Programmable Spectral Filter in C-Band Based on Digital Micromirror Device
Abstract
:1. Introduction
2. System Design
2.1. Diffraction Efficiency of DMD
2.2. Power Handling of Optical filter
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Anuj Malik, G.H. The Evolution of Next-Gen Optical Networks: Terabit Super-Channels and Flexible Grid ROADM Architectures. In Proceedings of the SCTE Cable-Tec Expo 2014, Denver, CO, USA, 22–25 September 2014. [Google Scholar]
- Woodward, S.L.; Feuer, M.D. Benefits and requirements of flexible-grid ROADMs and networks. IEEE/OSA J. Opt. Commun. Netw. 2013, 5, A19–A27. [Google Scholar] [CrossRef]
- Blanche, P.A.; Carothers, D.; Wissinger, J.; Peyghambarian, N. DMD as a diffractive reconfigurable optical switch for telecommunication. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications V, San Francisco, CA, USA, 5–6 February 2013. [Google Scholar]
- Knapczyk, M.T.; de Peralta, L.G.; Bernussi, A.A.; Temkin, H. Reconfigurable add–drop optical filter based on arrays of digital micromirrors. J. Lightw. Technol. 2008, 26, 237–242. [Google Scholar] [CrossRef]
- Jin, D.; Zhou, R.; Yaqoob, Z.; So, P.T. Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography. Opt. Express 2018, 26, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Henry, A.; Arce, G.R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2015, 32, 80–89. [Google Scholar]
- Liu, W.; Fan, J.; Xie, C.; Song, Y.; Gu, C.; Chai, L.; Wang, C.; Hu, M. Programmable controlled mode-locked fiber laser using a digital micromirror device. Opt. Lett. 2017, 42, 1923–1926. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Taphanel, M.; Längle, T.; Beyerer, J. Programmable light source based on an echellogram of a supercontinuum laser. Appl. Opt. 2017, 56, 2359–2367. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.C.; Elson, D.S. A tunable supercontinuum laser using a digital micromirror device. Meas. Sci. Technol. 2012, 23, 105204. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yan, B.B.; Song, F.J.; Wang, Y.Q.; Xiao, F.; Alameh, K. Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers. Appl. Opt. 2012, 51, 7214–7220. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Chang, Y.; Zhang, D.; Cheng, J.; Chen, S.C. Femtosecond laser pulse shaping at megahertz rate via a digital micromirror device. Opt. Lett. 2015, 40, 4018–4021. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Riza, N.A. Demonstration of the MEMS Digital Micromirror Device-Based Broadband Reconfigurable Optical Add–Drop Filter for Dense Wavelength-Division-Multiplexing Systems. J. Lightw. Technol. 2007, 25, 520–526. [Google Scholar] [CrossRef]
- Knapczyk, M.; Krishnan, A.; de Peralta, L.G.; Bernussi, A.; Temkin, H. High-resolution pulse shaper based on arrays of digital micromirrors. IEEE Photonics Technol. Lett. 2005, 17, 2200–2202. [Google Scholar] [CrossRef]
- Knapczyk, M.; Krishnan, A.; de Peralta, L.G.; Bernussi, A.; Temkin, H. Reconfigurable optical filter based on digital mirror arrays. IEEE Photonics Technol. Lett. 2005, 17, 1743–1745. [Google Scholar] [CrossRef]
- Xie, D.; Wang, D.; Zhang, M.; Liu, Z.; You, Q.; Yang, Q.; Yu, S. LCoS-based wavelength-selective switch for future finer-grid elastic optical networks capable of all-optical wavelength conversion. IEEE Photon. J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, G.; Chen, X.; Zhang, Q.; Chen, Q.; Zhang, C.; Tian, K.; Tan, Z.; Yu, C. High-Resolution Tunable Filter With Flexible Bandwidth and Power Attenuation Based on an LCoS Processor. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Carbajo, S.; Bauchert, K. Power handling for LCoS spatial light modulators. In Proceedings of the Laser Resonators, Microresonators, and Beam Control XX, San Francisco, CA, USA, 29 January–1 February 2018. [Google Scholar]
- Laser Power Handling for DMDs. Available online: http://www.ti.com/lit/wp/dlpa027/dlpa027.pdf (accessed on 26 February 2019).
- Iwama, M.; Takahashi, M.; Kimura, M.; Uchida, Y.; Hasesawa, J.; Kawahara, R.; Kagi, N. LCOS-based flexible grid 1 × 40 wavelength selective switch using planar lightwave circuit as spot size converter. In Proceedings of the 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 22–26 March 2015; pp. 1–3. [Google Scholar]
- Suzuki, K.; Ikuma, Y.; Hashimoto, E.; Yamaguchi, K.; Itoh, M.; Takahashi, T. Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015. [Google Scholar]
- Faustov, A.R.; Webb, M.R.; Walt, D.R. Note: Toward multiple addressable optical trapping. Rev. Sci. Instrum. 2010, 81, 026109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, B.; Ritt, G.; Koerber, M.; Eberle, B. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems. Opt. Eng. 2017, 56, 034108. [Google Scholar] [CrossRef] [Green Version]
p/q | −4 | −3 | −2 | −1 |
---|---|---|---|---|
−4 | 22.8/45 (0.002) | 18.6/30.4 (0.035) | 16.1/9.9 (0.005) | - |
−3 | 18.6/59.6 (0.019) | 13.2/45 (0.425) | 9.7/16.5 (0.05) | 10.0/−22.1 (0.009) |
−2 | 16.1/80.1 (0.011) | 9.7/73.5 (0.213) | 3.872/45 (0.018) | 4.7/−54 (0.004) |
−1 | −16.4/−76.6 (0.001) | −10.0/−67.9 (0.03) | −4.7/−36.1 (0.003) | - |
Center Wavelength (nm) | 1550.09 | 1550.30 | 1550.50 | 1550.71 | 1550.91 | 1551.11 | 1551.32 | 1551.53 | 1551.74 |
---|---|---|---|---|---|---|---|---|---|
Offset Level (dB) | −0.557 | −0.25 | −0.067 | −0.029 | −0.502 | −0.267 | −0.124 | 0 | −0.419 |
Channel Crosstalk (dB) | −16.345 | −16.46 | −16.132 | −14.677 | −14.223 | −15.93 | −15.739 | −15.677 | −16.319 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Chen, X.; Chen, G.; Tan, Z.; Chen, Q.; Dai, D.; Zhang, Q.; Yu, C. Programmable Spectral Filter in C-Band Based on Digital Micromirror Device. Micromachines 2019, 10, 163. https://doi.org/10.3390/mi10030163
Gao Y, Chen X, Chen G, Tan Z, Chen Q, Dai D, Zhang Q, Yu C. Programmable Spectral Filter in C-Band Based on Digital Micromirror Device. Micromachines. 2019; 10(3):163. https://doi.org/10.3390/mi10030163
Chicago/Turabian StyleGao, Yunshu, Xiao Chen, Genxiang Chen, Zhongwei Tan, Qiao Chen, Dezheng Dai, Qian Zhang, and Chao Yu. 2019. "Programmable Spectral Filter in C-Band Based on Digital Micromirror Device" Micromachines 10, no. 3: 163. https://doi.org/10.3390/mi10030163
APA StyleGao, Y., Chen, X., Chen, G., Tan, Z., Chen, Q., Dai, D., Zhang, Q., & Yu, C. (2019). Programmable Spectral Filter in C-Band Based on Digital Micromirror Device. Micromachines, 10(3), 163. https://doi.org/10.3390/mi10030163