamed Nickel (Substrate)
2.3. Magnetron Sputtering Deposition of ZnO Seed Layer
2.4. Hydrothermal Growth of ZnO Nanorods
2.5. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benjamin, S. Process for Making Foamlike Mass of Metal. U.S. Patent 2,434,775, 20 January 1948. [Google Scholar]
- Sun, L.; Campbell, M.G.; Dincă, M. Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhou, H.C. Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 2010, 46, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Cen, C.L.; Liu, L.; Zhang, Y.B.; Chen, X.F.; Zhou, Z.G.; Yi, Z.; Ye, X.; Tang, Y.J.; Yi, Y.G.; Xiao, S.Y. Tunable absorption enhancement in periodic elliptical hollow graphene arrays. Opt. Mater. Express 2019, 9, 706–716. [Google Scholar] [CrossRef]
- Zheng, C.X.; Yang, H. Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance. J. Mater. Sci. 2018, 29, 9291–9300. [Google Scholar] [CrossRef]
- Hu, Y.L.; Lian, H.X.; Zhou, L.J.; Li, G.K. In Situ Solvothermal Growth of Metal-Organic Framework-5 Supported on Porous Copper Foam for Noninvasive Sampling of Plant Volatile Sulfides. Anal. Chem. 2014, 87, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.X.; Yang, H.; Li, S.H.; Cui, Z.M.; Zhang, C.R. Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity. Mater. Res. Bull. 2018, 107, 180–188. [Google Scholar] [CrossRef]
- Hafez, A.M.; Jiao, Y.C.; Shi, J.J.; Ma, Y.; Cao, D.X.; Liu, Y.Y.; Zhu, H.L. Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility. Adv. Mater. 2018, 30, 1802156. [Google Scholar] [CrossRef] [PubMed]
- Di, L.J.; Yang, H.; Xian, T.; Chen, X.J. Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation. Micromachines 2018, 9, 613. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.H.; Chen, Q.; Yang, C.Y.; Huang, Y. Research process on property and application of metal porous materials. J. Alloys Compd. 2016, 654, 39–44. [Google Scholar] [CrossRef]
- Yan, Y.X.; Yang, H.; Zhao, X.X.; Li, R.S.; Wang, X.X. Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater. Res. Bull. 2018, 105, 286–290. [Google Scholar] [CrossRef]
- Neville, B.P.; Rabiei, A. Composite metal foams processed through powder metallurgy. Mater. Des. 2008, 29, 388–396. [Google Scholar] [CrossRef]
- Zhao, X.X.; Yang, H.; Cui, Z.M.; Wang, X.X.; Yi, Z. Growth Process and CQDs-modified Bi4Ti3O12 Square Plates with Enhanced Photocatalytic Performance. Micromachines 2019, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.W.; Xu, C.L.; Li, H.L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2008, 48, 6537–6539. [Google Scholar] [CrossRef] [PubMed]
- Mariappan, V.K.; Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Kim, S.J. Electrodeposited molybdenum selenide sheets on nickel foam as a binder-free electrode for supercapacitor application. Electrochim. Acta 2018, 265, 514–522. [Google Scholar] [CrossRef]
- Li, Y.H.; Cao, L.J.; Qiao, L.; Zhou, M.; Yang, Y.; Xiao, P.; Zhang, Y.H. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 6540–6548. [Google Scholar] [CrossRef]
- Liang, C.; Niu, G.; Chen, X.; Zhou, Z.; Yi, Z.; Ye, X.; Duan, T.; Yi, Y.; Xiao, S. Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance. Opt. Commun. 2019, 436, 57–62. [Google Scholar] [CrossRef]
- Tang, C.; Cheng, N.Y.; Pu, Z.H.; Xing, W.; Sun, X.P. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and STable 3D Bifunctional Electrode for Full Water Splitting. Angew. Chem. 2015, 127, 9483–9487. [Google Scholar] [CrossRef]
- Lin, H.; Ye, X.; Chen, X.F.; Zhou, Z.G.; Yi, Z.; Niu, G.; Yi, Y.G.; Hua, Y.T.; Hua, J.J.; Xiao, S.Y. Plasmonic absorption enhancement in grapheme circular and Elliptical disk arrays. Mater. Res. Express 2019, 6, 045807. [Google Scholar] [CrossRef]
- Guo, F.; Cao, D.X.; Du, M.M.; Ye, K.; Wang, G.L.; Zhang, W.P.; Gao, Y.Y.; Cheng, K. Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode. J. Power Sources 2016, 307, 697–704. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Krishnaraj, N.; Selvam, A.; Wong, J.W.C.; Lee, P.K.H.; Leung, M.K.H.; Berchmans, S. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour. Technol. 2016, 217, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, X.; Chen, Y.; Bai, X.; Pang, Z.; Yang, H.; Qi, Y.; Wen, X. Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure. AIP Adv. 2018, 8, 105029. [Google Scholar] [CrossRef]
- Cen, C.; Lin, H.; Huang, J.; Liang, C.; Chen, X.; Tang, Y.; Yi, Z.; Ye, X.; Liu, J.; Yi, Y.; et al. A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays. Sensors 2018, 18, 4489. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Wang, Z.; Zhang, Y.; Fang, R.; Yuan, Z.; Miao, C.; Yan, X.M.; Jiang, Y. Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. J. Power Sources 2018, 382, 128–134. [Google Scholar] [CrossRef]
- Wang, X.; Pang, Z.; Tong, H.; Wu, X.; Bai, X.; Yang, H.; Wen, X.; Qi, Y. Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography. Results Phys. 2019, 12, 732–737. [Google Scholar] [CrossRef]
- Dai, J.Y.; Li, J.J.; Zhang, Q.B.; Liao, M.; Duan, T.; Yao, W.T. Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode. Mater. Lett. 2019, 236, 483–486. [Google Scholar] [CrossRef]
- Cen, C.; Lin, H.; Liang, C.; Huang, J.; Chen, X.; Yi, Z.; Tang, Y.; Duan, T.; Xu, X.; Xiao, S.; et al. Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays. Superlattice Microstruct. 2018, 120, 427–435. [Google Scholar] [CrossRef]
- Feng, N.; Hu, D.K.; Wang, P.; Sun, X.L.; Li, X.W.; He, D.Y. Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 9924–9930. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Fakhar-e-Alam, M.; Atif, M.; Ahmed, N.; Amin, N.; Alghamdi, R.A.; Hanif, A.; Farooq, W.A. Empirical Modeling of Zn/ZnO Nanoparticles Decorated/Conjugated with Fotolon (Chlorine e6) Based Photodynamic Therapy towards Liver Cancer Treatment. Micromachines 2019, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Xu, X.B.; Kang, X.L.; Zhao, Y.L.; Zhang, S.L.; Yao, W.T.; Yi, Y.G.; Luo, J.S.; Wang, C.Y.; Yi, Y.; et al. Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering. Surf. Coat. Technol. 2017, 324, 257–263. [Google Scholar] [CrossRef]
- Menniger, J.; Jahn, U.; Brandt, O.; Yang, H.; Ploog, K. Identification of optical transitions in cubic and hexagonal GaN by spatially resolved cathodoluminescence. Phys. Rev. B 1996, 53, 1881–1885. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Yan, H.Q.; Huang, M.; Messer, B.; Song, J.H.; Yang, P.D. Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties. Chem. Eur. J. 2002, 8, 1260–1268. [Google Scholar] [CrossRef]
- Shim, M.; Guyot-Sionnest, P. Intraband hole burning of colloidal quantum dots. Phy. Rev. B 2001, 64, 245342. [Google Scholar] [CrossRef]
- Gu, Y.; Kuskovsky, I.L.; Yin, M.; O’Brien, S.; Neumark, G.F. Quantum confinement in ZnO nanorods. Appl. Phys. Lett. 2004, 85, 3833–3835. [Google Scholar] [CrossRef]
- Ko, S.H.; Lee, D.; Kang, H.W.; Nam, K.H.; Yeo, J.Y.; Hong, S.J.; Grigoropoulos, C.P.; Sung, H.J. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett. 2011, 11, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.L.; Song, J.H. Piezoelectric Nanogenerators Based on ZnO Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.W.; Cao, L.H. Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix. Appl. Surf. Sci. 2018, 445, 65–70. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X.D.; Wang, Z.L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Li, X.; Xu, X.; Chen, X.; Ye, X.; Yi, Y.; Duan, T.; Tang, Y.; Liu, J.; Yi, Y. Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem. Nanomaterials 2018, 8, 568. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, S.A.; Rahmanian, R.; Abedi, M.; Amoli, H.S. Urea impedimetric biosensor based on reactive RF magnetron sputtered ZnO nanoporous transducer. Electrochim. Acta 2014, 146, 538–547. [Google Scholar] [CrossRef]
- Liang, L.S.; Huang, Z.F.; Cai, L.H.; Chen, W.Z.; Wang, B.Z.; Chen, K.W.; Bai, H.; Tian, Q.Y.; Fan, B. Magnetron Sputtered ZnO Nanorods as Thickness-Insensitive Cathode Interlayer for Perovskite Planar-Heterojunction Solar Cells. ACS. Appl. Mater. Interfaces 2014, 6, 20585–20589. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, Y.; Zeng, W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 2018, 427, 281–287. [Google Scholar] [CrossRef]
- Shi, R.X.; Yang, P.; Dong, X.B.; Ma, Q.; Zhang, A.Y. Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis. Appl. Surf. Sci. 2013, 264, 162–170. [Google Scholar] [CrossRef]
- Kiomarsipour, N.; Shoja Razavi, R. Hydrothermal synthesis and optical property of scale- and spindle-like ZnO. Ceram. Int. 2013, 39, 813–818. [Google Scholar] [CrossRef]
- Chen, J.; Yi, Z.; Xiao, S.; Xu, X. Absorption enhancement in double-layer cross-shaped graphene arrays. Mater. Res. Express 2018, 5, 015605. [Google Scholar] [CrossRef] [Green Version]
- Ain Samat, N.; Md Nor, R. Sol–gel synthesis of ZnO nanoparticles using Citrus aurantifolia extracts. Ceram. Int. 2013, 39, S545–S548. [Google Scholar] [CrossRef]
- Cen, C.; Chen, J.; Liang, C.; Huang, J.; Chen, X.; Tang, Y.; Yi, Z.; Xu, X.; Yi, Y.; Xiao, S. Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Phys. E 2018, 103, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Momeni, M.M.; Ghayeb, Y. Fabrication and characterization of ZnO-decorated titania nanoporous by electrochemical anodizing-chemical bath deposition techniques: Visible light active photocatalysts with good stability. J. Iran. Chem. Soc. 2015, 13, 481–488. [Google Scholar] [CrossRef]
- Myint, M.T.Z.; Dutta, J. Fabrication of ZnO nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination 2012, 305, 24–30. [Google Scholar] [CrossRef]
- Laurenti, M.; Garino, N.; Porro, S.; Fontana, M.; Gerbaldi, C. ZnO nanostructures by chemical vapour deposition as anodes for Li-ion batteries. J. Alloys Compd. 2015, 640, 321–326. [Google Scholar] [CrossRef]
- Hu, P.; Han, N.; Zhang, D.W.; Ho, J.C.; Chen, Y.F. Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sens. Actuators B 2012, 169, 74–80. [Google Scholar] [CrossRef]
- Yi, Z.; Luo, J.S.; Ye, X.; Yi, Y.G.; Huang, J.; Yi, Y.; Duan, T.; Zhang, W.B.; Tang, Y.J. Effect of synthesis conditions on the growth of various ZnO nanostructures and corresponding morphology-dependent photocatalytic activities. Superlattices Microstruct. 2016, 100, 907–917. [Google Scholar] [CrossRef]
- Kahn, M.L.; Cardinal, T.; Bousquet, B.; Monge, M.; Jubera, V.; Chaudret, B. Optical Properties of Zinc Oxide Nanoparticles and Nanorods Synthesized Using an Organometallic Method. Chem. Phys. Chem. 2006, 7, 2392–2397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Feng, J.; Wang, J.; Zhang, M.L. Preparation of ZnO nanorods through wet chemical method. Mater. Lett. 2007, 61, 5202–5205. [Google Scholar] [CrossRef]
- Wahab, R.; Ansari, S.G.; Kim, Y.-S.; Seo, H.-K.; Shin, H.-S. Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Appl. Surf. Sci. 2007, 253, 7622–7626. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, X.F.; Yi, Z.; Yi, Y.G.; Xu, X.B. Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties. Appl. Surf. Sci. 2018, 441, 40–48. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Z.X.; Zhang, Z.C.; Niu, W.X.; Li, C.L.; Yang, N.L.; Chen, B.; Zhang, H. Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chem. Rev. 2018, 118, 6409–6455. [Google Scholar] [CrossRef] [PubMed]
- Chai, G.Y.; Lupan, O.; Chow, L.; Heinrich, H. Crossed zinc oxide nanorods for ultraviolet radiation detection. Sens. Actuators A 2009, 150, 184–187. [Google Scholar] [CrossRef]
- Bhaumik, A.; Shearin, A.M.; Delong, R.; Wanekaya, A.; Ghosh, K. Probing the interaction at the nano-bio interface using Raman spectroscopy: ZnO nanoparticles and adenosine triphosphate biomolecules. J. Phys. Chem. C 2014, 118, 18631–18639. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.L.; Lu, X.H.; Zhai, T.; Gan, J.Y.; Li, W.; Xu, M.; Yu, M.H.; Zhang, Y.M.; Tong, Y.X. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity. Langmuir 2012, 28, 10558–10564. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, J.; Kyriakides, T.R. Nanomaterials, Inflammation, and Tissue Engineering. Wiley Interdiscip. Rev. 2014, 7, 355–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Growth Method | Avg Nanorod Length (nm) | Avg Nanorod Diameter (nm) |
---|---|---|
Hydrothermal synthesis | 2000 | 150 |
Organometallic method | 25 | 3 |
Wet chemical method | 2000 | 250 |
Via sonochemical method | 6000 | 150 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chen, X.; Yi, Z.; Zhou, Z.; Tang, Y.; Yi, Y. Fabriction of ZnO Nanorods with Strong UV Absorption and Different Hydrophobicity on Foamed Nickel under Different Hydrothermal Conditions. Micromachines 2019, 10, 164. https://doi.org/10.3390/mi10030164
Li X, Chen X, Yi Z, Zhou Z, Tang Y, Yi Y. Fabriction of ZnO Nanorods with Strong UV Absorption and Different Hydrophobicity on Foamed Nickel under Different Hydrothermal Conditions. Micromachines. 2019; 10(3):164. https://doi.org/10.3390/mi10030164
Chicago/Turabian StyleLi, Xin, Xifang Chen, Zao Yi, Zigang Zhou, Yongjian Tang, and Yougen Yi. 2019. "Fabriction of ZnO Nanorods with Strong UV Absorption and Different Hydrophobicity on Foamed Nickel under Different Hydrothermal Conditions" Micromachines 10, no. 3: 164. https://doi.org/10.3390/mi10030164
APA StyleLi, X., Chen, X., Yi, Z., Zhou, Z., Tang, Y., & Yi, Y. (2019). Fabriction of ZnO Nanorods with Strong UV Absorption and Different Hydrophobicity on Foamed Nickel under Different Hydrothermal Conditions. Micromachines, 10(3), 164. https://doi.org/10.3390/mi10030164